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Abstract: With the rapid advancements in edge computing and artificial intelligence, federated learning (FL) has gained momentum as a promis⁃
ing approach to collaborative data utilization across organizations and devices, while ensuring data privacy and information security. In order to 
further harness the energy efficiency of wireless networks, an integrated sensing, communication and computation (ISCC) framework has been 
proposed, which is anticipated to be a key enabler in the era of 6G networks. Although the advantages of pushing intelligence to edge devices are 
multi-fold, some challenges arise when incorporating FL into wireless networks under the umbrella of ISCC. This paper provides a comprehensive 
survey of FL, with special emphasis on the design and optimization of ISCC. We commence by introducing the background and fundamentals of 
FL and the ISCC framework. Subsequently, the aforementioned challenges are highlighted and the state of the art in potential solutions is re⁃
viewed. Finally, design guidelines are provided for the incorporation of FL and ISCC. Overall, this paper aims to contribute to the understanding 
of FL in the context of wireless networks, with a focus on the ISCC framework, and provide insights into addressing the challenges and optimizing 
the design for the integration of FL into future 6G networks.
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1 Introduction

With the continuous integration and ad⁃
vancement of communications and the 
popularization and application of artifi⁃
cial intelligence (AI), the next-generation 

communication system will not only facilitate huge 
data rates but also enable the intelligent industry of 
the Internet of Things (IoT) [1]. The number of con⁃
nected devices worldwide is estimated to reach 29.3 
billion[2] by 2023. The entire IoT network will provide 
low-latency, high-precision, scalable and flexible ser⁃
vices powered by AI and non-contact sensing tech⁃
niques[3]. In conventional wireless networks, high-
quality environmental data are gathered by sensing 
and then conveyed via data transmission links, which 
is finally computed in downstream tasks. These sepa⁃
rate processes pose challenges to meeting the strin⁃
gent requirements of ultra-low latency, high reliabil⁃
ity, and high capacity in 6G networks.

An integrated network can realize closed-loop infor⁃
mation flow and wide-area intelligent cooperation 
(Fig. 1). It profoundly integrates wireless sensing func⁃ ▲Figure 1. Application scenarios of integrated communication, sensing and computation
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tions, including but not limited to traditional positioning, detec⁃
tion, imaging, and wireless transmission. It also leverages widely 
distributed computing power to process additional computations, 
thus realizing the cross-fusion of perceptual communication 
computing and supporting typical application scenarios such as 
the smart city, intelligent healthcare, and smart home in 6G sys⁃
tems. To enhance the ability of 6G networks to perform endog⁃
enous intellectual sensing and adapt computational power, both 
academia and industry have preliminarily explored integrated 
sensing, communication and computation (ISCC) frameworks. 
On the other hand, the cloud computing platform is utilized for 
centralized data processing and training by machine learning 
(ML). Nonetheless, the vast volume of data created by intelligent 
terminals at the network edge may require substantial communi⁃
cation resources. When computation workloads are distributed 
for multiple tasks and all data are uploaded to a cloud platform, 
secure data privacy becomes difficult. Therefore, sending all 
data to the cloud for computing and learning may be impractical.

In recent years, China and the European Union have respec⁃
tively introduced relevant regulations such as the Data Security 
Law and the General Data Protection Regulations[4], which 
states the regulatory requirements to ensure privacy and secu⁃
rity while sharing data. For AI technology, federated learning 
(FL) was proposed for the sake of low latency and high accu⁃
racy[5]. Edge computing pushed cloud services from the network 
core to the edge closer to IoT devices[6]. Communication trans⁃
mission delays can be efficiently decreased by intelligently 
combining terminal equipment, edge server and cloud center to 
participate in model training and data processing at the edge. 
Specifically, FL refers to edge intelligent sensing devices that 
use their computing capabilities to learn local data and obtain 
models based on different tasks. FL is a widely used distributed 
learning model, which uses wireless networks to bring a global 
ML model that improves computing ability and keeps data con⁃
fidential to a certain extent[7].

In a typical FL training process, the central server broadcasts 
the global model to each edge device available. The edge de⁃
vice learns from the local data and obtains a local model. 
The regional model parameters are uploaded to the cen⁃
tral server for aggregation to generate a new global 
model. This process is repeated iteratively to obtain the 
final global model. The federation has four leading per⁃
formance indicators: latency, energy, reliability, and 
large-scale connectivity[8]. Because there is no need to 
share and transmit raw data and a cluster-like communi⁃
cation structure is adopted, FL is more suitable for large-
scale intelligent devices and widely distributed deploy⁃
ment environments. In this paper, we will examine the is⁃
sues faced by FL and the latest advancements in FL to 
investigate the future 6G network of universal comput⁃
ing. We will present the challenges in three categories: 
addressing terminal/data heterogeneity and model vari⁃
ances, executing FL within the constraints of universal 

computing resources, and bolstering privacy protection. By in⁃
troducing the fundamental concepts of FL, summarizing the ad⁃
vantages and disadvantages of existing research, and investigat⁃
ing application schemes for different task scenarios, this paper 
discusses the research trend of FL in the future edge intelli⁃
gence system. Section 2 demonstrates the basic framework of 
FL. In Section 3, we present techniques used for ISCC. In Sec⁃
tion 4, we highlight several challenges when implementing FL 
in the ISCC framework, including participant selection, adap⁃
tive aggregation, incentive mechanism, model compression, and 
privacy protection. Furthermore, we review the solutions to 
these problems along with their advantages and disadvantages. 
Finally, we design guidelines for the incorporation of FL and 
ISCC as well as a range of typical FL applications in Section 5.
2 Framework of Federated Learning

In traditional ML systems, users are required to upload local 
data to cloud servers with solid computing power for centralized 
model training, which includes central servers and several edge 
devices for data collection, as shown in Fig. 2. This scenario 
generates energy consumption and communication delays dur⁃
ing the data upload process. Additionally, there is also a risk of 
privacy disclosure for privacy-sensitive participating nodes. In 
response to this problem, researchers have conducted the re⁃
search on distributed ML. In 2017, Google first proposed FL 
technology[7]. Since then, FL has received significant attention 
from the academic community.

In a typical training cycle of FL, the dedicated edge server 
initially broadcasts a global machine-learning model to partici⁃
pating edge devices. Subsequently, the edge devices utilize 
their local data to calculate their respective model updates and 
transfer them to the edge server for further aggregation and 
global model updates. The FL training process is carried out it⁃
eratively in multiple communication rounds. The dataset of N 
edge devices is { D1, D2, D3,⋯, DN }. The traditional method is 
to upload the dataset and train the model in the central server, 
whereas FL coordinates the local training of many data users 

Server

▲Figure 2. Basic schematic diagram of federated learning (FL)
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through the network to update the parameters interactively with 
the global model on the server side. It cooperatively optimizes 
the common objective function to obtain the final ML model. 
For client k with dataset Dk, the loss function can be expressed 
as Fk ( ω ) = 1

Dk
∑j ∈ Dk

fj ( ω ). fj ( xj, yj, ω ) is the loss function of 
the j-th data sample related to a specific ML model, where 
( xj, yj ) represents the sensing data sample, while ω is the pa⁃
rameter of the learning model. In each learning round t, the 
steps detailed below are performed.

• Sensing data collection: each edge device k is equipped 
with sensing capabilities and collects data samples for local 
model training.

• Global model broadcast: each edge device k downloads the 
global model parameter ω( t ) through wireless communication 
links from the central server.

• Local model training: each edge device k uses the global 
model ω ( t )

k  to update its local model, where ω ( t )
k  is the local 

model parameter set of client k in the round of t. Therefore, 
ω ( t )

k = ω( t - 1) - η∇gk ( ω( t - 1) ), where η indicates the learning 
rate. As long as the local gradient gk ( ω( t - 1) ) is obtained, ω ( t )

k  
can be calculated.

• Local model uploading: ω ( t )
k  is sent to the server via the up⁃

link wireless channel by using the communication mode of the 
client device.

• Model parameter aggregating: the local models received by 
the server from all devices are aggregated to obtain a new global 
ML model, that is, ω( t + 1) = 1

K∑k ∈ K
ω ( t )

k .
By leveraging the FL framework, the initial dataset 

is stored locally and trained on edge devices. This 
eliminates the need for sharing data with other de⁃
vices or servers and further ensures that only global 
models are achieved via the transmission of model 
parameters. This advantage may address the limita⁃
tions of traditional ML methods. As shown in Fig. 3[9], 
FL achieves the construction of unified data among 
multiple nodes, providing higher quality services for 
big data applications by increasing data sample size, 
data types, data features, and data dimensions, and 
creating value for the future development of society. 
In comparison to traditional methods that gather data 
and train models based on cloud platforms, FL may 
be better equipped to handle dispersed computing 
tasks, while simultaneously preserving the privacy of 
user data. Additionally, FL may help alleviate the ex⁃
ponential increase in cost that arises from an in⁃
creased data volume. It is also believed to be more 
user-friendly for larger mobile terminal scales and to 
provide advantages for a wider distributed deploy⁃
ment environment. By enabling the sharing and fu⁃
sion of heterogeneous device data, FL may provide 
powerful support for future 6G environments.

3 Integrated Sensing, Communication and 
Computation
In traditional wireless networks, sensing, communication and 

computation are designed separately for various purposes. The 
isolated design principle is difficult to adapt to the strict re⁃
quirements of emerging 6G applications, such as autopilot and 
virtual reality, which demand ultra-low latency, ultra-high reli⁃
ability, and high capacity. Therefore, a new paradigm has 
emerged, which integrates communication and computation and 
comprehensively considers the application of data in down⁃
stream in a task-oriented way. As shown in Fig. 4, sensing, com⁃
putation, and communication are highly coupled with FL in this 
new paradigm. Because of the fact that radio signals can be uti⁃
lized for wireless communications and environmental sensing si⁃
multaneously, intelligent devices can analyze information about 
the detected target via wireless sensors in terms of range, posi⁃
tioning, imaging, etc. LIU et al. proposed a resource allocation 
approach toward ambient intelligence[10]. LI et al. introduced 
ISCC into over-the-air computation (AirComp) to improve spec⁃
trum efficiency and sensing performance, where function calcu⁃
lation from different user data is implemented by utilizing the 
overlay feature in wireless signal transmission in the air[11]. 
However, there is still a paucity of studies on the FL under the 
umbrella of ISCC in wireless networks.
3.1 Integrated Sensing and Communication

Integrated sensing and communication (ISAC) refers to the 
integration of sensing and communication into the unified de⁃

▲Figure 3. Comparison of traditional machine learning (ML) and federated learning (FL)[9]
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sign of wireless networks to improve spectral efficiency and 
achieve mutual benefit through sensor-assisted communications 
and communication-assisted sensing. Compared to traditional 
wireless networks, ISAC can use wireless infrastructure, spec⁃
trum and power resources for simultaneous communication and 
sensing, which is believed to improve system performance at a 
lower cost. Meanwhile, the primary challenge in ISAC is the 
tradeoffs between performance caused by the sharing wireless 
resources and the contradiction between sensing and communi⁃
cation. These tradeoffs include information theory limitations, 
physical performance, propagation channel, and cross-layer in⁃
dicators[12]. There are three perception tasks: detection, estima⁃
tion and recognition, which are all performed based on the col⁃
lected signal or data information related to the sensing object.

The integration gain can be obtained through the develop⁃
ment of a dual-function waveform that can sense and communi⁃
cate simultaneously based on shared resources. The leading 
methods to attain this include scheduling orthogonal or non-
overlapping wireless resources (time division/frequency divi⁃
sion/space division/code division), using separate signal wave⁃
forms, and balancing communication and sensing performance 
for signal waveform sharing[12]. For example, LIU et al. [13] pro⁃
posed a privacy protection vertical FL scheme based on distrib⁃
uted ISAC for cooperative object/human motion recognition. 
The method uses a dedicated frequency-modulated continuous 
wave signal for each edge device s target sensing and data ex⁃
change. It then converts the sensing data into a low-
dimensional intermediate vector and transmits it to the edge de⁃
vice. LI et al presented two new FL algorithms that use com⁃
pression sensing to reduce the communication burden in an IoT 
system[14]. JEON et al. proposed a compression sensing method 
for FL on large-scale multi-input multi-output communication 
systems, which is superior to the traditional linear beamforming 
method[15]. It can also reduce the performance gap between FL 
and centralized learning through reconstruction. Based on the 
above, orthogonal or non-overlapping wireless resources may 
help to reduce functional interference, but there will be re⁃
source competition between sensing and communication. And 
effective management of waveform interference is necessary to 
separate waveforms at the same frequency. These methods can 
improve the efficiency of the system’s spectral, hardware, and 
information processing efficiency, but they come with higher 
computational complexity.
3.2 Integrated Communication and Computation

As data volumes from edge devices rapidly increase, it be⁃
comes challenging for edge servers to receive large amounts of 
data from edge devices quickly through wireless links due to 
limited wireless communication resources. This issue may be 
addressed through asynchronous communication and computa⁃
tion resource management and AirComp. AirComp is used to in⁃
tegrate computation into communication, which improves com⁃
munication and computation efficiency, protects user privacy, 

enhances user experience, and reduces delays caused by mul⁃
tiple access according to Ref. [16]. Compared with AirComp, 
communication and computing are in order in asynchronous 
communication and computation resource management. Opti⁃
mizing resource management for asynchronous communication 
and computation can minimize energy consumption and delay 
to a certain extent, but scheduling complexity must be reduced. 
Compared with asynchronous communication and computation 
resource management, AirComp needs to consider the interfer⁃
ence between AirComp and conventional communication appli⁃
cations, expand the scale of equipment, and conduct extensive 
performance evaluation under actual settings.
3.2.1 Asynchronous Computation and Communication

The ability of edge devices to update and upload the model 
status information to the edge server largely depends on their 
wireless channel qualities. When the edge devices operate un⁃
der poor wireless channel conditions, it leads to longer model 
update time, which may delay the follow-up training. During 
model training, it is necessary to allocate wireless resources 
properly to improve learning performance, so that limited wire⁃
less resources can be fully utilized by collaborative asynchro⁃
nous computation and communication resource management.

Various optimization algorithms can be employed to solve 
the problem of energy-delay allocation, or communication and 
computation performance can be adjusted to reduce energy 
consumption. On the one hand, it can be achieved by increas⁃
ing bandwidth utilization. To further reduce the communication 
delay, ZHU et al. [17] roposed a broadband analog aggregation 
access scheme, which exploits the waveform superposition 
characteristics of the multi-access channel to achieve inte⁃
grated communication and computation. The communication 
delay is independent of the number of edge devices connected 
to the access channel. On the other hand, it can also speed up 
the learning process to solve the problem of communication 
and resource constraints. For example, it can maximize the FL 
algorithm convergence rate under the conditions of power and 
energy[18–19]. However, most scenarios are characterized by co⁃
existing sensing, communication and computation. Resource 
competition between communication and sensing also affects 
the performance of FL.
3.2.2 AirComp

Existing research mainly applies AirComp to different sce⁃
narios, or uses various optimization methods to minimize the 
signal mean square error[20–22] and also optimizes the model in 
FL by different means based on AirComp.

AMIRI et al. introduced error accumulation and how to spar⁃
sify gradient estimates based on AirComp. They proposed sav⁃
ing untransmitted gradient vectors in an error accumulation vec⁃
tor, updating the local model, and computing a new gradient 
vector based on this error accumulation vector in the next itera⁃
tion[23]. CAO et al. proposed a “one-time” aggregation to im⁃
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prove communication efficiency while considering a new power 
control design to maximize the convergence rate[24]. The results 
show that the proposed power control strategy achieves a signifi⁃
cantly faster convergence rate in FL than the fixed power con⁃
trol benchmark strategy. Since the error accumulation vector 
and gradient thinning correct the gradient computation process 
and make more efficient use of the bandwidth, this scheme im⁃
proves the accuracy of the model based on AirComp. YANG et 
al. proposed a general integrated communication and computa⁃
tion scheme based on AirComp[25]. However, the experiment re⁃
vealed that the models accuracy would gradually decline due to 
the parameter aggregation mistake in AirComp caused by signal 
distortion.
4 Challenges in Federated Learning and 

Their Solutions
FL may partially solve the problem of limited computing and 

communication resources while preserving client privacy to a 
certain extent. Despite this, such technology still faces issues 
such as data heterogeneity, insufficient training accuracy, and 
low training efficiency. Various schemes are proposed to re⁃
solve these issues, as summarized in Table 1.
4.1 Participant Selection

Intelligent edge devices have limited computing capacity, 
making centralized data processing challenging. Thus, it is cru⁃
cial to choose edge devices based on data heterogeneity and lo⁃
cal models. However, present methods, like the time fairness 
scheme and throughput fairness scheme[26], may overlook the 
differences between learning tasks, leading to poor learning per⁃
formance. Furthermore, due to the unique characteristics of 
edge intelligence, model updating requires wireless channel re⁃
sources. Therefore, selecting the correct participants for each 
FL training round is vital[27].

4.1.1 Selection Based on Participants and Training Quality
Terminal equipment exhibits heterogeneity and non-

independent identically distributed characteristics, resulting in 
substantial differences between terminal equipment models[28]. 
It is crucial to carefully select high-quality participants, effi⁃
ciently train models, and ensure their robustness. To achieve 
this, different strategies are proposed. One strategy involves se⁃
lecting high-quality participants. For example, LAI et al. pro⁃
posed a client selection framework, which enables the identifi⁃
cation and selection of valuable clients for training[29]. In an⁃
other study, MONDAL et al. presented a distributed participant 
selection algorithm that minimizes the costs of energy consump⁃
tion and data transmission while selecting the least number of 
participants with the same coverage[30]. ZHANG et al. utilized 
the FL framework to train lightweight neural networks that es⁃
tablish the relationship between context and sensor data qual⁃
ity[31]. Their approach leverages participants’ context informa⁃
tion to predict sensing data quality.

The other strategy is that participants’ selection can be 
based on the quality of their local models. KATHAROPOULOS 
et al. proposed a power-of-choice strategy commonly used in 
the queue system[32]. According to their analysis, selecting the 
loss value as an important metric for the client can improve the 
convergence rate of the entire model. SATTLER et al. devised 
the clustered FL algorithm which divides the client into two par⁃
titions using their cosine similarity and checks partition consis⁃
tency by testing the gradient norm of the client[33].
4.1.2 Selection Based on Improving Resource Management

Due to the large number of participants, the upload link may 
become congested, and differing participants could result in un⁃
productive training rounds[34]. Selecting the best user cluster 
that aligns with limited communication and computational re⁃
sources will ultimately help improve training efficiency, reduce 
training time, and enhance model accuracy. RIBERO et al. sug⁃

▼Table 1. Challenges in federated learning (FL) and their state-of-the-art solutions
Challenge

Participant 
selection

Adaptive 
aggregation

Incentive 
mechanism

Model com⁃
pression

Privacy pro⁃
tection

Specific Method

Participating clients are selected based on the heterogeneous nature of 
the data, quality of participants and training, and resource constraints.

The best tradeoff is found between local updates and global parameter 
aggregation under a given resource budget to speed up the local train⁃

ing process.
FL requires an effective incentive mechanism for participation and bal⁃
ances rewards and limited communication and computing resources to 

improve data quality.
The transmission model is compressed to improve the communication effi⁃
ciency between the server and client. Knowledge distillation exchanges 

model outputs, allowing edge devices to adopt larger local models.

Privacy protection may be achieved through the inference of attacks, 
the encryption of data and models, and the improvement of privacy pro⁃

tection performance by blockchain technology.

Advantages and Disadvantages

Selecting participants can make full use of resources and is conducive to continuous training. 
However, when the data scale is too large, the overall performance cannot be guaranteed in the 

scenario of edge intelligence applications, and the training process needs to be optimized.
By adapting the frequency of global aggregation, the performance of the model can be improved, 

and the utilization of available resources can be improved. However, the convergence of adap⁃
tive aggregation schemes currently only considers convex loss functions.

By quantifying data quality, the overall benefit of FL is generally improved, but due to the het⁃
erogeneity of the environment, the excitation obtained by different edge devices in FL does not 

match, making it difficult to balance game rewards and resource consumption.
Client-to-server parameter compression may cause convergence problems, increase computa⁃

tional complexity, and reduce training accuracy. Knowledge distillation alleviates the problem 
of independent and identical distribution of data to a certain extent, but the quality of wireless 

channel will affect the accuracy of model training.
FL may solve the privacy leakage problems caused by the model parameter sharing and multi-
party communication and cooperation mechanism of FL. However, further research is needed 
when it comes to the security problems caused by data poisoning and the removal of traces left 

by participants’ data in the local model, etc.
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gested that only transmitting client updates with a significant 
amount of information during each training round reduces the 
transmission pressure of FL[35]. This approach decreases com⁃
munication costs during the training process while ensuring 
model accuracy by selecting the clients participating in each 
update. ABDULRAHMAN et al. proposed a multi-criteria par⁃
ticipant selection algorithm that considers participants’ central 
processing unit, memory, energy and task completion time for 
FL in IoT’s resource-constrained environment[36]. This algo⁃
rithm maximizes the number of participants while minimizing 
the number of communication rounds. To ensure long-term per⁃
formance, XU et al. explored FL in typical wireless networks, 
identifying issues related to participant selection and band⁃
width allocation in long-term client energy constraints. They 
proposed an online optimization algorithm based on Lyapunov 
to address these issues[37].
4.2 Adaptive Aggregation

In FL, the model updating procedure is primarily split into 
two steps: local model updating at clients and global aggrega⁃
tion, which involves uploading model parameters to the server 
and aggregating them into a global model. The adaptive aggre⁃
gation problem of FL specifically aims at bandwidth aggrega⁃
tion and model parameter aggregation[38]. With limited re⁃
sources, local model updating and global aggregation are modi⁃
fied to accelerate convergence and improve accuracy.

GUHA et al. suggested a single-round communication federa⁃
tion learning system to reduce the communications between cli⁃
ents and servers[37]. The entire training is carried out on the 
edge device, and only the local model parameters are uploaded 
and aggregated after the movement. Based on the greedy algo⁃
rithm, HADDADPOUR et al. proposed a hypercluster algorithm 
that trained each local model several times using the client’s 
local data and selected the model with the minimum training 
loss[39]. WANG et al. proposed a control algorithm to achieve 
the ideal tradeoff between the local update and the global aggre⁃
gation[40]. Analyzing the convergence boundary of distributed 
gradient descent of FL, it minimizes the training loss under a 
given resource budget. ZHANG et al. proposed an FL frame⁃
work with adaptive local aggregation, which captured the per⁃
sonalized data required by the client in the global model, down⁃
loaded the global model and local model for the adaptive aggre⁃
gation, and initialized the local model on each client before 
trained in each iteration[41].

In the same training iterations, adaptive aggregation FL 
reaches better performance than the synchronous aggregation of 
all clients. With effective utilization of computation and commu⁃
nication resources, it obtains lower training loss and higher 
model accuracy and reduces the load of edge servers.
4.3 Incentive Mechanism

The incentive mechanism quantifies the quality of data that 
edge devices provide to reduce energy consumption and im⁃

prove model accuracy with the guarantee of data privacy and 
the lowest possible computation and communication costs[42]. 
The incentive mechanism for FL participants usually regards 
the edge device as the seller and provides them with training 
services while the server is regarded as the buyer of the data.

To improve the energy efficiency of model transmission, 
FENG et al. proposed a cooperative relay network-assisted pa⁃
rameter transmission scheme and corresponding service pricing 
mechanism[43], modeling the relationship between edge devices 
and FL servers as a Stackelberg game model[44]. SUN et al. in⁃
vestigated the air-ground dynamic digital twinning and joint 
learning and, on this basis, studied the FL incentive mechanism 
based on the Stackelberg game and proposed an adaptive ad⁃
justment incentive mechanism for the best user and customer 
selection in dynamic networks[45]. To ensure that the incentive 
budget is proportional to the value of the FL model and prevent 
the server from being forced to pay redundant rewards, 
RICHARDSON et al. proposed an incentive scheme based on 
influence to prevent the participants from receiving rewards 
due to redundant data[46]. Optimizing the FL incentive mecha⁃
nism can effectively limit the number of the participants who 
falsely contribute to the work, reduce their motivation to pho⁃
nily report expenses, and thus improve the overall performance 
of FL.
4.4 Model Compression

While the number of mobile devices rises sharply, it is chal⁃
lenging for mobile virtual network operators to provide low-cost 
and reliable access services for users due to deficient network 
infrastructure. The amount of uploaded data is also gradually 
growing in tandem with the widespread use of powerful ML on 
edge devices, resulting in significant bandwidth consumption 
and a decline in communication efficiency. Therefore, reducing 
the communication overhead in FL becomes an impending is⁃
sue, which can be addressed by data compression, knowledge 
distillation, asynchronous parameter update, etc.[47].
4.4.1 Compressed Data Transmission

Compressing the transmission data is an effective measure to 
improve transmission efficiency. In the FL framework, model 
parameter compression technologies, such as network pruning, 
quantization and weight sharing, can be applied to reduce com⁃
munication costs. Based on the uploaded information on gradi⁃
ent changes in the FL process, the model output value or inter⁃
mediate value can also be compressed by gradient compression 
in different levels[48].

However, during data compression, noise is inevitable and 
will cause a discrepancy between the convergence result and 
the ideal solution, negatively impacting the effectiveness of FL. 
ROTHCHILD et al. proposed to reduce the number of commu⁃
nication rounds in FL by directly retrieving the latest gradient 
value without updating its position in the vector[49].
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4.4.2 Knowledge Distillation
Knowledge distillation (KD) can transfer knowledge from one 

neural network to another by exchanging soft predictions rather 
than the whole model[47]. KD loss includes mild loss and local 
training loss. KD is employed to mine the global model knowl⁃
edge[50]. In addition, LI et al. proposed the federated model dis⁃
tillation algorithm to train heterogeneous models in a way that 
protects privacy[51]. LIN et al. adopted integrated distillation to 
migrate the knowledge of all heterogeneous client models to the 
global model in each global iteration[52]. However, these algo⁃
rithms ignore the further personalized needs of clients partici⁃
pating in training. ZHANG et al. proposed the knowledge trans⁃
fer personalized FL algorithm, which parameterizes the similar⁃
ity of paired clients and uses KD to transfer the personalized 
soft prediction knowledge to the local[53]. CHO et al. used clus⁃
ter co-distillation to migrate the understanding of clients with 
similar data distribution to the local model[54]. DIVI et al. used 
KD to solve the problem of FL data heterogeneity and proposed 
the personalized FL algorithm, which was carried out in two 
stages[55]. The first stage simplies FL. In the second stage, each 
user selects the best teacher model from the global model of 
each iteration and distills it to achieve personalization.
4.5 Privacy Protection

FL is a method that is believed to effectively solve the prob⁃
lem of user privacy disclosure, since it does not require edge de⁃
vices to upload their data. The user equipment builds a network 
model, generates local model parameters based on local data, 
and uploads them to the central server, which aggregates local 
model parameters to the global model, effectively protecting 
user privacy and easing the burden of communication band⁃
width. The gradient should be protected because even if the 
training data stay inside the local area, attackers can still ex⁃
ploit these shared gradients to reverse the content of the origi⁃
nal training data[56], exposing the training data to the public. At 
the same time, malicious participants or collaborators can use 
the intermediate information transmitted during the FL training 
process to launch member inference attacks[57] or data recon⁃
struction attacks[58], exposing participants in FL to privacy dis⁃
closure threats. Fig. 5 shows potential privacy attacks in the 
processes of FL.

By encrypting gradient parameters, it is possible to solve the 
privacy disclosure issue that might arise during the process of 
uploading and downloading model parameters. At the same 

time, some researchers have focused on improving encryption 
efficiency[59]. FL can consistently use the blockchain consensus 
mechanism to establish authentic interaction in an untrusted en⁃
vironment. The benefit generated from the blockchain reward 
mechanism can also encourage knowledge sharing in FL. The 
combination of blockchain technology and FL can improve data 
privacy and achieve performance isolation[60].
5 Applications and Prospects

FL is currently in use globally. For example, HART et al. 
used the federated averaging algorithm to predict the next word 
of the mobile phone keyboard input method[61]. MUHAMMAD 
et al. applied FL to the recommendation system[62]. Applying FL 
to predict the flow of urban global cellular networks can aug⁃
ment the data sets and improve the prediction accuracy of the 
model, without the problems of complexity and no real-time. 
Based on the FL framework, the central node collects the model 
updates transmitted by the edge base station for aggregation, so 
as to obtain a global model with good performance. The algo⁃
rithm collects the data of vehicles and their tasks as input and 
allocates the multi-dimensional resources according to the out⁃
put results of the model to meet the time-varied resource re⁃
quirements and efficiently accomplish the computation tasks in 
the Internet of Vehicles system. Network function virtualization 
technology can transform traditional network hardware re⁃
sources into virtual network resources. The two-way gated loop 
unit based on the distributed FL framework can predict virtual 
network function resource requirements.

Depending on its low latency and large data processing ca⁃
pacity, FL can also be used in the 6G era, which blends commu⁃
nication, sensing and computation together. For instance, due to 
various influences in the air[63], large-scale unmanned aerial ve⁃
hicles (UAV) swarm to avoid collisions and quickly reach the 
destination. FL based on the wireless network can design the 
flight route of a UAV swarm well and better solve UAV persis⁃
tent online decision-making problems by collecting sensing 
data from the surrounding environment[64], supporting UAV-
assisted mobile edge computing with ultra-reliable and low-
delay communication[65].

Despite the advancements of FL, it can be improved in sev⁃
eral aspects, which are shown as follows.

• Various intelligent devices, including mobile phones, cam⁃
eras, UAVs, depth sensors and radio sensors, produce data 
samples in various modalities and have a wide range of compu⁃
tational capacities. Researchers should put more resources to 
deal with the multimodal adaptive problem in FL based on 
ISCC.

• The applications of FL combine sensing, communication 
and computation together. In other words, ISCC can better con⁃
duct FL in the future. However, the resource management prob⁃
lems among these three aspects still need to be solved, and the 
hardware devices that integrate such three functions still need 
to be developed.▲Figure 5. Possible privacy attacks on federated learning (FL)

Local data Local modeltraining
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Global modeldistribution

Modelaggregation

Eavesdropping inference
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• With the development of FL, privacy attacks against FL are 
also expanding. It is still necessary to improve encryption effi⁃
ciency based on existing encryption algorithms and continue to 
explore the combination of blockchain and FL to form a new 
edge computing paradigm with higher security.

• The number of IoT devices is increasing, while the data 
generated by the equipment are also expanding rapidly. In the 
face of scenarios that include various IoT devices[66], the FL 
frameworks need to couple with the access of intelligent edge 
devices with different task attributes. Therefore, it still requires 
constant exploration of practical coupling design for them and 
efficiency improvement of FL while ensuring the accuracy of 
the model.
6 Conclusions

This paper summarizes the development of FL and classifies 
related technologies according to the challenges that FL faces. 
Among these technologies, ISCC is the most significant one for 
its high coupling with FL. Besides, this paper introduces the re⁃
search on device, data and model heterogeneity in FL and dem⁃
onstrates different challenges and the existing work about FL, 
including participant selection, adaptive aggregation, incentive 
mechanism and game model, model compression, and privacy 
protection. In the end, the applications and prospects of FL in 
reality are presented.
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