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Abstract: Beamforming is significant for millimeter wave multi-user massive multi-input multi-output systems. In the meanwhile, the over⁃
head cost of channel state information and beam training is considerable， especially in dynamic environments. To reduce the overhead cost, 
we propose a multi-user beam tracking algorithm using a distributed deep Q-learning method. With online learning of users’ moving trajecto⁃
ries, the proposed algorithm learns to scan a beam subspace to maximize the average effective sum rate. Considering practical implementa⁃
tion, we model the continuous beam tracking problem as a non-Markov decision process and thus develop a simplified training scheme of 
deep Q-learning to reduce the training complexity. Furthermore, we propose a scalable state-action-reward design for scenarios with different 
users and antenna numbers. Simulation results verify the effectiveness of the designed method.
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1 Introduction

Millimeter wave (mmWave) communications have 
gained extensive attention due to vast bandwidth re⁃
sources. The beamforming technique with large an⁃
tenna arrays can improve the mmWave communica⁃

tion network coverage and make up for severe free-space path 
loss. MmWave signals are highly directional with beamforming, 
and thus beam tracking is needed to ensure the stability and 
quality of connected links in mobile scenarios. Currently, 
mmWave systems typically use hybrid analog-digital architec⁃
tures to reduce the hardware cost and power consumption.

Traditional beam alignment exhaustively scans the whole 
beam space, and the introduced high overhead is unaccept⁃
able for mobile scenarios. The efficiency of beam training can 
be improved by the hierarchical searching method with a 
multi-resolution codebook. Refs. [1 – 3] have reduced the 
beam training overhead by exploiting prior knowledge of the 
mmWave channel such as the angle of departure (AoD) or the 
angle of arrival (AoA), and a low-resolution codebook is fur⁃
ther considered in fast-varying scenarios[3]. As a heuristic solu⁃
tion, a deep learning based fast beamforming design method is 
introduced, without complex operations and iterations in con⁃
ventional methods[4].

To better utilize implicit prior information embedded in the 
practical environments, data-driven approaches are fea⁃
sible[5–7]. A fingerprint database is used in Ref. [8] to access 
historical training records according to the user’s location. In 
Ref. [9], a data-driven data fusion module is developed to com⁃
bine AoD and time of arrival (ToA) positioning, and 
positioning-based beam tracking methods are introduced for 
high-speed railway scenarios. In general, offline learning re⁃
quires a large number of collected samples in advance, and 
recollection is needed once the environment changes, leading 
to difficulties in deployment. Meanwhile, reinforcement learn⁃
ing can realize online learning without offline data, and opti⁃
mize the policy through interactions with the environment. To 
reduce beam training overhead, Ref. [10] proposes a multi-
armed bandit (MAB) based approach where the training 
beams are selected by the upper confidence bound strategy. 
However, the simple MAB model has limited ability to learn 
from the surroundings, furthermore, a centralized deep Q-
learning (DQL) method is proposed in Ref. [11], where the 
beam training problem is modeled as a Markov decision pro⁃
cess (MDP). However, due to its multi-user single-agent 
model, the action space exponentially explodes with the 
growth of the user number and lacks scalability to different 
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user and antenna numbers.
In this paper, under the centralized training and distributed 

execution (CTDE) framework, we propose a beam tracking 
method with distributed DQL for the beam tracking problem 
in dynamical mmWave scenes. Specifically, a distributed 
beam tracking algorithm is designed to adapt to the changing 
environments, where each user is regarded as an agent. We 
also propose several enhancements on the vanilla DQL, in⁃
cluding simplified deep Q-network (DQN) training and scal⁃
able state-action-reward designs. The main contributions are 
summarized as follows:

• We develop multi-agent DQL for simultaneous multi-user 
beam tracking, and the DQL method follows the CTDE frame⁃
work, where all users share the same policy learned with col⁃
lected data from all the users.

• We prove that the beam tracking problem is a quasi-static 
optimization problem instead of an MDP, and a simplified 
DQL training scheme is proposed to reduce the complexity.

• We propose scalable state-action-reward designs for the 
DQL which can work in scenarios with different BS antenna 
and user numbers. In comparison, the existing centralized 
DQL methods cannot be transferred to a different scenario due 
to a mismatch of input and output.

The rest of this paper is organized as follows. Section 2 pres⁃
ents the system model. Section 3 describes the beam tracking 
design with a distributed DQL method. Section 4 gives the 
simulation results. Section 5 draws the conclusions.
2 System Model and Problem Formulation

2.1 System Model
We consider the downlink transmission in a link-level 

mmWave communication system composed of one base station 
(BS) and U mobile users (MU). The BS is equipped with M 
transmit antennas and Nrf radio frequency (RF) chains which 
are fully-connected, and each MU has a single receiving an⁃
tenna. One data stream is simultaneously allocated to each 
user, and thus U = Nrf. On the BS side, the hybrid analog-
digital precoding is considered. The analog precoding matrix is 
denoted by A ∈ CM × Nrf, where the u-th column, i.e., A[ :,u], is 
the analog precoding vector of user u, and it is selected from 
the discrete Fourier transformation (DFT) codebook F ∈ CM × M. 
Similarly, the digital precoder is V = [ v1,⋯,vNrf ], where the u-

th column H = [h1,⋯,hNrf ]
Hdenotes the digital precoding vec⁃

tor, and s is the independent and identical distributed (i. i. d.) 
data stream. The received signal can be written as:
y = HAVs + w, (1)

where w ∼ CN𝒩(0,σ2
n INrf ) denotes zero mean additive white 

Gaussian noise (AWGN) with variance σ2
n, and the channel 

matrix is denoted by vu ∈ CNrf × 1, where hu is the downlink 

channel vector from the BS to MU u.
Without sacrificing generality, the DFT codebook F is con⁃

structed by evenly sampling the beam space, and thus the i-th 
column is:
F i = a (ϕi ) |

ϕi = π
2 ( )2i

M - 1 , (2)
where the array response with azimuth being ϕ is:
a (ϕ) = 1

M
[1,⋯,ejkdmsin ( )ϕ ,⋯,ejkd ( )M - 1 sin ( )ϕ ], (3)

where k = 2π
λ , and  λ is the wavelength.

Instead of directly estimating high-dimensional channel 
state information (CSI) { hu }, we use low-dimensional equiva⁃
lent CSI { h̄u } obtained by beam scanning. Specifically, the 
equivalent channel is a multiplication of the channel matrix H 
and the analog precoding matrix A, and then the BS can be 
considered as a transmitter with Nrf ports. The equivalent 
channel vector between the BS and MU u is h̄u = AHhu, which 
will be used for digital precoding.
2.2 Problem Formulation

As illustrated in Fig. 1, the precoded signal is transmitted 
within a correlation block which is divided into three phases: 
beam scanning, hybrid precoding, and data transmission. Af⁃
ter the beam scanning in time slot t, we can obtain the equiva⁃
lent channel vectors { h̄u }. Then, the digital precoding problem 
is modeled as:

max
{ }vu

∑
u ∈ U
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2
F ≤ Pm, (4)

where Pm denotes the maximal transmit power of the BS. 
Eq. (4) can be solved by minimum mean square error 

▲Figure 1. Three phases of a time slot
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(MMSE) precoding. We adopt a classical linear MMSE to 
derive the transmitter digital precoder as follows:
D = ξH̄ ( H̄H H̄ + σ2

n INrf )-1
, (5)

where H̄ = [ h̄1,⋯,h̄rf ]
T, and ξ is a factor to control the BS 

maximum transmit power.
We evaluate the system performance by an effective sum-

rate. Let ft be the optimal value of an objective function in 
Eq. (4). Considering the beam training overhead, the effec⁃
tive achievable sum rate during time slot t is defined as

Rt = (1 - ||F t tS + tP

tC ) ft, (6)
where F t is a subset of the codebook F and its elements are 
the training beams to be scanned, |F t | denotes the correspond⁃
ing cardinal number, tS is the duration of one training beam, tP denotes the duration of precoding and online learning, and tC 
denotes the duration of one time slot. With previous known ex⁃
perience, the investigated problem is to design a beam track⁃
ing algorithm to maximize time average of Eq. (6), where the 
digital precoding vectors { vu } in Eq. (4) are derived from the 
beam scanning results.
3 Beam Tracking with Deep Q-Learning

3.1 Preliminary of Deep Q-Learning
Without loss of generality, single-agent DQL is developed 

for a problem modeled as a process of continuous interac⁃
tions between an intelligent agent and the environment, i.e., 
MDP. In each interaction, the agent conducts an action a by 
a policy π with an observed state s, then receives a feedback 
reward r from the environment, and enters a new state s'. The 
goal is to learn a strategy for cumulative reward maximiza⁃
tion. In a value-based algorithm, the action is selected by the 
values of state-action pairs, i.e., Q-values. The Q-value is de⁃
fined as follows:

Qπ( s,a) = Eπ
é

ë
ê
êê
ê∑

k = 0

∞
γk rk + 1|s,a

ù

û
ú
úú
ú
, (7)

where γ ∈ [ 0,1) is the discount factor. The mapping from the 
state to the action values is realized by a learnable network DQN.
3.2 Centralized Deep Q-Learning

Intuitively, the investigated multi-user beam tracking prob⁃
lem can be modeled as an MDP, and the centralized DQL 
method is considered in Ref. [11]. Specifically, during time-
slot t, the modulus of the channel vector of MU u in beam 
space is given as：

I t
u = abs (FHh t

u ). (8)
Stacking { I t

u } into a matrix I t, we have
I t = [ I t1,⋯,I t

U ] ∈ RM × U, (9)
where we can obtain an “image” I t as the state st, which de⁃
scribes the distribution of effective paths or beam directions. 
Since mmWave channels are sparse in the beam domain and 
the training beam set is a subset of the DFT codebook, I t is a 
sparse image and most elements of I t are near zero.

To achieve the goal of sensing the environment, an action is 
defined based on the difference in the indices between two ad⁃
jacent beams. An action for a single MU is defined by a pair of 
integers ( μ, σ), where μ denotes the difference of the indices 
of the optimal beams in two adjacent time-slots, i.e.,

μt = (bt - bt - 1 )modM, (10)
where b denotes the beam index, “mod” denotes the modular 
arithmetic, and σ denotes the number of beams used to sweep 
the beam space, respectively. The action space corresponding 
to MU u is denoted by

Au =
ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

( )μ1 - ê
ë
êêêê ú

û
úúúú

σ12 , μ1 + ê
ë
êêêê ú

û
úúúú

σ12 ,⋯,
ü
ý
þ( )μL - ê

ë
êêêê ú

û
úúúú

σL2 , μL + ê
ë
êêêê ú

û
úúúú

σL2 modM, (11)
where L is the size of the action space. The action space for all 
MUs is a product of {Au }, i. e., A = ∏UAu. Finally, the im⁃
mediate reward in time-slot t is given in Eq. (6), i. e., rt = Rt. The scanned beams are F t = at ∈ A.

In DQL[12], a separate target network is introduced to stabi⁃
lize DQN training, the weights of which change slowly com⁃
pared with the primary network.

However, several shortcomings of the centralized framework 
must be observed. Firstly, as the user number U increases, the 
cardinality of DQN input space |S | = M × U grows linearly, 
and cardinality of output space |A | = LU grows exponentially. 
The training is difficult for such a DQN since the state-action 
space increases exponentially with user numbers. Addition⁃
ally, exploration in high-dimensional space is inefficient, and 
thus the learning can be impractical. Secondly, the DQL lacks 
scalability in changing user number U and the BS antenna 
number M.
3.3 Simplicated DQN Training

3.3.1 Centralized Training and Distributed Execution Framework
Single-agent DQL for multi-user beam tracking can lead to 

action space explosion[13]. To address this issue, we propose 
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the multi-agent DQL with CTDE. Specifically, each MU is re⁃
garded as one agent. All agents are synchronized and distrib⁃
uted, and they share the same policy for online training and in⁃
ference. The collected data from all agents are aggregated to 
form a centralized training set, and the shared policy is 
trained with the centralized training set. The shared policy is 
then executed by all agents. Thus, the training is centralized 
and the execution is distributed. The CTDE framework can 
solve the space explosion problem, and also improve network 
scalability and reduce training difficulty.
3.3.2 Non-MDP Problem

To adapt to the dynamic environment, low computational 
complexity is significant for online training, therefore we pro⁃
pose to simplify the vanilla DQN method, i. e., reducing the 
beam tracking problem as a static optimization problem and 
solving it in a greedy manner[13]. From the perspective of MDP, 
the following conclusion can be drawn.

Theorem 1. When the state transition function is indepen⁃
dent of the current action and the reward is independent of the 
state to be transferred to, the maximized cumulative reward 
under the optimal policy is equivalent to the combination of 
single-step rewards.

The description of the assumed conditions can be math⁃
ematically formulated as:

Pa
s → s' = Ps → s', (12)

ra
s → s' = ra

s , (13)
where P denotes state transition probability. The proof of 
Theorem 1 is given in the Appendix.

In practice, the beam alignment success rate reaches a cer⁃
tain extent p thr close to 100%. Once the misalignment occurs, 
the BS instantly realigns and a partial observation is obtained. 
This observation is very similar to the one observed when the 
beam is successfully tracked. Thus, the new state observed 
from the environment is mainly determined by the moving us⁃
ers and the fading channels, and is weakly related to the taken 
action. Additionally, when the reward is sum-rate Rt in Eq. 
(6), the current reward is irrelevant to the new state. There⁃
fore, we can regard that the system satisfies Eqs. (12) and 
(13), and we set the discount factor γ as 0. Formally, the Q-
value function in Eq. (7) can be simplified as follows:

Q ( st,at ) = rt. (14)
In summary, when Theorem 1 holds, we can replace the 

above Eq. (7) with Eq. (14) for DQN training, which has 
the following benefits:

1) With no need for target networks, the training complexity 
is reduced;

2) The variance of Q-value estimation is reduced, and thus 
the training is more efficient.

3.4 State, Action and Reward Design
To make the choice of action in each state logical, the de⁃

sign of the state must reflect the state of the user’s interaction 
with the environment. Since the irregular movements of the 
user are the main cause of the dynamic changes in the environ⁃
ment, the state can be defined according to the movement of 
the user. We propose to use the index difference of optimal 
beams measured in successive time slots as the state. This 
state design reflects changes in the direction and rate of the 
user’s motion over a period of time.

In the state design of centralized DQL, the state space 
grows linearly with the user number U. To achieve scalability 
against U, firstly we propose to decouple the centralized state 
I t as a bunch of distributed states { I t

u }. Thus, once training is 
finished, the distributed state can be extended to the scenarios 
with any user number.

The mmWave channel is sparse in the beam domain, thus 
most of the element values in I t

u are equal or close to zero. Be⁃
sides, in the beam tracking period t for user u, only a small 
subset of training beams is scanned. Therefore, except for σt

u scanned beams, (M - σt
u ) elements in I t

u are zero, indicating 
that we can retain the scanned beams as the distributed state 
and leave out the others. Secondly, as shown in Fig. 2, we pro⁃
pose to cap I t

u with a mask m t
u ∈ RM × 1, the center of which is 

bt
u and the half width is B = maxL

l = 1 σl, to achieve scalability 
against the BS antenna number M. Formally, the masked dis⁃
tributed state is:

st
u = |I t

u,i
( )bt

u + B modM

i = ( )bt
u - B modM. (15)

The other elements in I t
u are left out. Similarly, we decouple 

the centralized action a ∈ A as { au ∈ Au }. Thus, the state 
space is 2B and the action space is L which are fixed and irrel⁃
evant to the user number U. This indicates the proposed dis⁃
tributed design is scalable to changing user numbers and BS 
antenna numbers.

Reward acquisition requires completion of analog and digi⁃
tal precoding. At time-slot t, the effective achievable rate of 
user u in Eq. (6) is defined as the reward

▲Figure 2. State of user u after masking

Note: The modular arithmetic is neglected.
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The scanned beams is F t = ⋃U

u = 1at
u.In summary, compared with the centralized DQL intro⁃

duced in Section 3.2, the proposed distributed DQL has the 
following benefits:

1) The input and output of the DQN are greatly reduced, 
and thus the DQN is simplified.

2) The DQN is scalable to the changing user number U and 
the BS antenna number M.

3) The sample number is U times higher than that of the 
centralized DQL.

We give two instances of DQNs in Table 1, and they both 
have a three-layer neural network (NN). The activation func⁃
tion f ( ⋅ ) and the neuron number of each DNN layer are 
listed on the left and the right sides, respectively. The acti⁃
vation functions are rectified linear unit (ReLU): f (x) =
max (0, x), and linear: f (x) = x.
3.5 Distributed Beam Tracking Algorithm Procedure

For clarity, the flow of the distributed beam tracking algo⁃
rithm is summarized in Algorithm 1. At the beginning of each 
episode, the entire codebook is scanned to obtain the initial 
state st

u for every single user. Then, the agent selects action at by 
the ε-greedy strategy, and ε for the ε-greedy strategy varies as

ε = n to - ncur
n to , (17)

where n to is a fixed value. We set another fixed value n thr that 
is less than n to, and ncur varies as:

ncur = {n, n < n thr
n thr n ≥ n thr . (18)

In Algorithm 1, by performing steps (1), rt and digital pre⁃
coding vectors are obtained. Then downlink data transmis⁃
sion is executed in step (2). In step (3), the parameters of 
DQN are updated.

The ε-greedy strategy is used to explore the environment, 
the existence of which can lead to the failure to find the opti⁃
mal beam at each time-slot, i.e., misalignment. Five consecu⁃

tive moments of mis-alignment are defined as an incident. 
Once an incident occurs, the optimal beam initialization pro⁃
cess starts immediately from this moment, which is called 

“calibration” and is achieved via exhaustive search.
Algorithm 1: Distributed beam tracking algorithm
1:  Initialize: 1) DFT codebook F; 2) DQN with random 

weights θ; 3) replay memory D;
2:  for each episode do
3:     scan optimal beam in codebook to obtain U initial 

states
4:     while t ≥ k and t ≤ snapshot do
5:       (1) obtain analog and digital precoding
6:            a) choose action at according to the ε-

greedy strategy
7:            b) execute action at and observe the 

next state st + 1
8:            c) compute reward rt and obtain 

( st,at,rt )
9:            4) obtain precoding vectors
10:      (2) transmit data during the remaining of time-

slot t
11:      (3) update parameters θ of DQN
12:           a) store transition ( st, at, st + 1, rt ) in D
13:           b) sample batch of transitions from D
14:               c) update θ with the gradient descent 

optimizer
15:       let t ← t + 1
16:      end while
17: end for

4 Simulation Results
In this section, we evaluate the performance of the proposed 

beam training algorithm via numerical results. The MUs are 
assumed to move along a circle and the BS is located at the 
center. To reflect dynamical changes of the distances between 
the BS and the MUs, the time-varying path-loss of the MUs is 
incorporated into the mmWave channel model. The movement 
velocity of the MUs is assumed to be stochastic, and obeys a 
known probability law. Accordingly, switching to another 
beam in the next time-slot is also stochastic and obeys some 
probability law.

For each MU, the probability that the optimal beam of the 
MU switches to the i-th beam of the next S beams is denoted 
by pS,i( i = 0,⋯, S), where pS,0 is the probability that the opti⁃
mal beam of the MU in the next time-slot is still the current 
beam. For example, two probability distributions are consid⁃
ered, where pS,i is given by:

 pS,i = e-ηi ( ∑
k = 0

S

e-ηk )-1
. (19)

The parameter η > 0 defines the “decay” rate. Specifically, 

▼Table 1. Deep Q-network (DQN) setting

DQL type
Output layer
Hidden layer
Input layer

Centralized DQL
linear,LU

ReLU,32
linear,M × U

Distributed DQL
(proposed)

linear,L
ReLU,32
linear,2B

DQL: deep Q-learning      ReLU: rectified linear unit
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we consider S = 4 and η = 1.0. For each MU u, the action 
space Au is given by
Au = {(a,b) |a = { 0,1,2,3 } ; b = {1,3,5 }}. (20)
Next, we evaluate the performance of the designed DQL al⁃

gorithm. The simulation results of the centralized DQL in Ref. 
[11] , the proposed simplified DQL in Section 3.3.2 named  
centralized DQL (simplified) and the proposed distributed 
DQL are provided for comparison. Besides, the exhaustive 
search beam tracking, the bandit learning based beam track⁃
ing, Q-learning based beam tracking and the centralized DQL 
algorithm are studied in Ref. [11], and the simulation results 
show that the centralized DQL algorithm is the best. We use 
the average effective sum-rate (AESR) and the probability of 
successful beam (PSB) alignment as the two metrics for perfor⁃
mance evaluation. The simulation platform is presented as Py⁃
thon 3.9, Tensorflow 2.9.0, CPU Intel i7-9700K and GPU 
Nvidia GTX-1070Ti.

The PSB for different beam tracking algorithms with M =
32, U = 2 is shown in Fig. 3. We have noticed that the pro⁃
posed centralized DQL (simplified) has the fastest convergence 
speed and the highest PSB performance. Meanwhile, the cen⁃
tralized DQL converges slowly. The proposed distributed DQL 
converges fastly when the epoch number is up to 200, but it 
cannot work well with small epoch numbers lower than 100.

The PSB for different beam tracking algorithms with M = 64 
is shown in Fig. 4, and the user number U ∈ {1,2,3,4 }. We 
have observed that the proposed centralized DQL (simplified) 
and distributed DQL have similar PSB performance, with vary⁃
ing user numbers. However, the centralized DQL cannot work 
well and has a poor PSB performance. Besides, the training 
time costs are listed in Table 2. The time cost increases signifi⁃
cantly for centralized methods and remains fixed for the pro⁃
posed distributed method (the cost time rises due to interactions 

with the environment). As U increases, the action space grows 
exponentially for the centralized methods, and the training is 
very difficult for U > 4. This indicates the proposed distributed 
method is computationally efficient.

The AESR of the proposed distributed DQL for different 
beam tracking algorithms with U = 2 is shown in Fig. 5, and 
the user number M ∈ { 32, 64, 128, 256 }. Similar to the case 
with different user numbers, the proposed centralized DQL 
(simplified) and distributed DQL have similar AESR perfor⁃

▲Figure 4. PSB performance versus user numbers

DQL: deep Q-learning    PSB: probability of successful beam

▲Figure 5. AESR performance versus BS antenna numbers

AESR: average effective sum-rate     BS: base station     DQL: deep Q-learning
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50 100 150 200 250

45

40

35

30

25

20

AE
SR

/(bi
t·s

−1 ·
Hz−1 )

Centralized DQL
Centralized DQL (simplified)
Distributed DQL

▼Table 2. Training time cost

User Number
U = 1
U = 2
U = 3
U = 4

Centralized DQL/s
10.61
11.91
16.32
87.55

Centralized DQL
(simplified)/s

8.82
10.18
14.10
61.97

Distributed DQL
(proposed)/s

10.09
11.51
12.82
14.40

DQL: deep Q-learning

▲Figure 3. PSB performance versus training epochs

DQL: deep Q-learning     PSB: probability of successful beam
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mance, with varying BS antenna numbers, and the central⁃
ized DQL has a poor AESR performance.

The scalability is studied in Fig. 6. The distributed DQL 
indicates the training data and the test data are independent 
and identically distributed (i.i.d). The distributed DQL (gen⁃
eralized) indicates the training data has a fixed user number/
BS antenna number, meanwhile the test data have changing 
user numbers/BS antenna numbers. The results show that 
the learned DQN in changing scenarios has the same AESR 
performance as those with fixed scenarios, and the scalabil⁃
ity and generalization ability is verified. The centralized 
methods cannot work in this test due to mismatched input/
output.
5 Conclusions

In this paper, we investigate multi-user beam tracking in dy⁃
namical mmWave scenes, and a multi-agent DQL method un⁃
der centralized training and distributed execution framework 
is proposed for online learning. The vanilla DQL is improved 
in many aspects, such as distributed architecture, rational sim⁃
plification of training, and state-action-reward designs. More⁃
over, the proposed method is adaptable to the environment, 
and is scalable for different BS antenna numbers and user 
numbers. Simulation results demonstrate the effectiveness of 
the proposed algorithm.
Appendix

Proof. With the policy π and the initial state s1, the T-step 
cumulative reward is defined as:

V T
π ( )s1 = Eπ

é

ë
êêêê

ù

û
úúúú

1
T ∑

t = 1

T

rt ∣s1 =

∑
a1 ∈ A

π ( )a1∣s1 ∑
s2 ∈ S

Pa1
s1 → s2 × ( )1

T ra1
s1 → s2 + T - 1

T V T - 1
π ( )s2 . (19)

According to Eqs.  (12) and (13), the state value function in 
Eq.  (19) can be rewritten as:

V T
π ( )s1 = ∑

a1 ∈ A
π ( )a1∣s1 ∑

s2 ∈ S
Ps1 → s2 ×

( )1
T ra1

s2 + T - 1
T V T - 1

π ( )s2 =
1
T ∑

a1 ∈ A
π ( )a1∣s1 ra1

s1 + T - 1
T ∑

s2 ∈ S
Ps1 → s2 V

T - 1
π ( )s2 . (20)

The full unrolling of Eq.  (20) is given as:
V T

π ( )s1 = 1
T ∑

a1 ∈ A
π ( )a1∣s1 ra1

s1 +
1
T ∑

t = 2

T ∑
at ∈ A

π ( )at∣st ∑
st ∈ S

∏
t' = 1

t - 1
Pst' → st' + 1 rat

st.. (21)
As the state transfer is independent of the action and the 

state can be independently represented as s =< s1,⋯,sT + 1 >.  
Therefore, the maximization of Eq.  (21) with respect to at, ∀t 
can be decomposed into the subproblem:

max
at

V T
π ( s) ⇔ max

at

rat
st . (22)

max
at

V T
π ( )s = max

at

1
T ∑

t' = 1

T ∑
at' ∈ A

π ( )at'∣st' rat'
st' ⇔

max
at

∑
at ∈ A

π ( )at∣st rat
st

= max
at

rat
st
  . (23)

In summary, it can be proved that the maximization of Eq.  
(21) with respect to {at∣∀t} can be decomposed into T subprob⁃
lems:

max
{ }at∣∀t

V T
π ( s) ⇔ {max

at

rat
st
∣∀t}. (24)

The equivalence proof of γ-discounted cumulative reward is 
similar.
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