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Abstract: With the rapid popularization of mobile devices and the wide application of various sensors, scene perception methods applied to 
mobile devices occupy an important position in location-based services such as navigation and augmented reality (AR). The development of 
deep learning technologies has greatly improved the visual perception ability of machines to scenes. The basic framework of scene visual per⁃
ception, related technologies and the specific process applied to AR navigation are introduced, and future technology development is pro⁃
posed. An application (APP) is designed to improve the application effect of AR navigation. The APP includes three modules: navigation map 
generation, cloud navigation algorithm, and client design. The navigation map generation tool works offline. The cloud saves the navigation 
map and provides navigation algorithms for the terminal. The terminal realizes local real-time positioning and AR path rendering.
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1 Introduction

Navigation services applied to mobile devices are an in⁃
dispensable part of modern society. At present, the 
outdoor positioning and navigating service technology 
has become mature, and the Global Positioning Sys⁃

tem (GPS) can provide relatively accurate position information 
and related supporting navigation services for outdoor pedes⁃
trians. For example, the navigation products of Baidu, Amap, 
Tencent and other companies can meet the location informa⁃
tion and navigation service needs of outdoor pedestrians in 
terms of location services. However, once pedestrians go in⁃
doors, e. g., in shopping malls, airports, underground parking 
lots and other sheltered places, the positioning signal is 
greatly attenuated by factors like walls, and the GPS-based 
outdoor navigation technology becomes insufficient. The exist⁃
ing indoor localization methods have many constraints in local⁃
ization accuracy, deployment overhead, and resource con⁃
sumption, which limits their promotion in real-world naviga⁃
tion applications.

In recent years, researchers have designed a variety of in⁃
door and outdoor positioning solutions for various types of in⁃
formation such as visible light communication (VLC), built-in 
sensors, QR codes, and WIFI. However, these solutions have 

many shortcomings in terms of localization accuracy, deploy⁃
ment difficulty, and equipment overhead. For example, the 
VLC-based methods require indoor LED lights to be upgraded 
on a large scale, which greatly increases deployment costs. 
Meanwhile, the WIFI-based methods cannot provide accurate 
direction information, which is difficult to meet the needs of 
precise localization.

However, in a visual scenario perception method, target 
recognition and position calculation are performed by means 
of image processing, so that relatively high positioning preci⁃
sion can be provided, and deployment of an additional de⁃
vice is not required, which is widely researched and applied 
in recent years.

The main application of scene perception is visual localiza⁃
tion, which is a method of determining the position of 6-degree 
of freedom (6-DoF) from the image. The initialization condi⁃
tions of visual localization usually require a sparse model of 
the scene and the estimated pose of the query image. Aug⁃
mented reality (AR) navigation is an important application sce⁃
nario of visual localization technologies, which can interact 
with the real world in a virtual environment through localiza⁃
tion. The application of AR navigation technologies has great 
prospects in the future. Shopping malls have the most demand 
for localization and navigation technologies, and users are 
very interested in store discount information, personalized ad⁃
vertisements, store ratings, store locations, and indoor road This work was supported by ZTE Industry ⁃University ⁃ Institute Coopera⁃

tion Funds under Grant No. HC⁃CN⁃20210707004.
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guidance. The application of scene visual perception and AR 
navigation can solve most of the above problems well, and 
has vast potential in future development in the expansion of 
added value.

This paper introduces the design and implementation of AR 
navigation applications (APPs) and the cloud algorithm in de⁃
tail, and starts from three aspects: navigation map generation, 
the cloud navigation algorithm, and the client design. Com⁃
bined with specific cases, this paper introduces in detail the 
process of panoramic data acquisition and processing, point 
cloud map[1] and computer aided design (CAD) map alignment 
in the navigation map generation tool, and introduces the path 
planning algorithm and path correction algorithm in the cloud 
navigation algorithm. In terms of localization and AR path ren⁃
dering, the client design method is introduced in detail, and fi⁃
nally, the running example of an AR navigation APP is given.
2 Basic Framework of Scene Visual Perception

Similar to humans, machines perceive and understand the 
environment mostly through visual information. In recent 
years, the development of 3D visual perception methods has 
provided great help for building models of the real physical 
world. For various application scenarios, there are currently 
some vision algorithms with commercial application capabili⁃
ties, including face recognition, living body detection, 3D re⁃
construction, simultaneous localization and mapping (SLAM), 
gesture recognition, behavior analysis, augmented reality, vir⁃
tual reality, etc.

Scene visual perception applied to navigation mainly in⁃
cludes 3D reconstruction and SLAM. The above steps can be 
regarded as the process of building a visual map. Visual map-
based localization usually includes steps such as visual map 
construction and update, image retrieval, and fine localization, 
among which the visual map is the core of the method. Accord⁃
ing to the condition that the image frame has accurate prior 
pose information or not, the process of constructing a visual 
map can be divided into prior pose-based construction meth⁃
ods and non-prior pose methods. In the prior pose-based con⁃
struction methods, the prior pose of the image frame can be de⁃
rived from the high-precision LiDAR data synchronized and 
calibrated with the camera, which is common in high-
precision acquisition vehicles in the field of autonomous driv⁃
ing. In small-scale scenes, especially indoors, the prior pose 
can also be obtained from visual motion capture systems such 
as Vicon and OptiTrack. The non-prior pose methods adopt of⁃
fline extraction of feature points and offline optimization of 
pose and scene structures, which is similar to structure-from-
motion (SfM). The constructed geometric visual map generally 
includes image frames, feature points and descriptors, 3D 
points, the correspondence between image frames, and the cor⁃
respondence between 2D points and 3D points. During the 
process, due to changes in the real scene, the constructed vi⁃
sual map also needs to be updated synchronously to detect 

new and expired changes in time, and then update the corre⁃
sponding changes to the visual map. When the prior visual 
map is obtained, the image retrieval and fine localization steps 
can usually be performed on the newly acquired image frame 
to complete localization. In the visual map-based localization 
framework, sensor information such as inertial measurement 
unit (IMU), GPS, and wheel odometer can also be fused.
3 Introduction to Key Technologies of Scene 

Visual Perception

3.1 3D Reconstruction
Accurate and robust 3D reconstruction methods are crucial 

to visual localization. The purpose of 3D reconstruction is to 
obtain the geometry and structure of an object or a scene from 
a set of images. SfM is a way to achieve 3D reconstruction, 
which is mainly used in the stage of building sparse point 
cloud in 3D reconstruction. A complete 3D reconstruction pro⁃
cess usually also includes a multi-view stereo (MVS) step to 
achieve dense reconstruction. SfM is mainly used for mapping 
and restoring the structure of the scene. According to the dif⁃
ference in the image data processing flow, SfM can usually in⁃
clude four categories: incremental SfM, global SfM, distrib⁃
uted SfM, and hybrid SfM. Among them, distributed SfM and 
hybrid SfM are usually used to solve large-scale reconstruc⁃
tion and are based on incremental SfM and global SfM. Incre⁃
mental SfM mainly includes two steps. The first step is to find 
the initial correspondence, and the second step is to achieve 
incremental reconstruction. The former aims to extract robust 
and well-distributed features to match image pairs, and the lat⁃
ter is used to estimate the image pose and 3D structure 
through image registration, triangulation, bundle adjustment 
(BA), and outlier removal. The initial corresponding outliers 
usually need to be removed by geometric verification methods. 
Generally, when the number of recovered image frames ac⁃
counts for a certain proportion, global BA is required. Due to 
the incremental BA processing, incremental SfM usually has 
higher accuracy and better robustness. As the number of im⁃
ages increases, the scale of BA processing becomes larger, 
leading to disadvantages such as low efficiency and large 
memory usage. Additionally, incremental SfM suffers from cu⁃
mulative drift as images are incrementally added. Typical SfM 
frameworks include Bundler and COLMAP.

CAO et al. [2] proposed a fast and robust feature tracking 
method for 3D reconstruction using SfM. First, to save compu⁃
tational costs, a feature clustering method was used to cluster 
a large set of images into small ones to avoid some wrong fea⁃
ture matching. Second, the joint search set method was used 
to achieve fast feature matching, which could further save the 
computational time of feature tracking. Third, a geometric con⁃
straint method was proposed to remove outliers in trajectories 
produced by feature tracking methods. The method could cope 
with the effects of image distortion, scale changes, and illumi⁃
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nation changes. LINDENBERGER et al. [3] directly aligned 
low-level image information from multiple views, optimized 
feature point locations using depth feature metrics after fea⁃
ture matching, and performed BA through similar depth fea⁃
ture metrics during incremental reconstruction. In this pro⁃
cess, the convolutional network was used to extract the dense 
feature map from the image, then the position of the feature 
points in the image was adjusted according to the sparse fea⁃
ture matching to obtain the two-dimensional observation of the 
same 3D point in different images, and the SfM reconstruction 
was completed according to the adjustment. The BA optimiza⁃
tion residual in the reconstruction process changes from repro⁃
jection error to feature metric error. This improvement is ro⁃
bust to large detection noise and appearance changes, as it op⁃
timizes feature metric errors based on dense features pre⁃
dicted by neural networks.

The cumulative drift problem can be solved by global SfM. 
For the fundamental and essential matrix between images ob⁃
tained in the image matching process, the relative rotation and 
relative translation can be obtained through decomposition. 
Using the relative rotation as a constraint, the global rotation 
can be recovered, and then the global translation can be recov⁃
ered using the global rotation and relative translation con⁃
straints. Since the construction of the global BA does not re⁃
quire multiple optimizations, the global SfM is more efficient. 
However, since the relative translation constraints only con⁃
strain the translation direction and the scale is unknown, the 
translation averaging is difficult to solve. In addition, the trans⁃
lational average solution process is sensitive to outliers, so the 
global SfM is limited in practical applications.
3.2 Image Matching

How to extract robust, accurate, and sufficient image corre⁃
spondences is a key issue in 3D reconstruction. With the de⁃
velopment of deep learning, learning-based image matching 
methods have achieved excellent performance. A typical im⁃
age matching process usually includes three steps: feature ex⁃
traction, feature description, and feature matching.

Detection methods based on deep convolutional networks 
search for interest points by constructing response graphs, in⁃
cluding supervised methods[4–5], self-supervised methods[6–7], 
and unsupervised methods[8–9]. Supervised methods use an⁃
chors to guide the training process of the model, but the perfor⁃
mance of the model is likely to be limited by the anchor con⁃
struction method. Self-supervised and unsupervised methods 
do not require human-annotated data, while they focus on geo⁃
metric constraints between image pairs. Feature descriptors 
use local information around interest points to establish the 
correct correspondence of image features. Due to the informa⁃
tion extraction and representation capabilities, deep learning 
techniques have also achieved good performance in feature de⁃
scriptions. The deep learning-based feature description prob⁃
lem is usually a supervised learning problem, that is, learning 

a representation so that the matched features in the measure⁃
ment space are as close as possible, and the unmatched fea⁃
tures are as far as possible[10]. Learning-based descriptors 
largely avoid the requirement of human experience and prior 
knowledge. Existing learning-based feature description meth⁃
ods include two categories, namely metric learning[11–12] and 
descriptor learning[13–14], and the difference lies in the output 
content of the descriptor. Metric learning methods learn met⁃
ric discriminants for similarity measurement, while descriptor 
learning generates descriptor representations from raw images 
or image patches.

Among these methods, SuperGlue[14] proposed a network ca⁃
pable of feature matching and filtering outliers simultaneously, 
whose feature matching was achieved by solving a differen⁃
tiable optimization transfer problem. The loss function was con⁃
structed by a graph neural network, and a flexible content ag⁃
gregation mechanism was proposed based on the attention 
mechanism, which enabled SuperGlue to simultaneously per⁃
ceive potential 3D scenes and perform feature matching. 
LoFTR[15] used a transformer module with self-attention and 
cross-attention layers to process dense local features extracted 
from convolutional networks. Dense matches were first ex⁃
tracted at a low feature resolution (1/8 of the image dimension), 
from which high-confidence matches were selected and refined 
to high-resolution sub-pixel levels using correlation-based 
methods. In this way, the large receptive field of the model en⁃
abled the transformed features to reflect context and location in⁃
formation, and the prior matching was achieved through mul⁃
tiple self-attention and cross-attention layers. Many methods in⁃
tegrate feature detection, feature description, and feature match⁃
ing into matching pipelines in an end-to-end manner, which is 
beneficial for improving matching performance.
3.3 Visual Localization

Visual localization is a problem of estimating the pose of a 
6-DoF camera, from which a given image is obtained relative 
to a reference scene representation. Classical approaches to vi⁃
sual localization are structure-based, which means that they 
rely on 3D reconstructions of the environment (e. g. point 
clouds) and use local feature matching to establish correspon⁃
dences between query images and 3D maps. Image retrieval 
can be used to reduce the search space by considering only 
the most similar reference images instead of all possibilities. 
Another approach is to directly interpolate the pose from the 
reference image or estimate the relative pose between the 
query and the retrieved reference image, which does not rely 
on the 3D reconstruction results. Scene point regression meth⁃
ods can directly obtain the correspondence between 2D pixel 
positions and 3D points using a deep neural network (DNN), 
and compute camera poses similar to structure-based meth⁃
ods. Modern scene point regression methods benefit from 3D 
reconstruction during training but do not rely on it. Absolute 
pose regression methods use a DNN to estimate poses end-to-
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end. These methods differ in generalization ability and local⁃
ization accuracy. Furthermore, some methods rely on 3D re⁃
construction, while others only require pose-labeled reference 
images. The advantage of using 3D reconstructions is that the 
generated poses can be very accurate, while the disadvantage 
is that these 3D reconstructions are sometimes difficult to ob⁃
tain and even more difficult to maintain. For example, if the 
environment changes, they need to be updated.

The typical work of the structure-based approach can refer 
to a general visual localization pipeline proposed in Ref. [17]. 
Through a hierarchical localization approach, the pipeline can 
simultaneously predict local features and global descriptors 
for accurate 6-DoF localization, which utilizes a coarse-to-fine 
localization paradigm, first performing global retrieval to ob⁃
tain location hypotheses and then matching local features in 
these candidate locations. This hierarchical approach saves 
runtime for real-time operations and proposes a hierarchical 
feature network (HF-Net) that jointly estimates local and 
global features, thereby maximizing shared computation, and 
compresses the model through multi-task distillation.
4 AR Navigation Based on Scene Visual Per⁃

ception
AR navigation usually works in the following process: 1) 

The real-world view is got from the user’s point of view; 2) the 
location information is obtained and used to track the user; 3) 
virtual-world information is generated based on the real-world 
view and location information; 4) the generated virtual world 
information is registered into the real-world view and dis⁃
played to the user, creating augmented reality. The main chal⁃
lenge of AR navigation is how to integrate the virtual and real 
worlds, and design and present the navigation interface. Regis⁃
tration is the process of correctly aligning virtual information 
with the real world, which gives 
the user the illusion of keeping 
the virtual and the real coexist⁃
ing. For AR in navigation, accu⁃
rate registration is critical, and 
AR navigation systems can 
cause confusion when orienta⁃
tion changes rapidly due to reg⁃
istration errors. So even small 
offsets of registering dummy in⁃
formation can be harmful. In an 
AR navigation system, the dis⁃
play should not interfere with 
the user’s movement. The aug⁃
mented reality display technol⁃
ogy is also known as video see-
through. Video see-through dis⁃
play refers to placing a digital 
screen between the real world 
and the user, where the user 

can see the real world and augmented information, use a cam⁃
era to capture the real-world view, and then combine it with 
the augmented information and display it on the screen supe⁃
rior. Typical examples of displays include head-mounted dis⁃
plays with cameras and smartphone displays.

On the basis of scene visual perception, this paper designs 
an AR navigation APP developed based on Unity and AR⁃
Core. Its overall framework is shown in Fig. 1. The system con⁃
sists of three parts, namely, the navigation map generation 
tool, the cloud navigation algorithm, and the terminal naviga⁃
tion APP design.

The navigation map generation tool works offline, including 
scene panoramic video capture, dense point cloud generation, 
point cloud and plane CAD map alignment, navigation map 
management and other functions. The map generated by the 
navigation map generation tool is stored in the cloud. In addi⁃
tion, the cloud is also responsible for providing navigation al⁃
gorithms to the terminal, including visual localization meth⁃
ods, path planning algorithms, path correction algorithms, 
floor judgment algorithms and cross-layer guidance algo⁃
rithms. When users request a navigation activity with the ter⁃
minal APP, they first select the current location map, and the 
cloud issues the corresponding navigation map according to 
the user’s selection. After selecting the starting point and end⁃
ing point, the user requests the navigation service from the 
cloud, and realizes local real-time localization, global path 
and current position display, and AR path rendering in the lo⁃
cal APP.
4.1 Panoramic Data Collection and Processing

This paper uses a panoramic camera to capture video to col⁃
lect mapping data. Instead of rotating the camera around its 
optical center, this panoramic camera can be used to capture 

▲Figure 1. Overall framework of an AR navigation application (APP)

Generate navigation maps
Scene images

CAD maps

Navigation map generator
Alignment

Navigation map management Initialization

Cloud navigation algorithm

Navigation map download Scene image upload Current position Destination upload Path Current scene
PathsequenceNavigation start Real-time naviga⁃tion

Location display Path display AR display

Cloud service
· Visual localization
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multiple images of a scene from 
different viewpoints, from which 
stereoscopic information about 
the scene can be calculated. 
The stereo information is then 
be used to create a 3D model of 
the scene, and arbitrary views 
can be computed. This ap⁃
proach is beneficial for 3D re⁃
construction of large-scale 
scenes. The dense reconstruc⁃
tion results of the proposed ap⁃
proach on the building dataset 
are shown in Fig. 2.

Taking a large shopping mall 
as an example, for the process⁃
ing and 3D reconstruction of the 
data collected from the pan⁃
oramic video, this paper goes 
through the following steps:

1) Shoot a panoramic video of the scene, and the shooting 
area should be covered as much as possible;

2) Frame the obtained panoramic video to obtain a pan⁃
oramic image and segment the panoramic image according to 
the field of view (FOV);

3) Realize sparse point cloud reconstruction for each floor 
and finally output all camera parameters and sparse 3D point 
cloud;

4) Complete the single-layer dense point cloud reconstruc⁃
tion;

5) Integrate multiple layers of dense point clouds to obtain 
a complete 3D structure of the scene.
4.2 Alignment of Point Cloud Map and CAD

The point cloud obtained in Section 3.1 is based on the 
camera coordinate system, which must be aligned with the 
world coordinate system if it is to be used for navigation tasks. 
This paper takes the CAD map as the world coordinate sys⁃
tem, because CAD can provide accurate position information 
and scale information. The problem is transformed into the 
alignment of the point cloud map and the plane CAD. The spe⁃
cific process of its realization is as follows:

1) The point cloud is dimensionally reduced and projected 
to the XoY plane to form a plane point cloud map, as shown in 
Fig. 3.

2) Marker points (such as walls and other points that are 
easy to be distinguished) and the corresponding points are 
found on the plane point cloud map and the CAD map, re⁃
spectively.

3) Alignment is completed through the scale information 
provided by the CAD map, output rotation and the displace⁃
ment matrix.

Once the point cloud X is sampled, it can be mapped to a 

2D plane by simply removing the 𝑧 coordinates. The problem 
is transformed into finding the mapping between (X𝑥 , X𝑦) and 
pixels (𝑢 , 𝑣), where (X𝑥 , X𝑦) is the set of 2D coordinates (𝑥 , 
𝑦) extracted from the point cloud X. It is worth noting that (𝑥, 
𝑦) are usually float values, while pixel coordinates (𝑢 , 𝑣) are 
usually positive integer values. Therefore, (𝑥 , 𝑦) needs to go 
through a certain scale, rotation and rounding transformation.

Once the plane point cloud map is obtained, it can be 
aligned with the CAD map through the affine transformation. 
To determine the affine matrix, at least three pairs of corre⁃
sponding points are usually required. Considering the need to 
reduce errors, this paper selects multiple pairs of correspond⁃
ing points in the point cloud map and CAD map respectively, 
and uses the least square method to achieve alignment. It is 
worth noting that the selection of corresponding points should 
try to select parts that are easy to identify, such as walls and 
other fixed objects with clear structural characteristics. Fig. 3 
shows the process of aligning a point cloud map with a CAD 
map. After the alignment, the position coordinates of the point 
cloud in the world coordinate system can be obtained, which 

▲Figure 2. Result of dense reconstruction: (a) photometric depth map, (b) photometric normal map, (c) geo⁃
metric depth map, (d) geometric normal map, and (e) dense reconstruction effect

(a) 3D point cloud of a shopping mall (b) Corresponding 2D point cloud map
▲Figure 3. An example of a 2D point cloud map generation

(a) (b) (c) (d) (e)
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is beneficial to the subsequent localization and navigation 
tasks. The obtained results can be saved separately according 
to the scene, and the saved content includes the scene pose, 
corresponding geographic information, camera model, and 
other information to form a navigation digital map.
4.3 Cloud Navigation Algorithm

When a user requests a navigation activity with the terminal 
APP, he first selects the map corresponding to the current lo⁃
cation, and the cloud issues the corresponding navigation map 
according to the user’s selection. After the user selects the 
destination, the user requests the navigation service from the 
cloud, and at the same time uploads the current scene graph 
to the cloud. At this time, the cloud needs to invoke the visual 
localization algorithm to determine the current initial position 
of the user as a starting point. After obtaining the coordinates 
of the starting point and the ending point, the cloud calls the 
path planning algorithm to obtain the navigation path point se⁃
quence and sends it to the terminal APP for AR rendering. 
The user is actually positioned through ARCore during the 
process of traveling. However, this method will generate accu⁃
mulated errors after traveling for a certain distance, and since 
the user may deviate from the recommended path, the path 
correction algorithm needs to be implemented through the 
cloud, and the user is directed to the correct path.

According to common practice in the industry, the path 
planning algorithm designed in this paper does not need to 
provide a path from any point to any point. The path planning 
involved in this paper only needs to provide a path from any 
point (user location or user-selected location) to a specific 
point (specified end-point set). Therefore, the path planning 
problem in this paper can be regarded as solving the shortest 
path problem between the vertices of a directed graph. The ba⁃
sic flow of the path planning algorithm proposed in this paper 
is as follows:

1) The passable area is determined through the point cloud 
map, and the waypoint is selected in the passable area.

2) The route point and the destination point (the selected 
end-point) form a graph structure.

3) The shortest path is found among all vertices in the graph 
through a search algorithm.

The process of building route points and destination points 
into a graph structure forms a road network. In this process, 
it is necessary to clarify the world coordinates of the way-
point and the destination point, and mark the connection re⁃
lationship between points to form a graph structure of the 
road network, which is stored in the form of an adjacency 
list. Since the purpose of this paper is to find the shortest 
path among all vertices in the graph, it constitutes an all 
pairs shortest paths (APSP) problem. The general solution to 
the APSP problem is the Floyd-Warshall algorithm. After the 
shortest path among all points is obtained, the result is saved 
in the cloud according to the scene, so that in practical appli⁃

cations, there is no need to calculate the planned path on⁃
line, and only the retrieval function will be implemented, 
which is time-consuming.

During the user’s journey, the local positioning provided by 
ARCore will gradually produce errors with the advancing dis⁃
tance. At the same time, the user may deviate from the recom⁃
mended navigation path due to internal or external reasons. 
Therefore, the cloud needs to provide a path correction algo⁃
rithm to guide the user back to the navigation path (the correct 
path). The specific workflow of the path correction algorithm 
is as follows:

1) The user uploads the current scene image while traveling.
2) The cloud determines whether it deviates from the navi⁃

gation path recommended by the algorithm according to the 
positioning algorithm.

3) If the user’s deviation is small, the user will be guided to 
the recommended navigation path through the navigation ar⁃
rows of the terminal APP. If the user’s deviation is too large, 
the path planning will be re-planned based on the user’s cur⁃
rent position.

The path correction process is actually a verification pro⁃
cess of the real-time local positioning information fed back by 
the terminal. When the error exceeds the distance threshold τ, 
the path correction function can be activated. In practical ap⁃
plications, the selection of the distance threshold τ is usually 
between 50 cm and 200 cm. If the threshold is too small, it 
will increase the influence of visual positioning errors. If the 
threshold is too large, it will not only lose the accuracy of navi⁃
gation, but also bring inconvenience to users.
4.4 AR Systems

AR systems contain three basic features: the combination of 
real and virtual worlds, real-time interaction, and accurate 3D 
registration of virtual and real objects. In this way, AR 
changes people’s continuous perception of the real environ⁃
ment and obtains an immersive experience by integrating the 
composition of the virtual world into people’s perception of 
the real environment. Specific to AR navigation APPs, users 
can obtain real-world information from smartphones (through 
the phone camera), and by applying the AR technology, vir⁃
tual navigation paths can be added to the smartphone’s inter⁃
face, enhancing the user’s perception of the real environment 
for a better navigation experience. From the user’s point of 
view, a complete AR navigation includes the following pro⁃
cess: 1) The user selects the current scene and obtains the 
navigation map delivered by the cloud; 2) the user selects the 
destination according to the navigation map and requests the 
cloud navigation service; 3) the user follows the terminal inter⁃
face rendering AR path to the end. Due to network bandwidth 
limitations, users cannot obtain real-time localization by send⁃
ing the current scene image to the cloud in real time. There⁃
fore, the ARCore-based method is used to provide real-time lo⁃
calization. However, this method will generate accumulated er⁃
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rors after traveling for a certain distance. And since users may 
deviate from the recommended path, path correction needs to 
be implemented through a correction algorithm to guide users 
to the correct path. Fig. 4 shows the flow of the AR navigation 
APP and AR rendering.

ARCore is an AR application platform provided by Google, 
which can be easily combined with 3D engines such as Unreal 
and Unity. ARCore provides three main applications for mo⁃
tion tracking, environment understanding, and lighting estima⁃
tion. Among them, motion tracking enables the phone to know 
and track its position relative to the world, environment under⁃
standing enables the phone to perceive the environment, such 
as the size and location of detectable surfaces, and light esti⁃
mation allows the phone to obtain the current lighting condi⁃
tions of the environment. Localization can be achieved using 
ARCore’s motion-tracking capabilities.

The motion-tracking function of ARCore is actually realized 
by visual inertial odometry (VIO). VIO includes two parts: a vi⁃
sual tracking system and an inertial navigation system. The 
camera obtains a frame of pixel matching to track the user’s 
pose. The inertial navigation system realizes position and atti⁃
tude tracking through an IMU, which usually consists of an ac⁃
celerometer and a gyroscope. The outputs of the two systems 
are combined through a Kalman filter to determine the final 
pose of the user. The local positioning function provided by 
ARCore can track the user’s position in real time, but the er⁃
ror in the inertial navigation system of ARCore will accumu⁃
late over time. As the user’s advancing distance increases 
and time passes, tracking of the user’s position will be offset. 
In practice, we find that after a user travels about 50 m, the lo⁃
calization provided by ARCore will begin to deviate. At this 
time, it is necessary to relocate through the visual localization 
algorithm and correct the path.

On the basis of the previous work, the AR navigation APP 
can obtain the current position of the user and the path point 
sequence of the path planning from the cloud. Then the next 
question is how to realize AR rendering of the path point se⁃
quence on the mobile phone interface. From the perspective of 

user experience, the AR markers cannot block the user’s line 
of sight and must provide an obvious guiding role. Therefore, 
in the actual rendering process, this paper chooses to render 
the AR markers close to the ground. The environment under⁃
standing section in ARCore provides plane detection capabili⁃
ties. In fact, ARCore stipulates that all virtual objects need to 
rely on planes for rendering. After ARCore implements plane 
detection, the AR markers can be placed on the ground. The 
placement of AR markers can be achieved by radiographic in⁃
spection. The principle of ray detection is to judge whether 
there is a collision with an object through the ray emitted from 
the camera position to any position in the 3D world. In this 
way, the collision object and its position can be detected. By 
performing collision detection on the planes in the scene, the 
planes can be judged and AR signs can be placed. Here, this 
paper adopts two kinds of AR markers, one is the navigation 
guidance arrow, which is responsible for indicating the for⁃
ward direction, and the other is the end prompt sign, which re⁃
minds the user to reach the end-point. Fig. 4 shows the actual 
workflow of the AR navigation APP and the rendering effect of 
the AR markers. In the figure, from left to right, the user se⁃
lects the destination (elevator entrance), the navigation guide 
arrow is rendered, the user follows the navigation guide arrow, 
and the navigation ends at the end prompt sign.
5 Conclusions and Outlook

This paper analyzes and introduces related technologies in 
the field of scene visual perception, based on which we imple⁃
ment AR navigation. In practical application, there are still 
some problems to be solved[18–19]. For example, this paper 
adopts a structure-based localization framework, with an ad⁃
vantage that it can effectively handle large-scale scenes and 
has high localization accuracy. However, if the environment 
changes, the 3D structure needs to be re-adjusted to achieve 
re-registration of point clouds. The alignment method of point 
cloud map and plane CAD shown in Fig. 5 still requires 
manual selection of corresponding points, which is not condu⁃
cive to large-scale applications, so it needs to be studied in 

▲ Figure 4. Augmented reality (AR) navigation application (APP) and 
AR rendering result

(a) Corresponding points in point cloud map (b) Corresponding points in CAD map

▲Figure 5. An example of a 2D point cloud map aligned with CAD map
CAD: computer aided design
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the follow-up work to realize the automatic process. The pro⁃
posed localization method in this paper adopts a pure vision 
solution. In the future, it can also be considered to combine 
other sensor data such as IMU, depth camera or LiDAR to fur⁃
ther improve the localization and navigation performance. In 
addition, most of the current visual localization algorithms can⁃
not be independent of the scene, and usually need to train dif⁃
ferent models on different datasets (such as training models on 
indoor and outdoor datasets), which brings difficulties to prac⁃
tical applications. For example, in the AR navigation process, 
image feature matching is usually performed in the cloud. Due 
to the diversity of the user’s scene, if a scene-related localiza⁃
tion algorithm is used, the generalization ability of the model 
will be insufficient, which will lead to poor localization perfor⁃
mance. Therefore, for AR navigation, it is particularly impor⁃
tant to enhance the generalization performance of localization 
algorithms and achieve scene-independent visual localization.
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