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Abstract: In distributed machine learning (DML) based on the parameter server (PS) architecture, unbalanced communication load distribu⁃
tion of PSs will lead to a significant slowdown of model synchronization in heterogeneous networks due to low utilization of bandwidth. To ad⁃
dress this problem, a network-aware adaptive PS load distribution scheme is proposed, which accelerates model synchronization by proac⁃
tively adjusting the communication load on PSs according to network states. We evaluate the proposed scheme on MXNet, known as a real-
world distributed training platform, and results show that our scheme achieves up to 2.68 times speed-up of model training in the dynamic and 
heterogeneous network environment.
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1 Introduction

Machine learning is widely used in many fields such 
as image classification[1], speech recognition[2], and 
natural language processing[3]. With the continuous 
increase in training data and the model size, the 

huge time cost of single-machine training is unacceptable to 
users. Therefore, distributed machine learning (DML) based 
on multi-machine parallelism has drawn more and more atten⁃
tion. Usually, distributed training is carried out within a single 
cluster, since it is considered that networks with limited band⁃
width and complex and changeable states across clusters will 
seriously slow down the communication process of DML. How⁃
ever, due to the limitations of data privacy protection[4], data 
aggregation among clusters for model training is not allowed in 
some cases. In addition, with the proposal of Computing First 
Network[5–6], DML model training based on the integrated 
computing power of the whole network gradually shows great 
application prospects. Based on the consideration mentioned 
above, DML in heterogeneous networks across clusters has 

great research value.
There are mainly two communication architectures for DML: 

one is a centerless architecture, represented by AllReduce[7–8], 
and the other is a centered architecture, represented by a pa⁃
rameter server (PS) architecture[9–11]. In the PS architecture, 
there are usually two types of nodes in the DML system: the 
worker responsible for model training and the server for model 
aggregation and parameter update. During a typical training it⁃
eration of data parallelism and synchronous update mode, work⁃
ers send model gradients uniformly after completing the train⁃
ing based on the local model and data, and the server receives 
the model gradient from workers. Thereafter, the model aggrega⁃
tion operation is performed to generate a global model, and the 
global model is sent to workers. Workers immediately replace 
the local model after receiving the global model from the server 
and start a new training iteration.

In this process, since the data from all workers need to be 
aggregated on the server, servers with limited bandwidth re⁃
sources could become the bottleneck of transmission, which is 
also an inherent problem of the PS architecture[12]. In order to 
tackle this problem, a traditional solution[13] is to increase the 
number of servers and let multiple servers share the heavy 
communication load. Since the load distribution of each server 
usually follows the principle of fairness, this scheme has an 
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ideal effect on homogeneous networks. However, in networks 
with heterogeneous bandwidth resources, since the system is 
agnostic about networks, it is impossible to match the com⁃
munication load undertaken by each server with its communi⁃
cation capability. This leads to a consequence that the serv⁃
ers with low communication capacity slow down the commu⁃
nication time during the entire iteration process due to exces⁃
sive load.

To efficiently handle the problem, this paper proposes an 
adaptive load balancing scheme for network-aware-PS-based 
DML over heterogeneous networks. The scheme senses the 
throughput of each link in networks in real time through a de⁃
signed network awareness mechanism, reasonably evaluates 
the communication capability of each server based on this, 
and then selects appropriate servers to undertake the appropri⁃
ate model aggregation tasks according to their communication 
capabilities. Finally, each server is assigned with communica⁃
tion load that matches its communication capability. The main 
contributions of this paper are as follows:

• We achieve an effective estimation of the link throughput 
by the low-cost and high-precision statistics method of the 
data transmission time with a simple and ingenious design, so 
as to learn the global network state information;

• We conduct an in-depth theoretical analysis of fine-
grained data transmission and find a method to solve the opti⁃
mal granularity of data slices.

• We design a simple and effective aggregation node selec⁃
tion method and a specific data slice assignment method, 
which can achieve efficient slice assignment.
2 Related Work

Multiple servers are typically used to alleviate heavy traffic 
on a single server in the PS architecture. But the specific 
implementation of the traditional PS architecture is network 
unawareness (such as MXNet[14], TensorFlow[15], and Pe⁃
tuum[16]), making it impossible to distribute the communica⁃
tion load more reasonably according to the actual communica⁃
tion capabilities of each server. Therefore, it is generally as⁃
sumed that their communication capabilities are basically the 
same and are distributed according to the principle of fair⁃
ness[17]. This usually results in poor performance in heteroge⁃
neous networks.

The authors in Ref. [18] have proposed an elastic PS load 
distribution scheme, which mainly analyzes the performance 
of servers by calculating the transmission time of the param⁃
eters using the linear regression method, and finally distrib⁃
utes communication load accordingly. Considering that the 
load distribution is in a complex network environment, the pri⁃
mary problem is the awareness of the network state. However, 
the authors do not provide a statistical method of parameter 
transmission time to implement network awareness, which 
makes the engineering solution to this kind of problem practi⁃
cally impossible. In addition, this scheme fails to deeply con⁃

sider the optimal granularity of fine-grained transmission, and 
only uses empirical values, which cannot make the transmis⁃
sion reach the optimal state.
3 Proposed Approach

Based on the understanding of the related work about the 
PS load distribution of DML and the in-depth thinking of the 
problem, our approach is proposed as follows. First of all, the 
data are segmented according to the established slice granular⁃
ity. The system in real time senses the network state through 
the cleverly designed network awareness mechanism, then 
evaluates the network communication capabilities of each 
node accordingly, and selects a part of the nodes as aggrega⁃
tion nodes. Finally, the complete distribution of fine-grained 
data is realized according to the PS load distribution and slice 
assignment algorithms.
3.1 Slice Granularity

During the model aggregation for DML, the process of work⁃
ers sending data to the server to aggregate (PUSH) and the pro⁃
cess of workers receiving the aggregated data returned from 
the server (PULL) are usually carried out synchronously, as 
shown in Fig. 1. The system performs the PULL process of 
data Slice 1 after all workers have completed the PUSH pro⁃
cess of data Slice 1 (the time of data aggregation can be ig⁃
nored), and the PUSH process of data Slice 2 is performed syn⁃
chronously, thus overlapping PUSH and PULL. Theoretically, 
the smaller the data slice is, the better the overlapping of 
PUSH and PULL, ultimately making the aggregation quicker 
to complete. However, in practice, because there is a certain 
overhead in the data segmentation process, and there is also a 
certain additional network overhead in the transmission pro⁃
cess of data slices, the granularity of slicing cannot be infi⁃
nitely small.

Taking as many factors as possible into account, we analyze 
and solve this problem from a theoretical point of view. Con⁃
sidering the situation under a simple homogeneous network, in 
a complete data aggregation process under a single server, for 
a distributed system with a fixed data size M in every worker, 
the network bandwidth is W, and the number of nodes is N, 
where the slice granularity x that determines the times of the 

▲ Figure 1. Illustration of data transmission, where the green block is 
the additional synchronization delay, and the orange block is the trans⁃
mission time of each slice
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data is sent separately by m = M/x (the number of slices). In 
addition to the inherent transmission delay under the band⁃
width limit, there are other network delays of data transmis⁃
sion during each data transmission. Hence, we compensate for 
the latency factor β. However, our study finds that the segmen⁃
tation cost per slice is less than 1 ms, which can be ignored. 
We also find that β ∝ 1

W，thus let β = 1
W α. In addition, con⁃

sidering that the start time of the transmission of each node in 
practice is difficult to synchronize absolutely, there is an addi⁃
tional synchronization delay Δt in the total data transmission 
time. Eq. (1) shows the relationship between granularity x and 
the total time of data synchronization T.

T = ( x
W/N + α

W )∙( M
x + 1) + ∆t, (1)

where ∆t denotes the delay of synchronization. We can expand 
the above equation to obtain:

T = NM
W + N

W x + Mα
W ∙ 1

x + α
W + ∆t. (2)

We simplify the above equation to the y = x + a
x  form and 

have:
W
N T = x + Mα

N ∙ 1
x + M + α

N + W
N ∆t. (3)

It can be found that when the left part of the equation takes 
the minimum value, the value of x is:

x = Mα
N . (4)

When M and N are determined, α = 1.2 × 105 can be ob⁃
tained through actual testing. Obviously, at this point, the 
value x is only related to the data size M and the number of 
nodes N. It illustrates that during the distributed training of 
machine learning, when the training scale and the number of 
model parameters are determined, the value x is determined.

In a heterogeneous network, system performance is limited 
by the node with the smallest communication bandwidth (bottle⁃
neck node). If the bottleneck node is related to the server, W is 
calculated according to the bandwidth of the parameter server. 
If the bottleneck node is a worker, W can get the maximum 
value of T according to the bandwidth of the worker. However, 
in any case, the results are not related to W, so Eq. (4) is still of 
reference value for heterogeneous networks.
3.2 Network Awareness

In this scheme, the network state information that needs to 
be measured is only link throughput (available bandwidth). 
To avoid the large injection of probe traffic in the conven⁃

tional network measurement technology[19–20] to occupy 
scarce network bandwidth resources, this scheme directly 
takes the model parameter data as the probe traffic. The 
granularity size_probe and the number probe_num of probe 
packets should be the minimum values that help the scheme 
to achieve an accurate measurement (the training iteration 
time remains stable in a stable heterogeneous network within 
a certain period of time), and they need to be determined in 
specific engineering implementation. Probe packets are seg⁃
mented by each worker using the probability partition_rate to 
select the probe granularity size_probe to segment local data. 
In Eq. (5), where the coefficient γ is fixed at 0.6 in the ex⁃
periment, the value of the probability partition_rate is neces⁃
sary to ensure that the number of probe packets sent by the 
worker to each server is not less than probe_num, so as to re⁃
alize the complete measurement of links between the worker 
and all servers.

partition_rate = 2N
w/n  γ . (5)

From the perspective of measurement implementation, the 
measurement of link throughput only needs to know the data 
size of the probe packet and the completion time of the probe 
packet transmission. Since the probe packet receiving node 
(receiver) has received the probe packet, the data size of the 
probe packet is known, but its transmission completion time is 
not easy to know. To calculate the transmission completion 
time, the start time and end time of transmission have to be fig⁃
ured out. When the probe packet is submitted to the upper 
layer, the receiver only knows the time at which the applica⁃
tion layer received it, which is the end time of the probe 
packet transmission. But the receiver does not know the start 
time of the probe packet transmission. To obtain the start time 
of the probe packet transmission, the receiver can consider 
starting from the lower transport layer protocol and analyze the 
start time of the probe packet transmission in more detail, 
such as analyzing the Acknowledge Character (ACK) when the 
transmission is based on the Transmission Control Protocol 
(TCP). But in complex heterogeneous networks where different 
nodes may be deployed on different types of devices and use 
different network protocols, the scheme of obtaining the trans⁃
mission start time of the probe packet based on the analysis of 
the underlying communication protocol is obviously not suffi⁃
ciently pervasive.

In fact, without considering the underlying protocol analy⁃
sis, it is also possible to obtain the start time of probe packet 
transmission. Although the application layer of the receiver 
does not directly know the start time of the probe packet trans⁃
mission, the sending node (sender) knows. Therefore, it is only 
necessary to tell the receiver the start time of the probe packet 
transmission through the sender.
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sij = prob_size
tend - tstart . (6)

Specifically, before the probe packet needs to be sent, the 
sender i sends the forecast message to the receiver j. After 
receiving the forecast message, the receiver can assume that 
the end time of the forecast message transmission is the start 
time tstart of the following probe (packet) message transmis⁃
sion. Until the following probe message arrives, and the re⁃
ceiver obtains the end time of probe message transmission 
tend and the data size of probe messages size_probe. Finally, 
according to Eq. (6), the average rate sij of the probe mes⁃
sage transmission from node i to node j can be calculated. 
The process of link throughput measurement is shown in 
Fig. 2. We use sij as an estimate of the throughput of the link 
through which the probe message is transmitted, and then 
use the estimated throughput as a reference for the evalua⁃
tion of the communication capabilities of the node associ⁃
ated with the link. In this process, although additional traf⁃
fic (the forecast message) is also injected into the network, it 
is not probe traffic. It is just the signaling message which is 
responsible for state forecast, and the data size is very small. 
Thus, the overhead of transmission over the network is al⁃
most negligible.

From the overall perspective of the network awareness 
mechanism, the specific measurement of network awareness 
is distributed at each node. If the links are required for 
transmission, they all need to be measured. To further en⁃
hance the reliability and stability of the measurement, we 
not only use special probe messages but also take data mes⁃
sages as probe messages to measure networks. Although it 
leads to some overhead, considering that the final value of 
throughput between nodes is the average value of the 
throughput record, the design can further improve the mea⁃
surement effect. These measurements are obtained by the re⁃
ceiver, and then summarized to the central scheduling node 
(scheduler) which is responsible for the evaluation of the 
communication capacity of nodes and the distribution of 
communication load. When each node reports the link 
throughput information, the scheduler will update its re⁃

corded throughput value, evaluate capacity, and make deci⁃
sions under the new network state timely, so that the system 
has a strong adaptive ability.
3.3 Load Distribution

Load distribution is decided by a scheduler, which mainly 
involves the distribution of communication load on each 
server and the assignment of data slices. For the distribution 
of communication load, system deployment needs to be consid⁃
ered first. As bandwidth resources are scarce in heterogeneous 
networks, more physical nodes are needed in networks and the 
utilization of link bandwidth between nodes will be lowered if 
servers and workers are placed separately. To avoid these 
problems, we attach a server to each worker to get higher net⁃
work resource utilization. In such a deployment, each node not 
only receives and distributes aggregated data as a server but 
also sends and receives aggregated data as a worker. It is im⁃
portant to note that in such a deployment, the node acting as a 
worker does not need to actually send the communication load 
to itself acting as a server. As all nodes as servers need to bear 
the corresponding proportion of the communication load, and 
the part of the load undertaken by themselves does not need to 
be actually sent, it is equivalent to reducing the data transmis⁃
sion of a worker.

Specifically, when the number of nodes is N, the local data 
size of each node is M, and the communication load of server 
i (i ∈ V ) is assumed to be mi, the communication load Li of 
node i is:

Li = M - mi + (N - 1)mi. (7)
Considering that the throughput information received by the 

scheduler is presented as sij from node i to node j, the actual 
throughput Si of node i can be calculated by Eq. (8):

Si = ∑j ∈ V\i sij. (8)
Based on this, we can calculate the transmission time ti for 

node i to complete communication load Li under throughput Si by Eq. (9):
ti = Li

Si
= M + ( )N - 2 mi

Si . (9)
In the model aggregation stage, the data trans⁃

mission of each node is carried out simultane⁃
ously, so the total transmission completion time 
in the training iteration is the maximum of the 
transmission completion time of each node 
max i ∈ V ti. The purpose of reasonable communica⁃
tion load distribution is to minimize max i ∈ V ti. In 
other words, the current problem model can be 
determined as: ▲Figure 2. Link throughput measurement
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min max i ∈ V
M + ( )N - 2 mi

Si

s.t.  M = ∑i ∈ V
mi. (10)

In Eq. (10), M, N and Si are constants, and only mi  is vari⁃
able. The objective function requires to minimize the maxi⁃
mum value of ti . Under the strong constraint that the sum of 
all mi is fixed, considering that adjusting the load of one node 
will inevitably affect the load of other nodes, it is intuitively 
difficult to determine the optimal value of mi. However, we 
can write Eq. (10) as:

ti = M
Si

+ N - 2
Si

mi. (11)
Eq. (11) is the linear function of ti on mi. For the training 

system with V = {1,2,3 }, we draw the function curve of ti on mi of each node as shown in Fig. 3.
The problem of Eq. (10) can be approximately transformed 

to determine a point (mi,ti ) on each line li in Fig. 3, and to 
minimize the maximum value in ti on the premise that the 
sum of the abscissa of these points mi is a constant value M. 
If the position of (mi,ti ) is initialized randomly for each line 
and then moved gradually to minimize max i ∈ V ti, the mini⁃
mum value of max i ∈ V ti can be achieved if and only if all 
points are on the same horizontal line lh. Otherwise, there 
must be a line lh', above and below which there are at least 
one point respectively. Thus, we can still get all the points 
closer to each other by moving the point above lh' down its 
line and moving the point below lh' up its line, until they are 
on the same horizontal line.

We distribute the communication load of each node accord⁃
ing to the principle of equalitarianism in advance. Positions of 
(mi,ti ) are initialized at the intersections of line lv = M

N  and 
each line li. Then each point (mi,ti ) is moved by means of it⁃
erative forced equalization of max i ∈ V ti and min i ∈ V ti. Specifi⁃
cally, in a moving iteration, it is assumed that i = max , when 
tmax =   max i ∈ V ti, and i = min, when tmin =   min i ∈ V ti. When 

tmax = tmin, the x-coordinates m'max and m'min of the moved points 
(mmax,tmax ) and (mmin,tmin ) have the relationship as shown in 
Eqs. (12) and (13).

M + ( )N - 2 m'max
Smax

= M + ( )N - 2 m'min
Smin . (12)

m'max + m'min = mmax + mmin. (13)
Therefore,

m'max = mmax + mmin - m'min

x'min = ( )N - 2 ( )mmax + mmin Smin - M ( )Smax - Smin
( )N - 2 ( )Smin - Smax . (14)

Now, (mmax, tmax ) and (mmin, tmin ) move to the same ordinate 
position and the next iteration can be started until  max i ∈ V yi =
min i ∈ V yi. Algorithm 1 shows the detailed steps of the process.
Algorithm 1: Load distribution
Input: The local data size of each node M, the number of 
nodes N, the throughput Si of node i，and the similarity thresh⁃
old similarity_threshold of ti, where i ϵ V.
Output: The load distribution mi of node i.
1) Initialization: mi = M

N , tmax = -∞, tmin = ∞
2) for i in V do

3) t = M + ( )N - 2 mi

Si4) if tmax < t do
5) tmax = t
6) nodemax = i
7) if tmin > t do
8) tmin = t
9) nodemin = i
10) while tmax - tmin ≥ similarity_threshold do
11) msum = mnodemax + mnodemin

12) mnodemin = ( )N - 2 ( )mmax + mmin Smin - M ( )Smax - Smin
( )N - 2 ( )Smin - Smax

13) mnodemax = msum - mnodemin14) tmax = -∞, tmin = ∞
15) for i in V do

16) t = M + ( )N - 2 mi

Si17) if tmax < t do
18) tmax = t
19) nodemax = i
20) if tmin > t do
21) tmin = t
22) nodemin = i

The first line of Algorithm 1 distributes the communication ▲Figure 3. Geometrization of the load distribution problem
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load of each node according to the principle of fairness in ad⁃
vance. Lines 2 – 9 determine the maximum and minimum 
transmission time of the nodes in the current communication 
load distribution, as well as the corresponding node. At Line 
10, we judge whether the moving iteration needs to be 
stopped. In order to reduce the number of iterations, we define 
the difference between the maximum and minimum values of 
node transmission time as approximately equal if the differ⁃
ence is no more than similarity_threshold (the experience 
value is 1 s in our experiment). Lines 11–13 adjust the com⁃
munication load of the nodes with the maximum and minimum 
transmission time. Lines 14–22 determine the maximum and 
minimum values of the transmission time of nodes after adjust⁃
ing the communication load distribution, which is used for 
judgment in Line 10. Based on the above process, Algorithm 1 
has a Θ ( )N + N

2 × N = Θ(N 2 ) time complexity when ti has a 
uniform initial distribution on the timeline and 
similarity_threshold isn’t too small.

In the specific process of slice assignment, data are trans⁃
mitted as the slice, just like the basic granularity, thus the fi⁃
nal work of load distribution is the assignment of data slices. 
Algorithm 2 shows the data slice assignment.
Algorithm 2: Slice assignment
Input: The load distribution mi of node i, the data size paras j of slice j, the number of slices num_slice, the granularity of 
probe slice size_probe, and the number of probe slices that 
each node sends to other nodes, where i ∈ V, 
j ∈ (0, num_slice).
Output: The assignment result assign j of slice j, where 
j ∈ (0, num_slice).
1) Initialization: Initialize index variables index = 0.
2) for i in V
3) for h in (0, num_probe) do
4) while index < num_slice and parasindex ≠ size_probe do
5) index = index + 1
6) if index > index_end do
7) break
8) assignindex = i
9) mi = mi - parasindex10) index = index + 1
11) for index in (0, num_slice) do
12) if assignindex == NULL do
13) max_m = -∞
14) receiver = 0
15) for i in V do
16) if max_m < mi - parasindex do
17) max_m = mi - parasindex18) receiver = i
19) assignindex = receiver
20) m receiver = max_m

At Lines 2 – 10 in Algorithm 2, the number of probe 
slices that the servers are distributed with is defined as 
num_probe, which is generated by segmentation probability 
partition_rate during data segmentation, mainly to maintain 
the awareness of the network state of idle nodes that are not 
distributed any slices. Lines 11–20 are used to achieve the 
assignment of the remaining slices. Specifically, for each 
slice, we traverse all current aggregation nodes and select 
the node with the largest remaining load as the receiving 
node of this slice. In this way, the receiving node with the 
best network state can be arranged for each slice as much as 
possible, and the excess load that the node needs to bear 
when the slice granularity is larger than the remaining load 
of nodes can be reduced as much as possible. Based on the 
above process, Algorithm 2 has a Ο (min (N ×
num_probe, num_slice) + N × num_slice) time complexity, 
which shows the execution time of the algorithm is mainly re⁃
lated to the number of nodes and data slices.

The scheme provides a standard execution process in order 
to make the system adaptive. In each iteration, specifically, at 
the beginning of the communication process, each node first 
reports to the scheduler the link throughput information mea⁃
sured in the communication process of the previous iteration, 
then waits for the scheduler to make the latest distribution 
strategy according to the link throughput information, and 
sends it to each node. After receiving the latest strategy infor⁃
mation, each node updates its local strategy, transmits data ac⁃
cording to the new strategy, and records the link throughput in⁃
formation measured during transmission. Based on such an in⁃
teractive process, the training system can realize adaptability 
almost in real time.
4 Experiment

4.1 Environment and Deployment
We simulate a 12-node cluster with Intel(R) Xeon(R) E5-

2678 v3 CPUs and NVIDIA 2080TI GPUs and use MXNet as 
a DML training platform. We have implemented our scheme 
by modifying the source code of MXNet and deployed the 
server and the worker in a 1:1 ratio, which means placing one 
server and one worker on each physical node in the cluster. 
The bandwidth limit between nodes is below the typical Wide 
Area Network (WAN) bandwidth of 220 M/bits with a TC⁃
Tool[21]. The specific value of bandwidth is randomly deter⁃
mined and randomly adjusted periodically (300 s) to simulate 
the dynamic heterogeneous network environment. In addition, 
the hyperparameter configuration of the training system is 
shown in Table 1.
4.2 Experiment Design

We set up two related schemes to compare with our 
scheme (Aware). One scheme is Average[17], which is based 
on the equal distribution principle and network agnosticism, 
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and the other is the elastic parameter distribution scheme 
named Elastic[18]. Since the network awareness mechanism of 
Elastic is unknown, we directly test Elastic based on our net⁃
work awareness mechanism in experiments. For these three 
schemes, we test their performance on AleNet (228 MB), 
ResNet50 (93 MB), and MobileNet (21 MB) models respectively.
4.3 Performance Metrics

In our experiments, we use the training speed, namely the 
number of images per minute trained by the system, as the 
main performance evaluation metric. The higher the speed, 
the better the performance of the scheme. Eq. (16) shows the 
definition of speed, where num_iters is the number of itera⁃
tions in t_iters time.

speed = num_iters*MiniBatch*N
t_iters . (16)

In addition, single-round iteration time (SRIT) and average 
single-round iteration time (ASRIT) are used in the verifica⁃
tions of network awareness validity, verifications of segmenta⁃
tion granularity rationality, and cost analysis. SRIT is the time 
to complete a model training iteration, which is directly mea⁃
sured in tests. The shorter SRIT is, the better performance the 
scheme has.
5 Results and Analysis

5.1 Training Speed
Fig. 4 shows the training speed of the compared schemes in 

different models. As we can see that network-aware Elastic 

and Aware schemes significantly improves performance: 1.14 
times and 2.68 times for MobileNet, 1.56 times and 1.76 times 
for ResNet50, and 1.23 times and 1.32 times for AlexNet, 
compared with the Average scheme which is agnostic to net⁃
work states. This shows that the PS adaptive load balancing is 
feasible and effective based on the network awareness. Com⁃
pared with Elastic, Aware has achieved better performance im⁃
provement, 2.34 times for MobileNet, 1.13x for ResNet50, and 
1.08 times for Alexnet, especially on the MobileNet model, 
which achieved over 2 times acceleration. This suggests that 
the load distribution strategy of Aware is indeed better than 
that of Elastic.

In addition, by comparing the speed gain on different mod⁃
els, it can be found that the gain achieved by Aware is more 
obvious on the smaller model (MobileNet). This is because the 
network load of the small model is small, the iteration time of 
model training is short, and the optimization effect of Aware is 
more significant in the same experimental network, which is fi⁃
nally shown as a significant increase in the training speed. On 
the larger model (AlexNet), Aware has almost no gain com⁃
pared with Elastic. The reason is that there is no obvious room 
for optimization of the data aggregation process in the experi⁃
ment network with limited bandwidth under the excessively 
large communication load.
5.2 Effectiveness Verification of Network Awareness

Fig. 5 shows the changes of SRIT of Aware and Average 
schemes with iteration rounds in the same dynamic network. 
The system parameters num_probe and size_probe are set to 
the best values of 2 and 10 000, respectively, which are deter⁃
mined by actual tests in the experiment. Due to space limita⁃
tion of the paper, the details are omitted. In the figure, the 
curve of Average which is agnostic about the network is above 
the curve of Aware, which indicates that the optimization ef⁃
fect of Aware scheme is significant and lasting. Additionally, 
the curve of Aware exhibits periodic shock wave characteris⁃
tics, which can be attributed to its poor performance in re⁃
sponse to abrupt changes in network states at the crest and the 
end of the strategy. However, with the release of a new round 

▲ Figure 5. SRIT comparison of Aware and Average schemes in dy⁃
namic networks▲Figure 4. Training speed of different schemes on different models

▼Table 1. Key hyperparameters
Parameter
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Learning rate
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32
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0.001
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of strategy based on the latest network state, the performance 
of Aware improves rapidly. That also verifies the effectiveness 
and reliability of the network awareness mechanism of our 
scheme.
5.3 Reasonableness Verification of Segmentation Granu⁃

larity
In order to verify the rationality of the theoretical analysis 

conclusion of slice granularity, we take the Resnet50 model as 
an example to test the change of ASRIT with the slice granu⁃
larity under multiple network states. As shown in Fig. 6, in dif⁃
ferent network states, ASRIT remains almost unchanged 
within the logarithmic range of 5 – 5.5 (quantity of 105 –
3.16 × 105 parameters) of the slice granularity, while our theo⁃
retical value of 5.38 is exactly within this range. This indi⁃
cates that our theoretical value of slice granularity can indeed 
achieve almost the lowest ASRIT in different network states.
5.4 Overhead Analysis

The overhead of the Aware scheme is likely to be concen⁃
trated in frequent forecast messages and synchronization of 
strategy requests with each round. As for the former, there 
should be no significant overhead because the preview mes⁃
sage only contains extremely short header fields with a fixed 
length. As for the latter, because the experiments are based on 
the synchronous training mode and the synchronization of 
each round has already existed, there should be no obvious 
overhead. In order to verify this analysis, in a stable (static 
and isomorphic) network environment, we have tested ASRIT 
of the Average scheme under four conditions: requiring probe 
and strategy request synchronization (Probe + Request), only 
requiring probe (Probe), only requiring strategy request syn⁃
chronization (Request) and neither requiring probe nor strat⁃
egy request synchronization (Original). The ASRIT over doz⁃
ens of iterations is shown in Fig. 7. Adding probe or strategy 
request synchronization does incur some overhead, but even 
with Probe + Request having the largest overhead, only 0.44 s 
(2.12%) overhead is added to Original, which is negligible 
compared with the huge gain shown in Fig. 5.

6 Conclusions
In this paper, we study the problem of PS load distribution 

in DML in heterogeneous networks. The state-of-the-art 
schemes cannot match the communication load with the com⁃
munication capacity of PSs to achieve load balancing due to 
the lack of network awareness. The existing schemes with net⁃
work awareness have not given specific network measurement 
methods, which makes them difficult to be realized in prac⁃
tice. This paper proposes a well-designed network awareness 
mechanism, which can realize low cost and high precision net⁃
work measurement. In addition, the slice granularity determi⁃
nation and slice assignment of fine-grained transmission is 
studied. We have implemented the scheme in MXNet, and 
completed the function verification and performance measure⁃
ment based on the experiment cluster. The results show that 
the proposed scheme can significantly accelerate DML.
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