
ZTE COMMUNICATIONS
March 2023 Vol. 21 No. 1

TU Yaofeng, ZHU Bohong, YANG Hongzhang, HAN Yinjun, SHU Jiwu

RCache: A Read-Intensive Workload-Aware Page Cache for NVM Filesystem Research Paper

RCacheRCache:: A Read A Read--Intensive WorkloadIntensive Workload--Aware Aware
Page Cache for NVM FilesystemPage Cache for NVM Filesystem

TU Yaofeng1,2, ZHU Bohong3, YANG Hongzhang1,2,

HAN Yinjun2, SHU Jiwu3

(1. State Key Laboratory of Mobile Network and Mobile Multimedia
Technology, Shenzhen 518055, China；
 2. ZTE Corporation, Shenzhen 518057, China；
 3. Tsinghua University, Beijing 100084, China)

DOI: 10.12142/ZTECOM.202301011

https://kns.cnki.net/kcms/detail/34.1294.TN.20230302.1104.002.html,
published online March 2, 2023

Manuscript received: 2022-11-01

Abstract: Byte-addressable non-volatile memory (NVM), as a new participant in the storage hierarchy, gives extremely high performance
in storage, which forces changes to be made on current filesystem designs. Page cache, once a significant mechanism filling the perfor⁃
mance gap between Dynamic Random Access Memory (DRAM) and block devices, is now a liability that heavily hinders the writing perfor⁃
mance of NVM filesystems. Therefore state-of-the-art NVM filesystems leverage the direct access (DAX) technology to bypass the page
cache entirely. However, the DRAM still provides higher bandwidth than NVM, which prevents skewed read workloads from benefiting
from a higher bandwidth of the DRAM and leads to sub-optimal performance for the system. In this paper, we propose RCache, a read-
intensive workload-aware page cache for NVM filesystems. Different from traditional caching mechanisms where all reads go through
DRAM, RCache uses a tiered page cache design, including assigning DRAM and NVM to hot and cold data separately, and reading data
from both sides. To avoid copying data to DRAM in a critical path, RCache migrates data from NVM to DRAM in a background thread. Ad⁃
ditionally, RCache manages data in DRAM in a lock-free manner for better latency and scalability. Evaluations on Intel Optane Data Cen⁃
ter (DC) Persistent Memory Modules show that, compared with NOVA, RCache achieves 3 times higher bandwidth for read-intensive work⁃
loads and introduces little performance loss for write operations.
Keywords: storage system; file system; persistent memory

Citation (IEEE Format) : Y. F. Tu, B. H. Zhu, H. Z. Yang, et al., “RCache: a read-intensive workload-aware page cache for NVM filesys⁃
tem,” ZTE Communications, vol. 21, no. 1, pp. 89–94, Mar. 2023. doi: 10.12142/ZTECOM.202301011.

1 Introduction

In 2019, Intel released the first commercially available
non-volatile memory (NVM) device called Intel DC Op⁃
tane Persistent Memory[1]. Compared with Dynamic Ran⁃
dom Access Memory (DRAM), byte-addressable non-

volatile memory provides comparable performance and similar
interfaces (e.g., Load/Store) along with data persistence at the
same time. Because of a unique combination of features, NVM
has a great advantage of performance on storage systems and
posts the urgent necessity of reforming the old architecture of
storage systems. Refs. [2–11] re-architected the old storage
systems to better accommodate NVM and significant perfor⁃
mance boost that endorsed these design choices.

Among these novel designs, bypassing the page cache in
kernel space is a popular choice. The page cache in Linux is
used to be an effective mechanism to shorten the performance
gap between DRAM and block devices. Since NVM has a
close performance to the DRAM, the page cache itself posts

severe performance loss to the NVM filesystem, because the
page cache introduces extra data copy at every file operation
and leads to write amplification on NVM. Therefore, the
legacy page cache in the Linux kernel has become a liability
for the NVM system. For the above reasons, recent work sim⁃
ply deployed the DAX[12] technology to bypass the page cache
entirely[12–17]. With the DAX technology, NVM filesystems ac⁃
cess the address space of NVM directly, without the necessity
of filling the page cache first, which reduces the latency of file⁃
system operations significantly.

However, although NVM achieves bandwidth and latency at
the same order of magnitude as DRAM, DRAM still provides
bandwidth several times higher than NVM and fairly lower la⁃
tency than NVM. Therefore, the DAX approach reduces extra
data copy and achieves fast write performance at the cost of
cached read, especially for read-intensive workloads[18–20].
The page cache provides benefits for reading but has severe
performance impacts on writing because of the extra data copy
and write amplification. And the DAX approach is efficient for
writing due to direct access to NVM but fails to utilize DRAM
bandwidth for reading. Therefore, in order to utilize DRAM This paper was supported by ZTE Industry⁃University⁃Institute Coopera⁃

tion Funds under Grant No. HC⁃CN⁃20181128026.

89

ZTE COMMUNICATIONS
March 2023 Vol. 21 No. 1

TU Yaofeng, ZHU Bohong, YANG Hongzhang, HAN Yinjun, SHU Jiwu

Research Paper RCache: A Read-Intensive Workload-Aware Page Cache for NVM Filesystem

bandwidth and avoid extra data copy and write amplifications,
the page cache should be redesigned to allow both direct ac⁃
cess and cached read.

In this paper, we propose RCache, a read-intensive
workload-aware page cache for the NVM filesystem. RCache
aims to provide fast read performance for read-intensive work⁃
loads and avoid introducing significant performance loss for
write operations at the same time. To achieve this, RCache as⁃
signs DRAM and NVM to hot and cold data separately, and
reads data from both sides. Our major contributions are sum⁃
marized as follows.

• We propose a read-intensive workload-aware page cache
design for the NVM filesystem. RCache uses a tired page
cache design, including reading hot data from DRAM and ac⁃
cessing cold data directly from NVM to utilize DRAM band⁃
width for reading and preserving fast write performance. In ad⁃
dition, RCache offloads data copy from NVM to DRAM and to
a background thread, in order to remove a major setback of
caching mechanism from the critical path.

• RCache introduces a hash-based page cache design to
manage the page cache in a lock-free manner using atomic in⁃
structions for better scalability.

• We implement RCache and evaluate it on servers with In⁃
tel DC Persistent Memory Modules. Experimental results show
that RCache effectively utilizes the bandwidth of DRAM with
few performance cost to manage the page cache and outper⁃
forms the state-of-the-art DAX filesystem under read-
intensive workloads.
2 Background and Motivation

2.1 Non-Volatile Memory
Byte-addressable NVM technologies, including Phase-

change Memory (PCM) [22–24], ReRAM, and Memristor[21],
have been intensively studied in recent years. These NVMs
provide comparable performance and a similar interface as
the DRAM, while persisting data after power is off like block
devices. Therefore, NVMs are promising candidates for pro⁃
viding persistent storage ability at the main memory level.
Recently, Intel has released Optane DC Persistent Memory
Modules (DCPMM) [1], which is the first commercially avail⁃
able persistent memory product. Currently, new products
come in three capacities: 128 GB, 256 GB, and 512 GB. Pre⁃
vious studies show that a single DCPMM provides band⁃
widths at 6.6 GB/s and 2.3 GB/s at most for read/write. Note
that these bandwidth have the same order of magnitudes com⁃
parable to the DRAM but is a lot lower than the DRAM[25].
2.2 Page Cache and DAX Filesystem

Page cache is an important component in a Linux kernel
filesystem. In brief, the page cache consists of a bunch of
pages in DRAM and the corresponding metadata structures.
The page cache is only accessed by the operating system in

the context of a filesystem call and acts as a transparent layer
to user applications. For a write system call, the operating sys⁃
tem writes data on pages in the page cache, which cannot guar⁃
antee the persistence of the data. To guarantee the persistence
of the data, the operating system needs to flush all data pages
in the page cache to the storage devices, probably within an
fsync system call. For a read system call, the operating system
first reads data from the page cache; if not present, the operat⁃
ing system further reads data from the storage devices. Note
that this may involve loading data into the page cache depend⁃
ing on the implementation. In the current implementation, the
operating system maintains an individual radix tree for each
opened file.

As for the DAX filesystem, note that the page cache is ex⁃
tremely useful for block devices with much higher access la⁃
tency than DRAM, but not suitable for the NVM devices with
comparable access latency to DRAM. As mentioned before, to
ensure data persistence, the user must issue an fsync system
call after a write system call. This brings substantial access la⁃
tency to persisting data in an NVM filesystem. Therefore, the
state-of-the-art NVM filesystems leverage the DAX technology
to bypass the page cache entirely and achieve instant persis⁃
tence immediately when the write system call returns. In a
DAX filesystem, read/write system call does not access the
page cache at all, instead, data are loaded/stored from/to the
NVM respectively using a memory interface. The DAX tech⁃
nology reduces extra data copy and accomplishes lower-cost
data persistence.
2.3 Issue of DAX and Page Cache

The performance of NVM is close to that of DRAM but not
equal to it. We measure the read and write latency of two differ⁃
ent filesystems (NOVA[17] and EXT4[26]) representing two differ⁃
ent mechanisms (DAX and Page Cache). Fig. 1(a) shows that
the read latency of the DAX is much higher than the page
cache (4 kB sequential read). Fig. 1(b) shows that the write la⁃
tency of the DAX is much lower than the page cache (4 kB se⁃
quential write).

To sum up, the DAX technology prevents the read opera⁃
tions from benefiting a much higher bandwidth of DRAM in
the NVM filesystem, and the presence of the page cache sig⁃
nificantly increases the latency of write operations with imme⁃
diate data persistence. To overcome this, the page cache
mechanism needs to be redesigned.
3 Rcache Design

3.1 Overview
We build RCache for servers with non-volatile memory to

accelerate read-intensive workloads. In order to benefit from
the DRAM bandwidth for read operations but not to induce no⁃
table latency for data persistence, we build RCache, a read-
intensive workload-aware page cache for the NVM filesystem.

90

ZTE COMMUNICATIONS
March 2023 Vol. 21 No. 1

TU Yaofeng, ZHU Bohong, YANG Hongzhang, HAN Yinjun, SHU Jiwu

RCache: A Read-Intensive Workload-Aware Page Cache for NVM Filesystem Research Paper

1) RCache assigns DRAM and NVM to hot and cold data
separately, and allows cached read and direct read from NVM
to coexist. Furthermore, RCache offloads data copy to a back⁃
ground thread to alleviate the pressure of the critical path.

2) In addition, RCache deploys a lock-free page cache us⁃
ing hash-table to further reduce the performance cost of cache
coherence management.

The architecture of RCache is described in Fig. 2. RCache
keeps an individual cache structure for each opened file. The
page cache consists of a bunch of DRAM pages and a cache
entry table containing a certain number of cache entries in the
DRAM. A cache entry represents a DRAM page. It carries
necessary information for RCache to manage the cache and
navigate data given a logical block number. As shown in Fig.
3, a cache entry carries a validation flag to indicate the status
of this cache entry, a timestamp for the least recently used
(LRU) algorithm, a Blocknr to indicate the logical block num⁃
ber that the entry represents, a DRAM page that is a pointer

points to the actual cache page in DRAM, and an NVM page
that is a pointer points to the actual data page in NVM.
3.2 Tiered Page Cache Design

As shown in Fig. 2, the page cache is accessed in two con⁃
texts: a read/write system call and a background thread.

For a read operation, the operating system accesses the
page cache first. If the data required by the user are present
and valid in the page cache, the operating system copies data
directly from the cached page in the DRAM to the user’s buf⁃
fer; if a cache miss happens, the operating system falls back to
the legacy procedure where the operating system reads data di⁃
rectly from the NVM and inserts the newly read data to the
page cache. For cache insertion, since reading all the data
blocks into the page cache introduces extra data copy and
then leads to higher latency, RCache only inserts a small
cache entry carrying a pointer to the physical block to the
page cache instead of the actual data blocks.

For a write operation, the operat⁃
ing system needs to invalidate all
cached pages affected by this write
operation before returned to users.
We further explain why the invali⁃
dation procedure is light weight in
Section 3.3.

RCache depends on a back⁃
ground kernel thread to finish the
management of the cache. As de⁃
scribed above, in the read operation,
RCache only inserts cache entries to
the page cache. In the context back⁃
ground thread, once a pending
cache entry is discovered, RCache
first allocates a DRAM page to
cache data, and then copies data
from the NVM block to the DRAM
page according to the cache entry.
At last, RCache declares the validity
of the cache entry by switching the
validation flag atomically. Note that
only when RCache updates the vali⁃
dation flag in the cache entry to vali⁃
dation, the cache entry is available
for read/write context.
3.3 Lock-Free Cache Management

The decoupled cache mechanism
splits the cache management into
two separating and concurrent con⁃
texts, which makes coordinating
across all units more expensive
since it leads to more cross-core
communications. Therefore, RCache

▲Figure 1. Performance comparison between different hardware and different filesystem settings

(a) Read
NOVA EXT4

7.0

14.6

Lat
enc

y/μ
s

16
14
12
10

8
6
4
2
0

80
70
60
50
40
30
20
10

0

Lat
enc

y/μ
s

38.5

72.6

NOVA EXT4
(b) Persistent write

▲Figure 2. RCache architecture

User space
Kernel space

User User

② Direct access

Filesystem cache

❷ Copy from
persistent memory

❸ Insert cache entry

DRAM page

Background thread Step 2Set valid

Page X Page Y
Persistent memory

Hash group
Entry Entry Entry Entry

Hash group
Entry Entry Entry Entry

Data index

① Syscall write Syscall read

③ Set invalid ❶ Check cache

Step 1Filling data

DRAM: Dynamic Random Access Memory

91

ZTE COMMUNICATIONS
March 2023 Vol. 21 No. 1

TU Yaofeng, ZHU Bohong, YANG Hongzhang, HAN Yinjun, SHU Jiwu

Research Paper RCache: A Read-Intensive Workload-Aware Page Cache for NVM Filesystem

deploys a lock-free cache management procedure to minimize
the impact. First, RCache operates cache entries by manipu⁃
lating the validation flag atomicity using Compare-and-Swap
(CAS) instructions. In the current implementation, a cache en⁃
try switches among five states using the Compare-and-Swap in⁃
struction. Fig. 3 depicts the transition diagram among these
five states. At the initial point, all cache entries are invalid.
To insert a cache entry, RCache first acquires control of a can⁃
didate entry by setting the validation flag of this entry to “In
use” atomically using CAS, which prevents other threads from
operating on this entry. Then, RCache fills necessary informa⁃
tion (e. g. the block number and the NVM page pointer) and
changes the status to “Prep”, which tells the background
thread that this entry has all information needed and is ready
for data copy. From the background thread view, before copy⁃
ing data from persistent memory to DRAM, the background
thread first sets the status of a cache entry to “Copy”, then the
background thread initiates a data copy procedure. When the
data copy completes, the background thread sets the status of
a cache entry to “Ready” by using CAS instruction operating
on the validation flag, and, only at this point, the cache is
available for read operations. To write data into a certain page,
if cache hits, RCache needs to invalidate the cache entry rep⁃
resenting this page by switching the status to “Invalid” by
CAS, and the validation flag of the entry to “Invalid”. Note
that RCache never invalidates an “In use” cache entry, be⁃
cause the “In use” status only exists in the context of a read
syscall. Since the file is locked up in write operations, this
situation never happens. To read data from a cache entry,
RCache first switches the status from “Ready” to “In use” us⁃
ing CAS, then copies data from the DRAM page to user buffer,
and at last, changes the status back to “Ready”. However, this
leads to an inconsistent status where users might be given
wrong data, since there might be several threads reading data
from the cache entry concurrently. Therefore, RCache incar⁃
nates an additional counter in the validation flag, when a
reader wants to read this cache, it must increase this counter;

and when a reader finishes reading, it
must decrease the counter. Therefore,
only the last reader can switch the status
back to “Ready”.
3.4 Implementation

We implement RCache on NOVA, a
state-of-the-art NVM filesystem devel⁃
oped with the DAX technology. We keep
the metadata and data layout in NOVA in⁃
tact, and add extra logic for managing the
cache in the context of read/write proce⁃
dure. We launch the background thread
in kernel at the mount phase, and reclaim
this thread during the unmount phase. To
tackle the hotness of a block, we extend

the block index in NOVA, and add an extra counter to each
leaf node of the radix tree. We insert a block into the cache
only when it is accessed more times than a threshold in a time
window. The threshold and the time window are predefined.
4 Evaluation

In this section, we first evaluate RCache’s read/write la⁃
tency, then we evaluate the read performance under read-
intensive workload, and at last, we evaluate the read perfor⁃
mance under a skewed read-intensive workload.
4.1 Experimental Setup

We implement RCache and evaluate the performance of
RCache on the server with Intel Optane DCPMM. The server
has 192 GB DRAM and two Intel Xeon Gold 6 240 M proces⁃
sors (2.6 GHz, 36 cores per processor) and 1 536 GB Intel Op⁃
tane DC Persistent Memory Modules (6×256 GB). Because
cross-non-uniform memory access (NUMA) traffic has a huge
impact on performance[27], throughout the entire evaluation, we
only utilize NVMs on one NUMA node to deploy RCache and
other file systems (e. g., only 768 GB NVMs on this server).
The server is running Ubuntu18.04 with Linux Kernel 4.15.

Table 1 lists file systems for comparison. We build all file⁃
systems on the same NVM device with a PMem driver. For
EXT4, we build it following the traditional procedure with a
page cache involved. For both NOVA and RCache, since
RCache shares most of the filesystem routines with NOVA, we
deploy both of them on an NVM device with a PMem driver
and DAX enabled.

For a latency test, we use custom micro benchmarks and Fx⁃
mark[28] for bandwidth evaluation. Fxmark is a benchmark de⁃
▼Table 1. Evaluated file systems

File System

NOVA[17]

EXT-4[26]

Description
A state-of-the-art NVM filesystem in the kernel. NOVA adopts conven⁃

tional log-structured file system techniques and optimizes file systems for
hybrid memory systems to maximize performance

A well-known kernel file system in Linux

▲Figure 3. Cache structure and status shifting paradigm

Persistent memory

Hash group
Entry Entry Entry Entry

Validation flag
Timestamp

Blocknr
DRAM page
NVM page

Counter
Flag

Invalid

InuseReady

PrepCopy

DRAM: Dynamic Random Access Memory NVM: non-volatile memory

92

ZTE COMMUNICATIONS
March 2023 Vol. 21 No. 1

TU Yaofeng, ZHU Bohong, YANG Hongzhang, HAN Yinjun, SHU Jiwu

RCache: A Read-Intensive Workload-Aware Page Cache for NVM Filesystem Research Paper

signed to evaluate the scalabil⁃
ity of file systems. In this
evaluation, we use three sub-
benchmarks, namely DRBL,
DRBM and DWAL, in Fxmark.
4.2 Overall Performance

To evaluate the read/write
performance, we use a custom
micro-benchmark. All evalua⁃
tion on each filesystem spawns
only one thread. We first create
a file with 64 MB, then issue 4
kB read/write data with 100
000 requests, and finally calcu⁃
late the average latency. Since
EXT4 does not ensure data per⁃
sistency in the write system
call, we issue another fsync af⁃
ter each write system call to
preserve data persistency. Fig.
4 shows the read/write latency
for three evaluated filesystems.

For read operations, EXT4
shows the lowest latency, and
the latency of RCache is close
to that of EXT4 and much
lower than that of NOVA. This
is because RCache utilizes the
DRAM bandwidth to acceler⁃
ate read.

To evaluate the read band⁃
width under a read-intensive
workload, we use sub-benchmark DRBL from Fxmark. DRBL
first creates a 64 MB file for each thread and then issues se⁃
quence read operation to the filesystem. We conduct the evalua⁃
tion for 20 s. If a read operation reaches the tail of the file, the
next read operation is set at the beginning of the file. From Fig.
5(a) we can see that the RCache shows much better read perfor⁃
mance than NOVA and close to that of EXT4.
4.3 Read Performance Under Skewness

We evaluate the read performance under the skewed work⁃
load. We modify the DRBL benchmark instead of reading files
sequentially, where each thread post-read request at an offset
is controlled by a random variable that follows the normal dis⁃
tribution. Fig. 5(b) shows that, both EXT4 and RCache
achieve even better performance than that in Fig. 5(a). This is
because under the skewed workload, the hot pages are more
likely to be stored in the L3 cache and therefore end up with
better performance. On the other hand, since NOVA does not
utilize DRAM for better read performance, the read bandwidth
achieved is much lower than that of EXT4 or RCache.

5 Conclusions
Traditional page cache in the Linux kernel can benefit read

workload but cannot fit into an NVM filesystem because it
causes extra data copy and write amplification. By bypassing
the page cache, the DAX filesystem achieves better write per⁃
formance but gives up the opportunity of cached read. There⁃
fore, in this paper, we propose a read-intensive workload-
aware page cache for NVM filesystems. RCache uses a tiered
page cache design, including assigning DRAM and NVM to
hot and cold data separately, and reading data from both
sides. Therefore, cached read and direct access can coexist. In
addition, to avoid copying data to DRAM in a critical path,
RCache migrates data from NVM to DRAM in a background
thread. Furthermore, RCache manages data in DRAM in a
lock-free manner for better latency and scalability. Evalua⁃
tions on Intel Optane DC Persistent Memory Modules show
that compared with NOVA, RCache has 3 times higher band⁃
width for read-intensive workloads and introduces little perfor⁃
mance loss to write operations.

▲Figure 4. Read and write latency of different filesystems

▲Figure 5. Read bandwidth under the read-intensive workload of different filesystems

(a) Read
NOVA EXT4

7.0

14.6

Lat
enc

y/μ
s

16
14
12
10

8
6
4
2
0

8.0

RCahe

80
70
60
50
40
30
20
10

0

Lat
enc

y/μ
s

38.5

72.6

NOVA EXT4
(b) Persistent write

RCahe

39.1

(a) Read-intensive
Number of threads Number of threads

1 4 8 12 16 1 4 8 12 16

(b) Zipfan read

Ban
dw

idth
/(G

B/s
)

60
50
40
30
20
10

0

80
70
60
50
40
30
20
10

0

Ban
dw

idth
/(G

B/s
)

NOVA EXT4 Rcache NOVA EXT4 Rcache

93

ZTE COMMUNICATIONS
March 2023 Vol. 21 No. 1

TU Yaofeng, ZHU Bohong, YANG Hongzhang, HAN Yinjun, SHU Jiwu

Research Paper RCache: A Read-Intensive Workload-Aware Page Cache for NVM Filesystem

References
[1] Intel. Intel Optane DC Persistent Memory [EB/OL]. [2022-11-01]. https://www.

intel. com/content/www/us/en/products/memory-storage/optane-dcpersistent-
memory.html

[2] SHU J W, CHEN Y M, WANG Q, et al. TH-DPMS: design and implementation
of an RDMA-enabled distributed persistent memory storage system [J]. ACM
transactions on storage, 2020, 16(4): 1–31. DOI: 10.1145/3412852

[3] CHEN Y M, LU Y Y, SHU J W. Scalable RDMA RPC on reliable connection
with efficient resource sharing [C]//Proceedings of the Fourteenth EuroSys Con⁃
ference. ACM, 2019. DOI: 10.1145/3302424.3303968

[4] CHEN Y M, LU Y Y, YANG F, et al. FlatStore: an efficient log-structured key-
value storage engine for persistent memory [C]//Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages
and Operating Systems. ACM, 2020: 1077 – 1091. DOI: 10.1145/
3373376.3378515

[5] LU Y Y, SHU J W, CHEN Y M, et al. Octopus: an RDMA-enabled Distribute
Persistent Memory File System [C]//USENIX Annual Technical Conference.
IEEE, 2017: 773–785

[6] ZHU B H, CHEN Y M, WANG Q, et al. Octopus+: an RDMA-Enabled Distrib⁃
uted Persistent Memory File System [J]. ACM Transactions on Storage, 2021, 17
(3): 1–25

[7] COBURN J, CAULFIELD A M, AKEL A, et al. NV-Heaps: making persistent
objects fast and safe with next-generation, non-volatile memories [C]//Proceed⁃
ings of the 16th International Conference on Architectural Support for Program⁃
ming Languages and Operating Systems. ACM, 2011: 105–118. DOI: 10.1145/
1950365.1950380

[8] HONDA M, EGGERT L, SANTRY D. PASTE: network stacks must integrate
with NVMM abstractions [C]//Proceedings of the 15th ACM Workshop on Hot
Topics in Networks. ACM, 2016: 183–189. DOI: 10.1145/3005745.3005761

[9] NARAYANAN D, HODSON O. Whole-system persistence [C]//Proceedings of
the 17th International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, 2012: 401 – 410. DOI: 10.1145/
2150976.2151018

[10] VOLOS H, TACK A J, SWIFT M M. Mnemosyne: lightweight persistent
memory [C]//Proceedings of the 16th International Conference on Architec⁃
tural Support for Programming Languages and Operating Systems. ACM, 2011:
91–104. DOI: 10.1145/1950365.1950379

[11] ZHANG Y Y, YANG J, MEMARIPOUR A, et al. Mojim: a reliable and highly-
available non-volatile memory system [C]//Proceedings of the 20th Interna⁃
tional Conference on Architectural Support for Programming Languages and
Operating Systems. New York: ACM, 2015: 3 – 18. DOI: 10.1145/
2694344.2694370

[12] DULLOOR S R, KUMAR S, KESHAVAMURTHY A, et al. System software
for persistent memory [C]//Proceedings of the 9th European Conference on
Computer Systems. ACM, 2014: 15–30. DOI: 10.1145/2592798.2592814

[13] CHEN Y M, LU Y Y, ZHU B H, et al. 2021. Scalable Persistent Memory File
System with Kernel-Userspace Collaboration [C]//USENIX Conference on File
and Storage Technologies (FAST 21). FAST, 2021: 81–95

[14] DONG M K, BU H, YI J F, et al. Performance and protection in the ZoFS user-
space NVM file system [C]//Proceedings of the 27th ACM Symposium on Oper⁃
ating Systems Principles. ACM, 2019: 478 – 493. DOI: 10.1145/
3341301.3359637

[15] KADEKODI R, LEE S K, KASHYAP S, et al. SplitFS: reducing software over⁃
head in file systems for persistent memory [C]//Proceedings of the 27th ACM
Symposium on Operating Systems Principles. ACM, 2019: 494 – 508. DOI:
10.1145/3341301.3359631

[16] OU J X, SHU J W, LU Y Y. A high performance file system for non-volatile
main memory [C]//Proceedings of the Eleventh European Conference on Com⁃
puter Systems. ACM, 2016: 1–16 DOI: 10.1145/2901318.2901324

[17] XU J, SWANSON S. NOVA: a log-structured file system for hybrid volatile/
non-volatile main memories [C]//The 14th USENIX Conference on File and
Storage Technologies. ACM, 2016: 323 – 338. DOI: 10.5555/
2930583.2930608

[18] ATIKOGLU B, XU Y H, FRACHTENBERG E, et al. Workload analysis of a
large-scale key-value store [C]//Proceedings of the 12th ACM SIGMETRICS/

PERFORMANCE Joint International Conference on Measurement and Model⁃
ing of Computer Systems. ACM, 2012: 53 – 64. DOI: 10.1145/
2254756.2254766

[19] LI J L, NELSON J, MICHAEL E, et al. Pegasus: tolerating skewed workloads
in distributed storage with in-network coherence directories [C]//Proceedings
of the 14th USENIX Conference on Operating Systems Design and Implemen⁃
tation. ACM, 2020: 387–406. DOI: 10.5555/3488766.3488788

[20] YANG J C, YUE Y, RASHMI K V. A large scale analysis of hundreds of in-
memory cache clusters at Twitter [C]//The 14th USENIX Symposium on Oper⁃
ating Systems Design and Implementation (OSDI 20). ACM, 2014: 191–208

[21] STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor
found [J]. Nature, 2008, 453(7191): 80–83. DOI: 10.1038/nature06932

[22] LEE B C, IPEK E, MUTLU O, et al. Architecting phase change memory as a
scalable dram alternative [C]//Proceedings of the 36th Annual International
Symposium on Computer Architecture. ACM, 2009: 2 – 13. DOI: 10.1145/
1555754.1555758

[23] QURESHI M K, SRINIVASAN V, RIVERS J A. Scalable high performance
main memory system using phase-change memory technology [C]//Proceedings
of the 36th Annual International Symposium on Computer Architecture. ACM,
2009: 24–33. DOI: 10.1145/1555754.1555760

[24] ZHOU P, ZHAO B, YANG J, et al. A durable and energy efficient main
memory using phase change memory technology [C]//Proceedings of the 36th
Annual International Symposium on Computer Architecture. ACM, 2009: 14–
23. DOI: 10.1145/1555754.1555759

[25] IZRAELEVITZ J, YANG J, ZHANG L, et al. Basic performance measure⁃
ments of the intel optane DC persistent memory module [EB/OL]. [2022-03-
14]. https://arxiv.org/abs/1903.05714

[26] EXT4. EXT4 (and EXT2/EXT3) Wiki [EB/OL]. (2016-09-20) [2022-03-14].
https://ext4.wiki.kernel.org/

[27] YANG J, KIM J, HOSEINZADEH M, et al. An empirical guide to the behavior
and use of scalable persistent memory [C]//The 18th Conference on File and
Storage Technologies. ACM, 2020: 169–182

[28] MIN C W, KASHYAP S, MAASS S, et al. Understanding manycore scalability
of file systems [C]//USENIX Annual Technical Conference. ACM, 2016: 71–85

Biographies
TU Yaofeng received his PhD degree from Nanjing University of Aeronautics
and Astronautics, China. He is a senior expert at ZTE Corporation. His research
interests include big data, database and machine learning.

ZHU Bohong (zhubohong18@mails.tsinghua.edu.cn) received his master’s de⁃
gree from Tsinghua University, China in 2018. He is currently studying in the
School of Informatics, Xiamen University, China for his PhD degree. His re⁃
search interests include filesystems, memory storage and distributed systems.

YANG Hongzhang received his PhD degree from Peking University, China.
He is an engineer at ZTE Corporation. His research interests include file sys⁃
tems, persistent memory and storage reliability.

HAN Yinjun received his master’s degree from Nanjing University of Science
and Technology, China. He is a senior engineer at ZTE Corporation. His re⁃
search interests include distributed file systems, RDMA and persistent memory.

SHU Jiwu received his PhD degree in computer science from Nanjing Univer⁃
sity, China in 1998. He is currently the dean of the School of Informatics, Xia⁃
men University, China and a professor in the Department of Computer Science
and Technology, Tsinghua University, China. His research interests include net⁃
work storage systems, non-volatile memory systems and technologies, reliability
for storage systems, and parallel/distributed processing technologies. He is a
Changjiang Professor, CCF Fellow, and IEEE Fellow.

94

