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Abstract: Video conferencing systems face the dilemma between smooth streaming and decent visual quality because traditional video com⁃
pression algorithms fail to produce bitstreams low enough for bandwidth-constrained networks. An ultra-lightweight face-animation-based 
method that enables better video conferencing experience is proposed in this paper. The proposed method compresses high-quality upper-
body videos with ultra-low bitrates and runs efficiently on mobile devices without high-end graphics processing units (GPU). Moreover, a vi⁃
sual quality evaluation algorithm is used to avoid image degradation caused by extreme face poses and/or expressions, and a full resolution im⁃
age composition algorithm to reduce unnaturalness, which guarantees the user experience. Experiments show that the proposed method is effi⁃
cient and can generate high-quality videos at ultra-low bitrates.
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1 Introduction

During the COVID-19 Pandemic, video conferencing 
systems have become indispensable tools for individu⁃
als to keep in touch with friends and for enterprises 
and organizations to connect with customers. Inside 

these systems, video compression technologies play critical 
roles in the efficient representation and transportation of video 
data. Great progress has been achieved in past years in repre⁃
senting high-fidelity videos with low bitrates; e. g., the high-
efficiency video coding (HEVC) [1] was designed with the goal 
of allowing video content to have a data compression ratio up 
to 1 000:1. However, video conferencing systems still face the 
dilemma between smooth streaming and decent visual quality 
because current video compression technologies fail to pro⁃
duce bitstreams low enough for bandwidth-constrained net⁃
works due to a large number of concurrent users.

Recently, some novel talking-head video compression meth⁃
ods[2–5] based on face animation have been proposed, which 
can significantly cut down the bandwidth usage of video con⁃
ferences. These face animation methods usually consist of two 
parts: encoder and decoder. The encoder is a motion extractor 
to derive a compact motion feature representation from the 
driving video frame, and the decoder is an image generator to 
synthesize photorealistic images according to the motion fea⁃
ture. Due to its extreme compactness, the extracted face fea⁃
ture can be used to reduce the bandwidth of video conferences 

and hence improve user experience in bandwidth-constrained 
networks. However, most of the talking-head video compres⁃
sion methods are too complicated to run in real time without 
the support of high-end graphics processing units (GPUs), let 
alone on mobile devices. For example, the model size of the 
First Order Motion Model (FOMM)[6] is 355 MB and the com⁃
putation complexity is 121 G multiply-accumulate operations 
(MACs). Aiming at practical applications, we propose an ultra-
lightweight motion extractor to obtain effective motion repre⁃
sentations from the driving video and an animation generator 
to synthesize high-quality face videos accordingly.

We find out that the face animation method may sometimes 
fail, which is usually caused by extreme head poses and/or fa⁃
cial expressions. To tackle the problem, we propose an effi⁃
cient visual quality evaluation method to reject the synthe⁃
sized images that are visually unacceptable. We also notice 
that only displaying face without context regions looks unnatu⁃
ral and weird to users. To cope with it, we composite full-
resolution images by stitching face regions with other body 
parts and backgrounds. These two mechanisms effectively pre⁃
vent user experience degradation during a conference.

Our main contributions are as follows:
• An ultra-lightweight motion extraction algorithm is pro⁃

posed to derive effective facial motion features from driving 
videos, which is efficient enough to run on mobile devices 
without high-end GPUs.
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• An efficient visual quality evaluation algorithm is pro⁃
posed to select visually acceptable generated images and an 
image composition algorithm to generate full-resolution vid⁃
eos, which ensures consistent and natural user experience dur⁃
ing conferences.

• A practical video conferencing system is built to integrate 
the best parts of face-animation-based methods and traditional 
video-compression-based methods, which significantly re⁃
duces uplink bandwidth usage and ensures decent user experi⁃
ence even when the network bandwidth is constrained.
2 Related Work

Due to the space limitation, we only review previous works 
about face animation and deep video compression that are 
most related to ours.
2.1 Face Animation

Face animation is an image-to-image translation task, 
which transfers the talking-head motion of a person in an im⁃
age to persons in other images. The former image is called the 
driving image, while the latter image is called the source im⁃
age. Face animation has become a popular topic since the 
generative adversarial network (GAN) [7] was proposed by 
GOODFELLOW et al. Most recently published face animation 
methods can synthesize photo-realistic images with the help 
of GANs.

Some works[8–12] were proposed to solve the face animation 
task with the prior knowledge of the 3D Morphable Model 
(3DMM) [13]. However, the traditional 3D-based works[8–10] 
failed to render details of talking heads, such as hair, teeth 
and accessories. Ref. [11] allowed fine-scale manipulation of 
any facial input image into a new expression while preserving 
its identity with the help of a conditional GAN. To improve 
the realism of the rendering, Ref. [12] designed a novel space-
time GAN to predict photorealistic video frames from the 
modified 3DMM directly.

Contrary to 3D-based models, 2D-based models synthesize 
talking heads directly without any prior knowledge of 3DMM. 
They can be classified into warping-based models and 
warping-free models.

Warping-free models[14–19] directly synthesize images with⁃
out any warping. Few-shot vid2vid[16] learned to transform 
landmark positions into realistically looking personalized pho⁃
tographs with the help of meta-learning. Ref. [19] decomposed 
a person’s appearance into a pose-dependent coarse image 
and a pose-independent texture image. LI-Net[20] decoupled 
the face landmark image into pose and expression features 
and reenacted those attributes separately to generate identity-
preserving faces with accurate expressions and poses.

Warping-based methods[21–25] predicted dense motion fields 
to warp the feature maps extracted from the source images and 
inpaint the warped feature maps to generate photorealistic im⁃
ages. X2Face[22] used an encoder-decoder architecture to learn 

the latent embedding to encode pose and expression and re⁃
cover the dense motion fields from it. Many works attempted 
to predict the dense motion field from sparse object keypoints. 
The key to those methods is how to represent motions with 
sparse object keypoints. Monkey-Net[23] was proposed to learn 
pure keypoints to describe motions in an unsupervised man⁃
ner. Although it cannot describe subtle motions, Monkey-Net 
provided a strong baseline for further improvements. FOMM[6] 
represented sparse motion with some keypoints along with lo⁃
cal affine transformations. Motion representations for articu⁃
lated animation (MRAA)[24] defined the motion with regions us⁃
ing the motion estimation based on principal component analy⁃
sis (PCA), rather than keypoints, to describe locations, shapes 
and pose. The thin-plate spline (TPS) motion model[25] esti⁃
mated thin-plate spline motion to produce a more flexible opti⁃
cal flow. Ref. [5] extended the baseline to 3D optical flows to 
produce 3D deformations. The above mentioned methods ex⁃
tracted compact motion representations, which showed great 
potential in lowering the bitrate of video conferencing.
2.2 Deep Learning-Based Video Compression

For decades, researchers have made great efforts to transmit 
higher quality videos with lower bitrates. Recently several ap⁃
proaches based on deep learning were explored.

For general-purpose video compression, some works[26–27] at⁃
tempted to reduce the bandwidth by making a balance between 
the cost of transferring the region of interest (ROI) and back⁃
ground. Compared to traditional codecs, such methods can 
achieve better visual quality with the same bitrate. Other 
works[28–29] focused on enhancing the visual quality of low bi⁃
trate videos by image super-resolution and image enhancement.

For the compression of talking-head videos, great progress 
has been achieved. In Ref. [30], the encoder detected and 
transmitted keypoints representing the body pose and the face 
mesh information, and the receiver displayed the motion in 
the form of puppets. However, this method failed to produce 
photorealistic images. Inspired by the promising results 
achieved by face animation models, many works demonstrated 
the effectiveness of video compression based on face anima⁃
tion. VSBNet[3] reconstructed original frames from face land⁃
marks with a low bitrate of around 1 kB/s. Ref. [5] proposed a 
neural talking-head video synthesis model and set up a video 
conferencing system that achieves the same visual quality as 
the commercial H. 264 standard with only one-tenth of the 
bandwidth. Ref. [2] introduced an adaptive intra-refresh 
scheme to address the problem of reconstruction quality that 
might rapidly degrade due to the loss of temporal correlation 
as frames get farther away from the initial one. Ref. [4] evalu⁃
ated the advantages and disadvantages of several deep genera⁃
tive adversarial approaches and designed a mobile-compatible 
architecture that can run at 19 f/s on iPhone 8. However, those 
methods can hardly run in real time without the support of 
high-end GPUs. What’s more, they could only generate near-
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frontal faces, looking unnatural and weird when faces were not 
near-frontal. In this paper, we specifically focus on improving 
the efficiency and visual quality of video compression based 
on face animation.
3 Proposed Ultra-Lightweight Face Anima⁃

tion Method

3.1 Overview
The overall pipeline of our video conference system is 

shown in Fig. 1. Each user provides an avatar image to the sys⁃
tem and uses its animation during a conference for ensuring 
privacy and elegant presence. When the system starts run⁃
ning, videos of users are captured and the face region in each 
video frame is cropped out by the face detection algorithm. 
Face images are then encoded by the keypoint detector and 
represented as the keypoints described in Section 3.2. Before 
the encoded data are sent out, the visual quality of the face im⁃
age that will be reconstructed by a decoder according to these 
keypoints is evaluated to prevent unnatural results. It is high⁃
lighted here that the visual quality evaluation method in Sec⁃
tion 3.3 requires no actual reconstruction of the face image 
but executes on encoded data, for the sake of efficiency.

Upon receiving the encoded keypoint data from the sender, 
the conference server calls the image generator to synthesize 
the face image animated from the keypoints, as described in 
Section 3.2. The decoded face image replaces the face region 
in the avatar image by our method in Section 3.4 to create a 
full-resolution video frame, which is then encoded by H. 264 

or HEVC and sent to the receiver. The receiver simply de⁃
codes the video stream and displays it on the screen, which 
can usually take advantage of the hardware accelerator in the 
device’s chip.

With the prevalence of mobile phones, the demand for run⁃
ning video conferencing on mobile devices is growing. In most 
commercial video conference systems, mobile devices account 
for a significant portion of all terminals. For better compatibil⁃
ity with existing commercial video conference systems, our 
system and algorithms here are intentionally designed to 
make the sender/receiver module deployable on mobile de⁃
vices and to keep their computational burdens to a minimum, 
thus reducing power consumption and extending the working 
time of mobile devices.
3.2 Model Distillation

Giving a source image S of the target person, a driving 
video can be denoted as {D1, D2, D3, …, DN}, where Di is the 
i‑th frame in the sequence and N is the total number of frames 
in the video. The output images can be denoted as {O1, O2, 
O3, …, ON}, where Oi is the i‑th frame of the output sequence. 
The output Oi shares the same identity with S and the same 
face motions with Di. We adopt the face animation model simi⁃
lar to FOMM, which consists of a keypoint detector K (en⁃
coder) and a generator G (decoder). First, face landmarks are 
estimated from S and Di separately by K, whose locations 
serve as the sparse motion information. Second, dense motion 
fields and occlusion maps are predicted by G. Finally, G 
warps the feature map extracted from S with the dense motion 
fields and the warped feature map is masked by the occlusion 

maps to generate the output image 
Oi. Following the idea of FOMM, 
we extract 10 keypoints and their 
corresponding Jacobian matrices 
from the face image.

We design our model to be light⁃
weight and can generate an image 
with excellent visual quality. For 
the decoder, we adopt the same ar⁃
chitecture as the generator model 
in FOMM but cut down the chan⁃
nels of the model by half. We de⁃
note the simplified generator as 
Gsim. For the encoder, we replace 
the hourglass network in FOMM, 
which brings about high computa⁃
tional cost, with a greatly simpli⁃
fied version of MobileNetV2[31]. 
However, it is very difficult to train 
the proposed model from scratch 
since the training process often 
fails to converge. We come up with 
a training strategy described as fol⁃

▲ Figure 1. Proposed video conference system consists of three parts: the sender on mobile devices, 
video generator on servers, and receiver on mobile devices. In the encoder part, the motion encoder ex⁃
tracts keypoints from the driving images. The feature-based image quality evaluation filters out unnatu⁃
ral images. The decoder synthesizes images from the keypoints and reconstructs full-resolution images, 
which are encoded by H.264 or H.265 and sent to the receiver. The receiver decodes the video stream 
and shows it on the phone screen

Captured video frame
Sender on 

mobile devices

Driving face image Keypoints

Motion encoder Visual quality evaluation

Decoding with H.264/265 Encoding with H.264/265

Source avatar image
Source face image

Decoded face image

Full-resolution imageReceiver on 
mobile devices

Video generator 
on server

Motion decoder
Full-resolution im⁃age generation
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lows to solve the problem.
1) Step 1: model distillation. We use the original encoder 

Kfomm in FOMM as the teacher model and our proposed en⁃
coder Kpro as the student model. The loss function consists of 
distillation loss Ldis and equivariance loss Leq, which can be 
written as Eq. (1).

L1 = Ldis + Leq = | Kpro ( I ) - K fomm ( I ) | +
| Kpro (T ( I ) ) - T (Kpro ( I ) ) | , (1)

where I is the training sample and T is a thin plane spline de⁃
formation. The distillation loss ensures that the student en⁃
coder extracts the same motion representation as the teacher 
encoder. And the equivariance loss ensures the consistency of 
the motion representation when random geometric transforma⁃
tions are applied to the images.

2) Step 2: iterative model pruning and distillation. Since 
the encoder has to extract motion representation from every 
video frame, it should be as lightweight as possible to reduce 
computational costs. In our attempt to further simplify the en⁃
coder, we find out most of the complexity comes from the last 
several convolutional layers. Therefore, we drop the last con⁃
volutional layer in the encoder model and retrain it following 
Step 1. This step can be repeated several times until we ob⁃
tain Kbest that strikes a balance between the model complexity 
and accuracy.

3) Step 3: generator fine-tuning. Due to the simplification 
made to the generator, we train the simplified generator Gsim 
along with the keypoint detector Kfomm of the original FOMM to 
make a good initialization of Gsim.

4) Step 4: overall fine-tuning. Once the encoder models Kbest and Gsim are determined, we fine-tune Kbest and Gsim accord⁃
ingly in an unsupervised manner. Finally, Kbest and Gsim act as 
the encoder and the decoder in our system respectively.
3.3 Visual Quality Evaluation

Although video conferences based on face animation can re⁃
sult in a very high video compression rate, the visual quality 
of a reconstructed image may sometimes degrade in the follow⁃
ing two cases (Fig. 2). First, due to current algorithmic limita⁃
tions, most of the face animation models may generate inaccu⁃
rate expressions and visual artifacts on faces with large poses 
and/or extreme expressions. Second, with the increase of the 
frame distance, the temporal correlation weakens, and hence 
the quality of generated video deteriorates. This phenomenon 
becomes particularly obvious when faces are occluded. The 
degraded image brings inconsistent experience to users. In or⁃
der to alleviate the problem, Ref. [2] introduced an adaptive 
intra-refresh scheme using multiple source frames. Before 
sending the features to the decoder, the sender reconstructs 
the image first and evaluates the generated image to avoid de⁃
graded images. However, this scheme not only incurs large 

computational costs which makes it impossible to run it on mo⁃
bile devices, but also leads to significant time delay at the re⁃
ceiving end. What’s more, frequent scene switching also re⁃
quires the system’s frequent sending of source frames, mak⁃
ing the system lose its advantage of reducing video bandwidth.

We propose here an adaptive degraded frame filter method 
by an efficient image quality evaluation algorithm directly 
based on the extracted features. We find out that when a large 
head pose and/or extreme facial expression happens, most of 
the regions in the generated image are inpainted by the gen⁃
erator, which degrades the image quality. The difference be⁃
tween the driving image and the source image can be mea⁃
sured by analyzing the dense motion field, which is predicted 
from the sparse motion field in our setting. Therefore, instead 
of using the decoder to synthesize the generated image, we de⁃
cide to evaluate image quality based on the relative motion. 
The loss L2 in the algorithm can be formulated as follows.

L2 = α∑
i = 0

10
 v1i - v2i + β∑

i = 0

10
 J1i J

-12i , (2)
where v1i is the value of the i⁃th keypoint in the first frame, v2i is the value of the i⁃th keypoint in the second frame, J1i is the 
Jacobian of the i⁃th keypoint in the first frame, J2i is the Jaco⁃
bian of the i⁃th keypoint in the second frame, and hyperparam⁃
eters α and β control the weight of each part. In our experi⁃
ments, we set the hyperparameters to 2 and 1 respectively.

In the proposed scheme, the balance between image quality 
and robustness is controlled by a threshold τ. Although the 
identity of the people in the driving images and the source im⁃
age are the same, the two images may look different. For better 
visual quality, we adopt a relative motion transfer method, as 
described in Ref. [6]. We first find a driving image that has a 

▲ Figure 2. Examples of face animation failure. The first row shows a 
result caused by large-pose; the face area becomes blurred and there 
are some artifacts on the hair of the woman. The second row shows a de⁃
graded image caused by weak temporal correlation and the recon⁃
structed image looks terrible and weird

Source image Driving image Reconstructed image
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similar pose to the source image, which is called the initial im⁃
age DI. Then, we extract keypoints from the source image S 
and the initial image DI, which can be denoted as Ks and KI. The source keypoints are sent to the receiver. For every frame 
Dt, we estimate keypoints Kt from the frame, and compare the 
relative motion between Kt and Ks and that between KI and Ks. If the former is smaller, we set this driving keypoint as an ini⁃
tial image. Finally, we compare the relative motion between Kt and KI with the threshold τ. If the former is smaller, it means 
the relative motion is suitable for robust image generation. 
The relative motion is sent to the server. If the latter is 
smaller, the default motion is sent to avoid freezing in video 
streams. The default keypoints can be motions of some natural 
expressions, such as blinking and smiling. In this way, the de⁃
graded frames are replaced by frames of natural expressions. 
Compared to the method proposed in Ref. [2], our method can 
greatly reduce the computation cost at the sender and the de⁃
lay at the receiver.
3.4 Full-Resolution Image Composition

The face animation described above cannot be directly used 
in video conferences due to two facts. Face animation cannot 
synthesize face images with a size up to video resolution (at 
least 1 280×720) because computational complexity grows ex⁃
ponentially with the image size. Also, only displaying the fa⁃
cial region on the screen without other body parts such as the 
neck and shoulder looks unnatural and weird. In order to 
make our face animation method applicable, instead of gener⁃
ating full-resolution images, we propose to generate a facial re⁃
gion with a size of no more than 384×384 and stitch it with 
other body parts and background regions in the source frame 
to form a full-resolution image. The 
problem is that there will be a 
sharp blocky artifact between the 
head region and body region be⁃
cause the head region moves while 
the body region may remain station⁃
ary. We find that the keypoints 
spread over the talking-head area 
and each keypoint is responsible 
for the local transformation of its 
neighborhood. To reduce the arti⁃
fact, we fix the keypoints related to 
the shoulder part. As a result, the 
dense motion field predicted by the 
generator will stay stationary near 
the shoulder region and have a 
smooth transition from the head re⁃
gion to the shoulder region, which 
makes the composite image look 
more natural. We show the ex⁃
ample images in Fig. 3 for compari⁃
son.

4 Experiments

4.1 Implementation Details
1) Datasets. We train and evaluate our face animation 

model on the VoxCeleb dataset and an in-house dataset. Vox⁃
Celeb[32] is a dataset of interview videos of different celebri⁃
ties. We crop the videos and resize them to 256×256 for a 
fair comparison with the original FOMM and 384×384 for the 
generation of high-resolution images according to the bound⁃
ing boxes of faces. The in-house dataset consists of 4 124 
Chinese people videos collected from the Internet and is 
used to reduce bias towards Western people. We fine-tune 
our model on the in-house dataset to make better adaptations 
to Chinese.

2) Evaluation metrics. We evaluate the models using the L1 
error, average keypoint distance (AKD) and average Euclid⁃
ean distance (AED). The L1 error is the mean absolute differ⁃
ence between pixel values in the reconstructed images and the 
ground-truth images, which measures the reconstruction accu⁃
racy. AKD and AED stand for semantic consistency. AKD is 
the average distance between the face landmarks extracted 
from the ground-truth images and the reconstructed images re⁃
spectively by the face landmark detector[33], which measures 
the pose difference between the two images. AED measures 
identity preservation, which is the L2 distance of the corre⁃
sponding features extracted by a pre-trained re-identification 
network[34].

3) Hardware. In our video conference system, we implement 
a conferencing APP on a ZTE A30 Ultra mobile phone with 
Snapdragon 888 System on a Chip (SoC) and conferencing 
server software on a computer with Nvidia Tesla V100 GPU.

FOMM: First Order Motion Model
▲Figure 3. Qualitative comparisons with state-of-the-art methods. The first three rows are images from 
the VoxCeleb dataset and the following four rows are images from our in-house dataset. Our method 
produces competitive results

FOMM: First Order Motion Model

Source image

Driving image

FOMM

Ours
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4.2 Comparisons with FOMM
1) Efficiency of the proposed face animation algorithm
First, we compare our encoder, i.e., the face motion extrac⁃

tor, with that of the original FOMM. We convert the encoder to 
the mobile neural network (MNN) [35] model and calculate the 
model size. As listed in Table 1, our encoder model is only 
600 kB in size with theoretical computation complexity of 
14.62 M MAC, both of which are about 1% of FOMM. Our en⁃
coder processes every frame in 3.5 ms on Snapdragon 888, 
which is 16.3 times faster than FOMM.

Second, we compare our decoder, i.e., the generator to syn⁃
thesize a 384×384-resolution face image, also with FOMM. 
For the generator, we convert the model to TensorRT[36] model 
and calculate the model size. As listed in Table 1, our decoder 
model is 81.77 MB in size with theoretical computation com⁃
plexity of 31.42 G MAC, and these two values are 26.0% and 
27.3% of FOMM respectively. Our encoder runs in 5 ms on 
Tesla V100, which is 4 times faster than FOMM.

2) Effectiveness of the proposed face animation algorithm
We compare the visual quality of face images generated by 

our method with other face animation methods. For quantita⁃
tive comparison, we evaluate our model with existing studies 
on the VoxCeleb dataset for an image generation task. For a 
fair comparison, we generate images with the resolution of 
256×256. The first frame of each test video is set as the 
source image, while the subsequent frames are set as the 
driving images. Evaluation metrics are computed for every 
frame and our result is the mean value of all frames. The re⁃
sults are summarized in Table 2, which clearly shows the pro⁃
posed method outperforms X2Face and Monkey-Net. Com⁃
pared to FOMM, our method can generate competitive re⁃
sults, even though our model is much lighter than FOMM. 
For a qualitative comparison, we list some example images in 
Fig. 3 for visual comparisons.

4.3 Results of Full-Resolution Image Generation
The avatar images provided by a user are usually not face-

only, but with other upper body parts. When head regions in 
the avatar images are cropped and animated by our method, 
they should be stitched back into original images to form new 
images with predefined resolutions, e. g., 1 280×720. Special 
treatment should be given to the point where the head region 
and body region connect because these regions move non-
rigidly and disproportionately. As shown in the top two rows in 
Fig. 4, simply replacing the head region in an avatar image 
with a new animated head region will result in visual disconti⁃
nuities. As comparisons, the bottom two rows show results of 
the proposed method described in Section 3.4. Our method 
successfully eliminates discontinuities and makes whole im⁃
ages visually natural.
4.4 Ultra-Low Bitrate Video Conference

As described in Section 3.1, our video conference system is 
comprised of server software running on the cloud server and 
application software, with the sender module and receiver 
module, running on the mobile phone. The most important dif⁃
ference between our sender module and those inside other 
video conference systems is we encode captured videos into 
compact keypoint motion information, rather than traditional 
H.264 or HEVC streams, which greatly cuts down the uplink 
bandwidth usage. For example, when encoded in H.264, 720 p 
conference videos are typical of bitrates between 1 Mbit/s and 
2 Mbit/s. By comparison, each video frame is encoded by our 
sender module as 10 keypoint information, each of which in⁃
cludes a position (2 floating points) and a Jacobian matrix (4 
floating points). We empirically determine the half precision 
floating point format (FP16) is enough for data representation 
and thus reaches the bitrate of 6×16×10×30=28.8 kbit/s, 
which is only less than 3% of H. 264 encoding. We note the 

▼ Table 2. Visual quality comparison among different face animation 
methods on VoxCeleb dataset

X2Face[22]

Monkey-Net[23]

FOMM[6]

Ours

L1

0.078
0.049
0.041
0.043

AKD

7.69
1.89
1.27
1.37

AED

0.405
0.199
0.134
0.147

AED: average Euclidean distance 
AKD: average keypoint distance 

FOMM: First Order Motion Model

▼ Table 1. Efficiency comparison between our face animation method 
and FOMM

Model

Encoder

Decoder

FOMM
Ours

FOMM
Ours

MAC
1 280 M
14.62 M
120.70 G
31.42 G

Parameters/M
14.21
0.16

45.56
16.16

Model size/MB
55.54
0.60

299.10
81.77

Inference 
time/ms

57
3.5
20
5

FOMM: First Order Motion Model     MAC: multiply-accumulate operation

T=0
▲ Figure 4. Results of full-resolution image generation. The first row 
shows images generated by simply replacing the head region in the 
source image with the new animated head region. The third row shows 
image results by our method in Section 3.4. In the second and fourth 
rows, connections between head regions and body regions are zoomed 
in for clearer comparison

T=1 T=2 T=3 T=4
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keypoint information can be compressed by the entropy en⁃
coder for further bandwidth usage saving.

In our real-world user studies, reducing the uplink bitrate 
can greatly improve the conference user experience. For one 
thing, since wireless bandwidth is not evenly allocated for up⁃
link and downlink data transportation, a smaller uplink bitrate 
can result in less congestion and faster upward transmission. 
For another thing, more aggressive schemes can be applied 
when Forward error correction (FEC) is used to tackle data 
loss in transmission, leading to less data retransmission, 
which brings about lower remote interaction latency and more 
real-time engagement.

The server software in our system runs on a cloud server 
with Nvidia GPUs because the image generator in face anima⁃
tion is much more computationally expensive than the key⁃
point extractor, as demonstrated in Section 4.1. Although our 
simplified image generator can be deployed on some flagship 
mobile phones with powerful GPUs, we choose server-side de⁃
ployment to make our application software lightweight enough 
to run on most mobile phones and consume less power to ex⁃
tend working time, which is also critical to user experience.
5 Conclusions

In this paper, we propose a face-animation-based method to 
greatly reduce bandwidth usage in video conferences, com⁃
pressing face video frames by using only 60 FP16 data to rep⁃
resent the face motion. We design an ultra-lightweight face 
motion extraction algorithm that runs on mobile devices, as 
well as an efficient visual quality evaluation algorithm and a 
full-resolution image composition algorithm to ensure consis⁃
tent and natural user experience. We also build a practical 
system to enable user communication using animated avatars. 
Experimental results demonstrate the efficiency and effective⁃
ness of our methods and their superiority over previous stud⁃
ies. However, one limitation of our current work is that our 
method is only applicable to upper-body videos. A full-body 
animation method should be our next work to cover more real-
world scenarios. Another improvement to our system will be 
saving downlink bandwidth by reconstructing videos on mo⁃
bile devices, which requires further research in GAN accelera⁃
tion to meet real-time constraints on mobile devices.
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