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Abstract: Byte-addressable non-volatile memory (NVM), as a new participant in the storage hierarchy, gives extremely high performance 
in storage, which forces changes to be made on current filesystem designs. Page cache, once a significant mechanism filling the perfor⁃
mance gap between Dynamic Random Access Memory (DRAM) and block devices, is now a liability that heavily hinders the writing perfor⁃
mance of NVM filesystems. Therefore state-of-the-art NVM filesystems leverage the direct access (DAX) technology to bypass the page 
cache entirely. However, the DRAM still provides higher bandwidth than NVM, which prevents skewed read workloads from benefiting 
from a higher bandwidth of the DRAM and leads to sub-optimal performance for the system. In this paper, we propose RCache, a read-
intensive workload-aware page cache for NVM filesystems. Different from traditional caching mechanisms where all reads go through 
DRAM, RCache uses a tiered page cache design, including assigning DRAM and NVM to hot and cold data separately, and reading data 
from both sides. To avoid copying data to DRAM in a critical path, RCache migrates data from NVM to DRAM in a background thread. Ad⁃
ditionally, RCache manages data in DRAM in a lock-free manner for better latency and scalability. Evaluations on Intel Optane Data Cen⁃
ter (DC) Persistent Memory Modules show that, compared with NOVA, RCache achieves 3 times higher bandwidth for read-intensive work⁃
loads and introduces little performance loss for write operations.
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1 Introduction

In 2019, Intel released the first commercially available 
non-volatile memory (NVM) device called Intel DC Op⁃
tane Persistent Memory[1]. Compared with Dynamic Ran⁃
dom Access Memory (DRAM), byte-addressable non-

volatile memory provides comparable performance and similar 
interfaces (e.g., Load/Store) along with data persistence at the 
same time. Because of a unique combination of features, NVM 
has a great advantage of performance on storage systems and 
posts the urgent necessity of reforming the old architecture of 
storage systems. Refs. [2–11] re-architected the old storage 
systems to better accommodate NVM and significant perfor⁃
mance boost that endorsed these design choices.

Among these novel designs, bypassing the page cache in 
kernel space is a popular choice. The page cache in Linux is 
used to be an effective mechanism to shorten the performance 
gap between DRAM and block devices. Since NVM has a 
close performance to the DRAM, the page cache itself posts 

severe performance loss to the NVM filesystem, because the 
page cache introduces extra data copy at every file operation 
and leads to write amplification on NVM. Therefore, the 
legacy page cache in the Linux kernel has become a liability 
for the NVM system. For the above reasons, recent work sim⁃
ply deployed the DAX[12] technology to bypass the page cache 
entirely[12–17]. With the DAX technology, NVM filesystems ac⁃
cess the address space of NVM directly, without the necessity 
of filling the page cache first, which reduces the latency of file⁃
system operations significantly.

However, although NVM achieves bandwidth and latency at 
the same order of magnitude as DRAM, DRAM still provides 
bandwidth several times higher than NVM and fairly lower la⁃
tency than NVM. Therefore, the DAX approach reduces extra 
data copy and achieves fast write performance at the cost of 
cached read, especially for read-intensive workloads[18–20]. 
The page cache provides benefits for reading but has severe 
performance impacts on writing because of the extra data copy 
and write amplification. And the DAX approach is efficient for 
writing due to direct access to NVM but fails to utilize DRAM 
bandwidth for reading. Therefore, in order to utilize DRAM This paper was supported by ZTE Industry⁃University⁃Institute Coopera⁃

tion Funds under Grant No. HC⁃CN⁃20181128026.
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bandwidth and avoid extra data copy and write amplifications, 
the page cache should be redesigned to allow both direct ac⁃
cess and cached read.

In this paper, we propose RCache, a read-intensive 
workload-aware page cache for the NVM filesystem. RCache 
aims to provide fast read performance for read-intensive work⁃
loads and avoid introducing significant performance loss for 
write operations at the same time. To achieve this, RCache as⁃
signs DRAM and NVM to hot and cold data separately, and 
reads data from both sides. Our major contributions are sum⁃
marized as follows.

• We propose a read-intensive workload-aware page cache 
design for the NVM filesystem. RCache uses a tired page 
cache design, including reading hot data from DRAM and ac⁃
cessing cold data directly from NVM to utilize DRAM band⁃
width for reading and preserving fast write performance. In ad⁃
dition, RCache offloads data copy from NVM to DRAM and to 
a background thread, in order to remove a major setback of 
caching mechanism from the critical path.

• RCache introduces a hash-based page cache design to 
manage the page cache in a lock-free manner using atomic in⁃
structions for better scalability.

• We implement RCache and evaluate it on servers with In⁃
tel DC Persistent Memory Modules. Experimental results show 
that RCache effectively utilizes the bandwidth of DRAM with 
few performance cost to manage the page cache and outper⁃
forms the state-of-the-art DAX filesystem under read-
intensive workloads.
2 Background and Motivation

2.1 Non-Volatile Memory
Byte-addressable NVM technologies, including Phase-

change Memory (PCM) [22–24], ReRAM, and Memristor[21], 
have been intensively studied in recent years. These NVMs 
provide comparable performance and a similar interface as 
the DRAM, while persisting data after power is off like block 
devices. Therefore, NVMs are promising candidates for pro⁃
viding persistent storage ability at the main memory level. 
Recently, Intel has released Optane DC Persistent Memory 
Modules (DCPMM) [1], which is the first commercially avail⁃
able persistent memory product. Currently, new products 
come in three capacities: 128 GB, 256 GB, and 512 GB. Pre⁃
vious studies show that a single DCPMM provides band⁃
widths at 6.6 GB/s and 2.3 GB/s at most for read/write. Note 
that these bandwidth have the same order of magnitudes com⁃
parable to the DRAM but is a lot lower than the DRAM[25].
2.2 Page Cache and DAX Filesystem

Page cache is an important component in a Linux kernel 
filesystem. In brief, the page cache consists of a bunch of 
pages in DRAM and the corresponding metadata structures. 
The page cache is only accessed by the operating system in 

the context of a filesystem call and acts as a transparent layer 
to user applications. For a write system call, the operating sys⁃
tem writes data on pages in the page cache, which cannot guar⁃
antee the persistence of the data. To guarantee the persistence 
of the data, the operating system needs to flush all data pages 
in the page cache to the storage devices, probably within an 
fsync system call. For a read system call, the operating system 
first reads data from the page cache; if not present, the operat⁃
ing system further reads data from the storage devices. Note 
that this may involve loading data into the page cache depend⁃
ing on the implementation. In the current implementation, the 
operating system maintains an individual radix tree for each 
opened file.

As for the DAX filesystem, note that the page cache is ex⁃
tremely useful for block devices with much higher access la⁃
tency than DRAM, but not suitable for the NVM devices with 
comparable access latency to DRAM. As mentioned before, to 
ensure data persistence, the user must issue an fsync system 
call after a write system call. This brings substantial access la⁃
tency to persisting data in an NVM filesystem. Therefore, the 
state-of-the-art NVM filesystems leverage the DAX technology 
to bypass the page cache entirely and achieve instant persis⁃
tence immediately when the write system call returns. In a 
DAX filesystem, read/write system call does not access the 
page cache at all, instead, data are loaded/stored from/to the 
NVM respectively using a memory interface. The DAX tech⁃
nology reduces extra data copy and accomplishes lower-cost 
data persistence.
2.3 Issue of DAX and Page Cache

The performance of NVM is close to that of DRAM but not 
equal to it. We measure the read and write latency of two differ⁃
ent filesystems (NOVA[17] and EXT4[26]) representing two differ⁃
ent mechanisms (DAX and Page Cache). Fig. 1(a) shows that 
the read latency of the DAX is much higher than the page 
cache (4 kB sequential read). Fig. 1(b) shows that the write la⁃
tency of the DAX is much lower than the page cache (4 kB se⁃
quential write).

To sum up, the DAX technology prevents the read opera⁃
tions from benefiting a much higher bandwidth of DRAM in 
the NVM filesystem, and the presence of the page cache sig⁃
nificantly increases the latency of write operations with imme⁃
diate data persistence. To overcome this, the page cache 
mechanism needs to be redesigned.
3 Rcache Design

3.1 Overview
We build RCache for servers with non-volatile memory to 

accelerate read-intensive workloads. In order to benefit from 
the DRAM bandwidth for read operations but not to induce no⁃
table latency for data persistence, we build RCache, a read-
intensive workload-aware page cache for the NVM filesystem.
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1) RCache assigns DRAM and NVM to hot and cold data 
separately, and allows cached read and direct read from NVM 
to coexist. Furthermore, RCache offloads data copy to a back⁃
ground thread to alleviate the pressure of the critical path.

2) In addition, RCache deploys a lock-free page cache us⁃
ing hash-table to further reduce the performance cost of cache 
coherence management.

The architecture of RCache is described in Fig. 2. RCache 
keeps an individual cache structure for each opened file. The 
page cache consists of a bunch of DRAM pages and a cache 
entry table containing a certain number of cache entries in the 
DRAM. A cache entry represents a DRAM page. It carries 
necessary information for RCache to manage the cache and 
navigate data given a logical block number. As shown in Fig. 
3, a cache entry carries a validation flag to indicate the status 
of this cache entry, a timestamp for the least recently used 
(LRU) algorithm, a Blocknr to indicate the logical block num⁃
ber that the entry represents, a DRAM page that is a pointer 

points to the actual cache page in DRAM, and an NVM page 
that is a pointer points to the actual data page in NVM.
3.2 Tiered Page Cache Design

As shown in Fig. 2, the page cache is accessed in two con⁃
texts: a read/write system call and a background thread.

For a read operation, the operating system accesses the 
page cache first. If the data required by the user are present 
and valid in the page cache, the operating system copies data 
directly from the cached page in the DRAM to the user’s buf⁃
fer; if a cache miss happens, the operating system falls back to 
the legacy procedure where the operating system reads data di⁃
rectly from the NVM and inserts the newly read data to the 
page cache. For cache insertion, since reading all the data 
blocks into the page cache introduces extra data copy and 
then leads to higher latency, RCache only inserts a small 
cache entry carrying a pointer to the physical block to the 
page cache instead of the actual data blocks.

For a write operation, the operat⁃
ing system needs to invalidate all 
cached pages affected by this write 
operation before returned to users. 
We further explain why the invali⁃
dation procedure is light weight in 
Section 3.3.

RCache depends on a back⁃
ground kernel thread to finish the 
management of the cache. As de⁃
scribed above, in the read operation, 
RCache only inserts cache entries to 
the page cache. In the context back⁃
ground thread, once a pending 
cache entry is discovered, RCache 
first allocates a DRAM page to 
cache data, and then copies data 
from the NVM block to the DRAM 
page according to the cache entry. 
At last, RCache declares the validity 
of the cache entry by switching the 
validation flag atomically. Note that 
only when RCache updates the vali⁃
dation flag in the cache entry to vali⁃
dation, the cache entry is available 
for read/write context.
3.3 Lock-Free Cache Management

The decoupled cache mechanism 
splits the cache management into 
two separating and concurrent con⁃
texts, which makes coordinating 
across all units more expensive 
since it  leads to more cross-core 
communications. Therefore, RCache 

▲Figure 1. Performance comparison between different hardware and different filesystem settings
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▲Figure 2. RCache architecture

User space
Kernel space

User User

② Direct access

Filesystem cache

❷ Copy from 
persistent memory

❸ Insert cache entry

DRAM page

Background thread Step 2Set valid

Page X Page Y
Persistent memory

Hash group
Entry Entry Entry Entry

Hash group
Entry Entry Entry Entry

Data index

① Syscall write Syscall read

③ Set invalid ❶ Check cache

Step 1Filling data

DRAM: Dynamic Random Access Memory 

91



ZTE COMMUNICATIONS
March 2023 Vol. 21 No. 1

TU Yaofeng, ZHU Bohong, YANG Hongzhang, HAN Yinjun, SHU Jiwu 

Research Paper   RCache: A Read-Intensive Workload-Aware Page Cache for NVM Filesystem

deploys a lock-free cache management procedure to minimize 
the impact. First, RCache operates cache entries by manipu⁃
lating the validation flag atomicity using Compare-and-Swap 
(CAS) instructions. In the current implementation, a cache en⁃
try switches among five states using the Compare-and-Swap in⁃
struction. Fig. 3 depicts the transition diagram among these 
five states. At the initial point, all cache entries are invalid. 
To insert a cache entry, RCache first acquires control of a can⁃
didate entry by setting the validation flag of this entry to “In 
use” atomically using CAS, which prevents other threads from 
operating on this entry. Then, RCache fills necessary informa⁃
tion (e. g. the block number and the NVM page pointer) and 
changes the status to “Prep”, which tells the background 
thread that this entry has all information needed and is ready 
for data copy. From the background thread view, before copy⁃
ing data from persistent memory to DRAM, the background 
thread first sets the status of a cache entry to “Copy”, then the 
background thread initiates a data copy procedure. When the 
data copy completes, the background thread sets the status of 
a cache entry to “Ready” by using CAS instruction operating 
on the validation flag, and, only at this point, the cache is 
available for read operations. To write data into a certain page, 
if cache hits, RCache needs to invalidate the cache entry rep⁃
resenting this page by switching the status to “Invalid” by 
CAS, and the validation flag of the entry to “Invalid”. Note 
that RCache never invalidates an “In use” cache entry, be⁃
cause the “In use” status only exists in the context of a read 
syscall. Since the file is locked up in write operations, this 
situation never happens. To read data from a cache entry, 
RCache first switches the status from “Ready” to “In use” us⁃
ing CAS, then copies data from the DRAM page to user buffer, 
and at last, changes the status back to “Ready”. However, this 
leads to an inconsistent status where users might be given 
wrong data, since there might be several threads reading data 
from the cache entry concurrently. Therefore, RCache incar⁃
nates an additional counter in the validation flag, when a 
reader wants to read this cache, it must increase this counter; 

and when a reader finishes reading, it 
must decrease the counter. Therefore, 
only the last reader can switch the status 
back to “Ready”.
3.4 Implementation

We implement RCache on NOVA, a 
state-of-the-art NVM filesystem devel⁃
oped with the DAX technology. We keep 
the metadata and data layout in NOVA in⁃
tact, and add extra logic for managing the 
cache in the context of read/write proce⁃
dure. We launch the background thread 
in kernel at the mount phase, and reclaim 
this thread during the unmount phase. To 
tackle the hotness of a block, we extend 

the block index in NOVA, and add an extra counter to each 
leaf node of the radix tree. We insert a block into the cache 
only when it is accessed more times than a threshold in a time 
window. The threshold and the time window are predefined.
4 Evaluation

In this section, we first evaluate RCache’s read/write la⁃
tency, then we evaluate the read performance under read-
intensive workload, and at last, we evaluate the read perfor⁃
mance under a skewed read-intensive workload.
4.1 Experimental Setup

We implement RCache and evaluate the performance of 
RCache on the server with Intel Optane DCPMM. The server 
has 192 GB DRAM and two Intel Xeon Gold 6 240 M proces⁃
sors (2.6 GHz, 36 cores per processor) and 1 536 GB Intel Op⁃
tane DC Persistent Memory Modules (6×256 GB). Because 
cross-non-uniform memory access (NUMA) traffic has a huge 
impact on performance[27], throughout the entire evaluation, we 
only utilize NVMs on one NUMA node to deploy RCache and 
other file systems (e. g., only 768 GB NVMs on this server). 
The server is running Ubuntu18.04 with Linux Kernel 4.15.

Table 1 lists file systems for comparison. We build all file⁃
systems on the same NVM device with a PMem driver. For 
EXT4, we build it following the traditional procedure with a 
page cache involved. For both NOVA and RCache, since 
RCache shares most of the filesystem routines with NOVA, we 
deploy both of them on an NVM device with a PMem driver 
and DAX enabled.

For a latency test, we use custom micro benchmarks and Fx⁃
mark[28] for bandwidth evaluation. Fxmark is a benchmark de⁃
▼Table 1. Evaluated file systems

File System

NOVA[17]

EXT-4[26]

Description
A state-of-the-art NVM filesystem in the kernel. NOVA adopts conven⁃

tional log-structured file system techniques and optimizes file systems for 
hybrid memory systems to maximize performance

A well-known kernel file system in Linux

▲Figure 3. Cache structure and status shifting paradigm
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signed to evaluate the scalabil⁃
ity of file systems. In this 
evaluation, we use three sub-
benchmarks, namely DRBL, 
DRBM and DWAL, in Fxmark.
4.2 Overall Performance

To evaluate the read/write 
performance, we use a custom 
micro-benchmark. All evalua⁃
tion on each filesystem spawns 
only one thread. We first create 
a file with 64 MB, then issue  4 
kB read/write data with 100 
000 requests, and finally calcu⁃
late the average latency. Since 
EXT4 does not ensure data per⁃
sistency in the write system 
call, we issue another fsync af⁃
ter each write system call to 
preserve  data persistency. Fig. 
4 shows the read/write latency 
for three evaluated filesystems.

For read operations, EXT4 
shows the lowest latency, and 
the latency of RCache is close 
to that of EXT4 and much 
lower than that of NOVA. This 
is because RCache utilizes the 
DRAM bandwidth to acceler⁃
ate read.

To evaluate the read band⁃
width under a read-intensive 
workload, we use sub-benchmark DRBL from Fxmark. DRBL 
first creates a 64 MB file for each thread and then issues se⁃
quence read operation to the filesystem. We conduct the evalua⁃
tion for 20 s. If a read operation reaches the tail of the file, the 
next read operation is set at the beginning of the file. From Fig. 
5(a) we can see that the RCache shows much better read perfor⁃
mance than NOVA and close to that of EXT4.
4.3 Read Performance Under Skewness

We evaluate the read performance under the skewed work⁃
load. We modify the DRBL benchmark instead of reading files 
sequentially, where each thread post-read request at an offset 
is controlled by a random variable that follows the normal dis⁃
tribution. Fig. 5(b) shows that, both EXT4 and RCache 
achieve even better performance than that in Fig. 5(a). This is 
because under the skewed workload, the hot pages are more 
likely to be stored in the L3 cache and therefore end up with 
better performance. On the other hand, since NOVA does not 
utilize DRAM for better read performance, the read bandwidth 
achieved is much lower than that of EXT4 or RCache.

5 Conclusions
Traditional page cache in the Linux kernel can benefit read 

workload but cannot fit into an NVM filesystem because it 
causes extra data copy and write amplification. By bypassing 
the page cache, the DAX filesystem achieves better write per⁃
formance but gives up the opportunity of cached read. There⁃
fore, in this paper, we propose a read-intensive workload-
aware page cache for NVM filesystems. RCache uses a tiered 
page cache design, including assigning DRAM and NVM to  
hot and cold data separately, and reading data from both 
sides. Therefore, cached read and direct access can coexist. In 
addition, to avoid copying data to DRAM in a critical path, 
RCache migrates data from NVM to DRAM in a background 
thread. Furthermore, RCache manages data in DRAM in a 
lock-free manner for better latency and scalability. Evalua⁃
tions on Intel Optane DC Persistent Memory Modules show 
that compared with NOVA, RCache has 3 times higher band⁃
width for read-intensive workloads and introduces little perfor⁃
mance loss to write operations.

▲Figure 4. Read and write latency of different filesystems

▲Figure 5. Read bandwidth under the read-intensive workload of different filesystems
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