
ZTE COMMUNICATIONS
June 2023 Vol. 21 No. 2

YAN Yuna, LIU Ying, NI Tao, LIN Wensheng, LI Lixin 

Special Topic   Content Popularity Prediction via Federated Learning in Cache-Enabled Wireless Networks

Content Popularity Prediction via Content Popularity Prediction via 
Federated Learning in Federated Learning in 
CacheCache--Enabled Wireless NetworksEnabled Wireless Networks

YAN Yuna1, LIU Ying2, NI Tao2, LIN Wensheng1, 

LI Lixin1

(1. Northwestern Polytechnical University, Xi ̓ an 710072, China；
 2. Shanghai Satellite Engineering Research Institute, Shanghai 200240, 
China)

DOI: 10.12142/ZTECOM.202302004

https://kns.cnki.net/kcms/detail/34.1294.TN.20230524.1802.004.html, 
published online May 26, 2023

Manuscript received: 2023-03-02

Abstract: With the rapid development of networks, users are increasingly seeking richer and high-quality content experience, and there is an 
urgent need to develop efficient content caching strategies to improve the content distribution efficiency of caching. Therefore, it will be an ef⁃
fective solution to combine content popularity prediction based on machine learning (ML) and content caching to enable the network to pre⁃
dict and analyze popular content. However, the data sets which contain users’ private data cause the risk of privacy leakage. In this paper, to 
address this challenge, we propose a privacy-preserving algorithm based on federated learning (FL) and long short-term memory (LSTM), 
which is referred to as FL-LSTM, to predict content popularity. Simulation results demonstrate that the performance of the proposed algorithm 
is close to the centralized LSTM and better than other benchmark algorithms in terms of privacy protection. Meanwhile, the caching policy in 
this paper raises about 14.3% of the content hit rate.
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1 Introduction

Due to the explosive development of smart devices in 
networks, data traffic has increased unprecedentedly 
in recent years. With the limited communication re⁃
sources, backhaul link congestion will occur in the 

peak period at times, which leads to poor quality of experience 
(QoE)[1]. Content caching is considered to be a promising solu⁃
tion to improving the QoE of users. For a traditional approach, 
almost all contents are placed on the cloud server. However, 
since a large number of popular files are easy to be repeatedly 
requested by users, the popular files can be cached in ad⁃
vance at local base stations (BSs), which not only guarantees 
the hit rate of content, but also is helpful to reduce the users 􀆳 
waiting time, alleviates the pressure on the core network and 

relieves traffic congestion[2–4].
In the past, traditional content-caching strategies, such as 

Least Recently Used (LRU)[5] and Least Frequently Used (LFU)[6], 
were used in the deployment phase. However, different users 
have different content preferences and these preferences are of⁃
ten time-varying, so the fixed content deployment cannot take 
full advantage of the network caching. Therefore, in order to fur⁃
ther improve the performance of network caching, using ma⁃
chine learning (ML) to accurately predict popular files in the fu⁃
ture attracts the interest of researchers during the deployment 
of caching content files[7]. WON and KIM[8] proposed a prefer⁃
ence prediction neural network model based on DeepFM to pre⁃
dict the user 􀆳s preference for movies, which improved the pre⁃
diction accuracy by considering the interaction of low-order and 
high-order features of the input data. LI et al.[9] proposed proac⁃
tive edge caching for device-to-device (D2D) assisted wireless 
networks. In this paper, the authors adopt bidirectional long  
short-term memory (LSTM) networks, graph convolutional net⁃
works and attention mechanisms to learn user preferences. 
JIANG et al.[10] proposed LSTM to predict the users’ content re⁃
quest distribution, thereby achieving higher accuracy and better 
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versatility.
The above methods can be classified as centralized ML, 

where the original training data sets need to be uploaded to 
the central server. However, the prediction of content popular⁃
ity often involves personal information (e. g., home addresses, 
shopping, etc.) as training samples, which results in the risk of 
privacy leakage. As a privacy-preserving distributed learning 
framework, federated learning (FL) was proposed to tackle this 
challenge by training a global statistical model without access⁃
ing users’ private raw data[11–12]. Recently, FL has been put 
forward to solve the challenging problems in wireless net⁃
works[13–14]. In particular, an FL-based approach was provided 
by FAROOQ et al. [15] to build a flood forecasting model. Spe⁃
cifically, the local training parameters are aggregated to build 
the global model. By transferring the training parameters in⁃
stead of sending huge data sets, the leakage of the data pri⁃
vacy will be greatly decreased. WANG et al.[16] proposed an ef⁃
ficient content popularity prediction of privacy-preserving 
(CPPPP) scheme based on federated learning and Wasserstein 
generative adversarial network (WGAN), which achieves a 
high cache hit ratio. In this system, the server aggregated the 
users 􀆳 updates using federated averaging, and each user per⁃
formed training on its local data using WGAN, which could 
achieve high cache efficiency and protect the privacy of users. 
Therefore, considering privacy protection, FL can also be ap⁃
plied to the content popularity prediction in cache-enabled 
wireless networks.

Motivated by the above discussions, we propose a privacy-
preserving algorithm for content popularity prediction named 
FL-LSTM, which combines LSTM with FL. Due to the unique 
design structure, LSTM is suitable for processing and predict⁃
ing time series, such as content popularity prediction[10]. Ac⁃
cording to the aggregation mechanism of FL[11], the global con⁃
tent popularity prediction model will be built based on local 
training parameters. Thus, the FL-LSTM algorithm can inher⁃
ently improve security performance and obtain reliable predic⁃
tion performance.

The main contributions of this work are summarized as follows:
• We investigate a content popularity prediction problem in 

cache-enabled wireless networks, and aim at minimizing the 
mean-square error (MSE) and maximizing the cache hit rate. 
Considering the significance of privacy-preserving, a novel 
content popularity prediction algorithm FL-LSTM based on 
LSTM and FL is proposed. The algorithm avoids the direct 
transmissions of raw user data, which preserves user privacy.

• By utilizing a real-world dataset, the simulation results 
demonstrate that the proposed algorithm achieves similar per⁃
formance to the centralized LSTM and better prediction ability 
than other state-of-the-art schemes.

The remainder of this paper is organized as follows. In Sec⁃
tion 2, the communication system model and problem formula⁃
tion are introduced. The privacy-preserving FL-LSTM algo⁃
rithm is proposed in Section 3. In Section 4, the simulation re⁃

sults and experiment result analysis are shown. Finally, con⁃
clusions are drawn in Section 5.
2 System Model and Problem Formulation

2.1 System Model
In this paper, we consider a cache-enabled wireless net⁃

work as illustrated in Fig. 1, which consists of a cloud server, 
multiple BSs and the users served by each associated BS. 
There are B BSs in this specific region and the set of BSs is de⁃
noted by B = {1, 2…, b,…, B }. The content library is denoted 
by F = {1, 2…, f,…, F }, where we assume the requested files 
have the same size. The cloud server O contains the whole 
content library and each BS can only store a limited number of 
files. To simplify the model, we assume that each BS is 
equipped with a cache Cm of an equal size, where Cm = n rep⁃
resents BS b can only cache n files from the cloud server.

It is assumed that the contents are requested and fetched 
during the discrete time periods and the set of time periods is 
expressed as T = {1, 2…, t,…, T }. In each time slot t: 1) Ac⁃
cording to users’ previous request information, the local BSs 
and the cloud server jointly build the content popularity pre⁃
diction model; 2) based on the prediction results, the related 
BS will cache the relevant contents from O in advance; 3) 
when the requested file is stored in the local BS, the associ⁃
ated users will directly obtain the requested contents; 4) other⁃
wise, the requested file is fetched from the cloud server.
2.2 Problem Formulation

Based on the network discussed above, the basic frame⁃
work and operation process of the communication system are 
introduced. It is obviously known that content popularity pre⁃
diction is perceived as the key to the success of the system. 
For a specific file f , the popularity will change over time, 
and its popularity sequence is expressed as Pb, f =
{p1

b, f, p2
b, f,…, pt

b, f},  pt
b, f ∈ [ 0,1 ]. Therefore, the popularity pre⁃

▲Figure 1. Scenario of a cache-enabled wireless network
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diction of a file is transformed into a time series prediction 
problem, and the real and predicted values are expressed as 
pt

b, f and p͂t
b, f, respectively. Moreover, the MSE is adopted to 

evaluate the accuracy of the prediction as follows:
MSE = 1

T ∑
t = 1

T

| p͂ t
b, f - pt

b, f |
2
. (1)

In this paper, content popularity is defined as the ratio of 
the number of requests for a file to the number of requests for 
all files within a time slot. If a file is frequently requested by 
users, the higher popularity of the content is, the more likely it 
is to be accessed again in the next time slot. In time slot t, the 
content popularity of a file f can be expressed as qf

b, t =
req t, f ∑

i = 1

f req t, f ,where req t, f represents the number of user re⁃
quests for the file f in a time slot t. Therefore, the popularity of 
the content library is denoted as Pb, t =
{p1

b, t, p2
b, t,⋯, pf

b, t},  pf
b, t ∈ [ 0,1 ] and ∑

f = 1

F

pf
b, t = 1, where the or⁃

der of files is in a descending order according to the popularity.
Due to the limited storage capacity of each BS b, after the 

prediction task is completed, each BS b needs to sort the pre⁃
dicted popular files, select the contents that are more popular 
with users to cache in advance and replace the files with low 
popularity. If the contents are cached locally, this operation 
does not need to be repeated. For a certain discrete time slot t, 
the selected pre-cached files in local BS bare formulated as 
Ab, c = {a1

b, c, a2
b, c,⋯, af

b, c}, where af
b, c = 1 if the file f is cached 

in BS b, otherwise af
b, c = 0 and ∑

f = 1

F

af
b, c ≤ n.

Furthermore, when we measure the cache-enabled wireless 
network, the cache hit rate is considered as an important met⁃
ric of caching performance. The hit rate of each BS during 
each time slot is defined as hb = 1

n ∑
f = 1

F

af
b, c × pf

b, t, referring to 
the probability that the precached file is popular content, 
which is used to represent the effectiveness of the content 
cache. Therefore, the hit rate of the network is averaged to be 
the total hit rate h̄ during each training episode.

Due to the limited information collected by a single BS, 
combining several local BSs by the cloud server is necessary 
to obtain the whole popularity of the content library. However, 
it will also cause a privacy leakage issue to some extent. Last 
but not least, the objective of this paper is to predict the con⁃
tent popularity accurately and maximize the cache hit rate dur⁃
ing each time slot while preserving users’ privacy.
3 FL-LSTM for Content Popularity Prediction

3.1 Literature Overview
1) LSTM: LSTM was first proposed by HOCHREITER et al.[17]. 

Although the recurrent neural network (RNN) can be used to 
process and predict the sequence data, the processing and pre⁃
diction effect of LSTM is better than that of the RNN as the 
time scale of the processing sequence increases, and the phe⁃
nomena of “gradient vanishing” and “gradient explosion” of 
the RNN can be avoided through LSTM. Therefore, LSTM is 
selected as the benchmark algorithm to predict popular files. 
The illustration of the LSTM algorithm is shown in Fig. 2. A 
common LSTM unit is composed of a cell, an input gate, an 
output gate and a forget gate, where the “gate” structure is an 
approach to data control. The formulas of the three gate struc⁃
tures are defined as follows. The forget gate f t decides what 
kind of previous information will be forgotten, i.e.,
f t = σ (W fx ⋅ x t + W fh ⋅ h t - 1 + b f ), (2)

where x t is the input vector of the current time and h t - 1 is the 
hidden status of the previous time. W fx, W fh and b f are the in⁃
put weight, recurrent weight and corresponding bias of the for⁃
get gate f t, respectively. The input gate i t is used to select 
which information will be recorded, i.e.,
i t = σ (W ix ⋅ x t + W ih ⋅ h t - 1 + b i), (3)

where W ix, W ih and b i are the input weight, recurrent weight 
and corresponding bias of the input gate i t, respectively. x t and h t - 1 are weighted to update the value of the input gate 
through the sigmoid function σ ( ⋅ ). The candidate memory 
cell state C͂ t is updated by Eq. (4), i.e.,
C͂ t = tanh (Wcx ⋅ x t + Wch ⋅ h t - 1 + bc), (4)

where Wcx, Wch and bc are the input weight, recurrent weight 
and corresponding bias of the candidate memory cell, respec⁃
tively. And the tanh function tanh ( )⋅  can control the range of 
its value to [-1, 1 ]. The new memory cell C t controls the input 
and forget mechanism, which updates the state of the unit at 

▲Figure 2. Illustration of long short-term memory (LSTM) algorithm
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the previous time based on the output of the forget gate and 
the input gate, i.e.,
C t = f t⊙C t - 1 + i t⊙C͂ t, (5)

The output gate o t decides what value should be output by 
Eqs. (4)–(7), and then the output of the hidden layer h t is ob⁃
tained by Eq. (7), i.e.,
o t = σ (Wox ⋅ x t + Woh ⋅ h t - 1 + bo ) , (6)

h t = o t⊙ tanh (C t ) , (7)
where Wox, Woh and bo are the input weight, recurrent weight 
and corresponding bias of the output gate o t, respectively.

2) Fedavg: The Fedavg algorithm was proposed by KHAI et 
al.[18] and has several advantages in privacy protection and dis⁃
tributed training. In addition, users do not need to upload all 
the data, but only upload the local parameters needed by the 
model, which greatly reduces the overall communication over⁃
head. In this algorithm, the cloud server starts FL training by 
sharing global model parameters with the base station. Then, 
each base station selects samples from the local data subset to 
perform the stochastic gradient descent (SGD) in order to up⁃
date the local model and share the updated model weight with 
the cloud server. After that, the cloud server aggregates all the 
updated local model weight parameters and averages them to 
generate the global model. Compared with the centralized ma⁃
chine learning, the algorithm has some differences. The algo⁃
rithm flow is presented as follows:

(a) At the beginning of training, the global model param⁃
eters W o in the cloud server are initialized and then sent to the 
local BSs as W b

t .
(b) The BS b trains the local dataset and updates W b

t  to W b
t + 1 after the training epochs, i.e., W b

t + 1 ← LocalUpdate (b, wb
t ).

(c) The cloud server aggregates each BS’s W b
t + 1 and then 

generates a new global model W o
t + 1. This formula of aggrega⁃

tion can be described as:
W o

t + 1 = 1
B ∑

b = 1

B

W b
t + 1. (8)

(d) Afterwards, the W o
t + 1 will be broadcasted to all the BSs 

and the next round of training is started.
3.2 Proposed FL-LSTM Algorithm

Based on the aforementioned LSTM and Fedavg algorithms, 
we develop the FL-LSTM algorithm. The algorithm can predict 
the content popularity accurately while preserving the users’ 
privacy. The illustration of the FL-LSTM algorithm is shown 
in Fig. 3. Then we will introduce the details of this algorithm.

Firstly, the initial LSTM network is adopted on the cloud server 
as the global model, and each BS will build the local LSTM net⁃

work with the initial parameters W o from the global model.
After that, to avoid sharing the raw data directly, the pre⁃

dicted model based on LSTM will be trained locally. The raw 
data D are divided uniformly and posted on each BS, with db representing the local dataset of BS b. The previous k mo⁃
ments are selected for prediction and the network can be char⁃
acterized as follows: the input time series X = { x1, x2,⋯, xt } are defined as the historical popularity, through the vector X 
to predict the output vector Y. The output time series Y =
{ y1, y2,⋯, yt } are defined as the predicted popularity, and 
H = { h1, h2,⋯, ht } means the information of the hidden layer.

The local weight parameters are collectively referred to as 
W b

t . The small BS adopts the SGD optimizer, and the weight 
parameters will be updated to W b

t + 1 according to Eqs. (2)–(7).
According to the aggregation mechanism in Eq. (8), the 

cloud server aggregates the updated parameters W b
t + 1 which 

are uploaded by all local BSs to generate a new global model. 
Subsequently, the parameters of the global model W o

t + 1 are 
downloaded to each BS and then the next round of training 
will be started. Model training and parameter updating are re⁃
peated until the algorithm is terminated when the maximum 
number of iterations T is reached. The objective of this algo⁃
rithm is to minimize the MSE denoted in Eq. (1). Specifically, 
the proposed FL-LSTM algorithm is summarized in Algo⁃
rithm 1.
Algorithm 1. Content popularity prediction based on FL-LSTM
1: Initialize the system: cloud server O, local BSs B.
2: Initialize the LSTM network by Eqs. (2)– (7): X,  Y and H; 

the global weight W o; the local weight W b and the local 
sampled batch size k.

3: Initialize the round index t and the local training epoch in⁃
dex n.

▲Figure 3. Illustration of FL-LSTM algorithm
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4: for round=1,…, t ,…, T do
5:   At time-step t, the global model W o

t  is broadcasted to each  
  BS as W b

t .
6:   (For each BS b, start the local training.)
7:   for epoch=1,…, n,…, nmax do
8:      Samples a batch { xi, y͂i }k

i = 1  from db;9:      Update the local LSTM network by the loss functions in 
Eq. (1):
10:    W b

n + 1 ← SGD (∇ω
1
k ∑i = 1

κ ( yi - y͂i )2 )
11:  end for
12:  The cloud server aggregates each BS’s W b

t + 1 and updates  
W o

t  to W o
t + 1 by Eq. (8).

13:   t ← t + 1.
14: end for

4 Simulations and Discussions

4.1 Datasets
The MovieLens 1M Dataset[19] is used to evaluate the perfor⁃

mance of the proposed FL-LSTM algorithm in this paper. The 
dataset contains 1 000 209 ratings of approximately 3 900 
movies made by 6 040 users. Each sample in the data set in⁃
cludes a user ID, movie ID, user rating, and time stamp when 
commenting. We assume that the number of ratings by users 
can reflect the popularity of relevant movies. The process of 
dataset construction is as follows: Based on this assumption, 
we choose the ten movies with the most ratings as the predic⁃
tion objects and divide one hundred discrete time slots based 
on the provided time stamp. Next, we count the number of rat⁃
ings by users according to each time slot and consider it as the 
number of requests. Then, the request times are normalized to 
calculate the content popularity of the corresponding movie 
file. Finally, according to the content popularity of each film 
in one hundred discrete time slots, the LSTM model is used to 
predict the content popularity of each film in the next moment. 
By ranking the results, we can predict which movies will be 
popular at the next moment.
4.2 Simulation Setup

The real MovieLens 1M Dataset was used to construct the 
content popularity prediction datasets. The top 10 rated mov⁃
ies are selected as the forecast object with their trends for 100 
days. In the time series prediction problem, we set k = 10, 
which means that we use the previous 10 time-slots data to 
predict the popularity of the next moment. In addition, the 
number of BSs is set as B = 5 and the dataset is divided uni⁃
formly and handed out to each BS.
4.3 Performance Comparison

In Fig. 4, the performance of different algorithms is com⁃
pared under the task of predicting the content popularity for 
100 days. The LSTM algorithm and the Autoregressive Inte⁃

grated Moving Average Model (ARIMA) algorithm[20] are se⁃
lected as the benchmark algorithms. As shown in Fig. 4, the 
LSTM and FL-LSTM algorithms have similar prediction results, 
and their accuracy is significantly better than the ARIMA algo⁃
rithm. The ARIMA algorithm depends on the statistical charac⁃
teristics of the data and the performance is limited by param⁃
eter estimation, so it is difficult to achieve high accuracy. In 
contrast, the LSTM and the FL-LSTM algorithms have the same 
core prediction network, which reflects obviously the superior⁃
ity of performance for the time series prediction problem.

Fig. 5 indicates the convergence of the MSE loss with the 

▲Figure 4. Content popularity prediction by different algorithms

ARIMA: Autoregressive Integrated Moving Average Model FL: federated learning LSTM: long short-term memory

▲Figure 5. MSE loss of LSTM and FL-LSTM algorithms
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LSTM algorithm and the FL-LSTM algorithm, where the 
MSE loss is related to the accuracy of the prediction. In the 
case of setting the same simulation parameters, both of these 
algorithms can complete the convergence within the range of 
400 – 500 training rounds. At the same time, the value of 
MSE is very small, and both can be below 0.000 2, which 
proves the superiority of the prediction performance. In addi⁃
tion, in the same simulation environment, the convergence of 
the FL-LSTM is slightly slower than the LSTM algorithm and 
the loss is similar, i.e., only 4.2% between the two algorithms. 
The main reasons why the federated learning scheme is 
slightly inferior to the centralized one are as follows: 1) The 
user data distribution of each BS is different, which also leads 
to a certain delay in updating the global model during the dis⁃
tributed FL-LSTM training; 2) when weight aggregation is car⁃
ried out in federated learning, fractional parts of weight pa⁃
rameters are generally truncated to improve uploading effi⁃
ciency. Therefore, there will be a certain degree of numerical 
precision loss in the process of average weighted sum. For the 
sake of privacy protection, it is acceptable to sacrifice a little 
bit of performance.

Fig. 6 shows how the total hit rate changes as the memory 
capacity of the BSs increases. Cache capacity is defined as the 
ratio of the number of files cached to the total number of files 
in a file set. There is a significant upward trend when increas⁃
ing the memory capacity. The reason is that the users’ re⁃
quested contents are more likely to be accurately predicted 
and cached in the base station. However, for the LRU and the 
random caching (RC), although it takes into account historical 
popularity information, the content popularity will not be pre⁃

dicted in advance, which will suffer more inaccurate caching 
and cause a lower hit rate by at least a 14.3% difference. The 
optimal performance is obtained under the real content popu⁃
larity, which is an ideal situation. In addition, compared with 
traditional cache algorithms, although the FL-LSTM algorithm 
proposed in this paper requires additional resources for model 
prediction, the time required to execute model prediction is 
relatively small. From Fig. 6, it can also be observed that 
when the memory capacity increases, the hit rate of the FL-
LSTM algorithm will gradually approach the optimal value, 
which is only a 2.3% performance loss at 70% capacity. 
Therefore, this shows the superiority of the algorithm proposed 
in this paper.
5 Conclusions

In this paper, we investigate the content popularity predic⁃
tion problem in cache-enabled wireless networks. Meanwhile, 
a novel prediction algorithm FL-LSTM based on LSTM and FL 
is proposed for privacy preservation. The proposed algorithm 
can not only predict the content popularity accurately but also 
protect the users’ privacy information. Moreover, the perfor⁃
mance of the FL-LSTM is validated on the real-world dataset 
compared to other algorithms. Simulation results demonstrate 
that the performance of the proposed algorithm just declined 
slightly, only 4.2% compared with the centralized LSTM and 
is better than other state-of-the-art schemes while the privacy 
can be well preserved.
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