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Abstract: Recently, various privacy-preserving schemes have been proposed to resolve privacy issues in federated learning (FL). However, 
most of them ignore the fact that anomalous users holding low-quality data may reduce the accuracy of trained models. Although some existing 
works manage to solve this problem, they either lack privacy protection for users’ sensitive information or introduce a two-cloud model that is 
difficult to find in reality. A reliable and privacy-preserving FL scheme named reliable and privacy-preserving federated learning (RPPFL) 
based on a single-cloud model is proposed. Specifically, inspired by the truth discovery technique, we design an approach to identify the 
user’s reliability and thereby decrease the impact of anomalous users. In addition, an additively homomorphic cryptosystem is utilized to pro⁃
vide comprehensive privacy preservation (user’s local gradient privacy and reliability privacy). We give rigorous theoretical analysis to show 
the security of RPPFL. Based on open datasets, we conduct extensive experiments to demonstrate that RPPEL compares favorably with exist⁃
ing works in terms of efficiency and accuracy.
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1 Introduction

With the popularity of big data techniques, machine 
learning has promoted wide applications in artifi⁃
cial intelligence fields, such as the smart IoT[1–2], 
smart industry[3–4], and autonomous driving[5–6]. 

Nowadays, due to the emergence of data protection regulations, 
like General Data Protection Regulation (GDPR)[7] and Califor⁃
nia Consumer Privacy Act (CCPA)[8], users pay increasing atten⁃
tion to data privacy. Data privacy significantly hinders training 
data collection, which limits the development of machine learn⁃
ing. Federated learning (FL), as a collaborative machine learn⁃
ing paradigm, is considered a promising solution to the chal⁃
lenges and has attracted tremendous attention from industry 
and academia. Specifically, a typical framework of FL consists 
of a server and some users (i.e., data owners). In FL, to preserve 
data privacy, users only share the trained local models’ param⁃

eters instead of sharing raw data.
In spite of the benefits, there are two challenges in design⁃

ing such an FL scheme. The first one is that the gradient at⁃
tack may lead to privacy leakage. Specifically, in the gradient 
attack, adversaries utilize user-shared model parameters to in⁃
fer sensitive information from training data. Thus far, some 
works[9–10] have been proposed to utilize the gradient leak at⁃
tack to compromise user privacy. For instance, ZHU et al. [10] 
introduced a gradient inversion attack scheme to reconstruct 
sensitive information from public shared gradients, where ad⁃
versaries launch attacks by iteratively optimizing the dummy 
inputs and the corresponding labels. Followed by Ref. [10], 
some gradient attack schemes have been proposed[11–12]. For 
instance, to enhance the performance of gradient inversion at⁃
tacks, ZHAO et al.[11] proposed a simple and effective gradient 
inversion attack. Their scheme improves the effectiveness of 
recovering label information by combining the mathematical 
analysis of the gradients. Subsequently, YIN et al.[12] extended 
the gradient inversion attack into FL applications that are 
more practical, e. g., high-resolution images with large batch-
size. If gradient attacks are not considered well in designing 
FL schemes, user privacy will incur serious threats. Therefore, 
users will be reluctant to participate in these applications, 
which significantly hinders the development of FL. The sec⁃
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ond challenge is that users with low-quality data decrease the 
performance of FL. In practical applications, the data quality of 
different users is usually uneven due to various reasons (e. g., 
device quality and education level) [13]. For example, users with 
high-quality devices usually own superior data, while users with 
low-quality devices have poorer data. If anomalous users are 
not identified in the training process, they will impair the perfor⁃
mance of FL and even lead to the unavailability of FL models. 
Thus, it is also crucial to identify anomalous users and reduce 
their negative influence on the FL training process.

In recent years, to deal with the gradient attacks and pre⁃
serve user privacy in FL, some solutions[14–16] have been pro⁃
posed. Particularly, based on their cryptographic tools, these 
schemes can be categorized into three classes, i. e., secure 
multi-party computation (SMC) based schemes, homomorphic 
encryption (HE) based schemes, and differential privacy (DP) 
based schemes. DP-based FL schemes address the privacy 
leakage issues by adding noise[14]. However, the introduction 
of noise unavoidably reduces the model accuracy, hindering 
the applications of FL. To preserve user privacy, some SMC-
based schemes[15] are proposed without compromising model 
accuracy. However, frequent user interaction introduces tre⁃
mendous resource overhead to users and the server. To make a 
trade-off among the model’s accuracy, user privacy, and re⁃
source overhead, some HE-based FL schemes are proposed[16].

Unfortunately, most existing privacy-preserving FL 
schemes ignore anomalous users. To address the challenge, 
several works[17–18] have been proposed to identify anomalous 
users and reduce their impacts. Specifically, ZHAO et al. [17] 
utilized the differential privacy technique and function mecha⁃
nism to enable privacy-preserving FL. In their scheme, the 
server is allowed to access each user’s data quality for identi⁃
fying anomalous users. However, in practice, the user’s data 
quality should be private. Once the data quality is disclosed to 
the server, it will lead to discrimination in the training pro⁃
cess, which significantly reduces the users’ enthusiasm to par⁃
ticipate in FL. To preserve data quality information when iden⁃
tifying anomalous users, XU et al. [18] designed a framework to 
support privacy-preserving FL by introducing a non-colluding 
two-cloud model. In their scheme, additively homomorphic 
cryptosystem and YAO’s garbled circuits are utilized to evalu⁃
ate user data quality without compromising user privacy. It is 
hard to find two non-colluding clouds in practice, thereby lim⁃
iting its implementation in real-world applications. Moreover, 
it also ignores the problem of user collusion. In FL, users may 
collude with each other to infer others’ sensitive information. 
Therefore, a privacy-preserving FL scheme with anomalous 
user identification and user collusion resistance deserves to 
be investigated.

To solve the challenges, we propose a reliable and privacy-
preserving FL (RPPFL) scheme based on the single-cloud 
model. The comparison results of RPPFL and other existing 
works are shown in Table 1. To identify anomalous users, 

RPPFL evaluates data quality without compromising user pri⁃
vacy. Particularly, we epitomize the contributions as follows:

• We first discover the challenges in designing a privacy-
preserving FL scheme that supports anomalous identification. 
Then, to resolve these challenges, we design a reliable and 
privacy-preserving FL scheme named RPPFL, which is also 
resilient to user collusion attacks.

• We adopt the truth discovery technique to evaluate data 
quality. Subsequently, we utilize the ( p, t ) threshold Paillier 
cryptosystem to strengthen RPPFL to protect user privacy 
from being exposed and defend against user collusion attacks.

• Formal analysis proves the security of RPPFL. Then, 
based on the open datasets MNIST and CIFAR-10, extensive 
experiments are conducted to demonstrate that RPPFL is prac⁃
tically efficient and effective.

In this paper, the remainder is established as follows. In the 
next section, we illustrate the related models and security re⁃
quirements of our construction. The preliminaries are re⁃
viewed in Section 3, and the detailed construction is pre⁃
sented in Section 4. Section 5 provides the security analysis. 
The experiments are given in Section 6, and Section 7 dis⁃
cusses the related works. Section 8 concludes the paper.
2 Models and Security Requirements

We first present the system model and threat model of 
RPPFL. After that, based on the threat model, we give the se⁃
curity requirements. To have a better understanding, we list 
some frequently used notations that appear in RPPFL, which 
is shown in Table 2.
2.1 System Model

As we can see in Fig. 1, the system model of RPPFL con⁃
sists of an aggregation server and several users.

• The aggregation server is an entity with strong computing 
and storage capabilities. To reduce the anomalous users’ 
negative impacts on the accuracy of the model, the aggrega⁃
tion server is allowed to identify users’ data quality (i.e., user 
reliability). Then, with the user’s reliability and local gradi⁃
ents, the aggregation server aggregates the global gradients in 
a privacy-preserving manner. Subsequently, global gradients 

▼Table 1. Comparison of RPPFL and other existing works

PPDL[16]

PPML[19]

SecProbe[17]

PPFDL[18]

RPPFL

User Privacy 
Preservation

√
√
√
√
√

Robust to 
User Insta⁃

bility
×
√
×
√
√

Support for 
Anomalous 

Users
×
×
√
√
√

Collusion 
Resistance

×
√
√
×
√

Server Setting

Single-cloud
Single-cloud
Single-cloud

Two non-collud⁃
ing clouds

Single-cloud
PPDL: privacy-preserving deep learning
PPFDL: privacy-preserving federated deep learning
PPML: privacy-preserving machine learning
RPPFL: reliable and privacy-preserving federated learning
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will be sent to the users.
• The users are entities holding different datasets that can 

be utilized to train FL models. To get models with better per⁃
formance, they cooperate in training models with the help of 
an aggregation server. Instead of sharing datasets directly, 
they share the gradients of local models. To protect gradient 
privacy, users first encrypt local gradients with an additively 
homomorphic cryptosystem. Then, users send them to the ag⁃
gregation server and update local models after receiving 
global gradients from the aggregation server.
2.2 Threat Model

In our scenario, like previous works[20–21], we presume that 
the aggregation server and all users are honest-but-curious. 
That is, the server will faithfully obey the designed procedures 

to accomplish its task. However, it may try to retrieve others’ 
sensitive information using prior acquired knowledge. Be⁃
sides, we presume that the aggregation server will not collude 
with users and there are at most t - 1 users colluding. Then, 
we mainly consider the following two adversaries.

1) The aggregation server may try to deduce users’ local gra⁃
dients and reliability according to the information it acquired.

2) The user may try to infer the information of his/her reli⁃
abilities according to the information he/she acquired.
2.3 Security Requirements

On the basis of system and threat models, we have devel⁃
oped the following security requirements.

1) User’s local gradient privacy. To effectively preserve 
user privacy, the user’s local gradients should be sent to the 
aggregation server in the ciphertext, which prevents the adver⁃
sary (e.g., the server) from recovering the user’s sensitive in⁃
formation from the shared gradients and global parameters.

2) Privacy protection of reliability for users. To ensure the 
fairness of the FL process, all information related to the reli⁃
ability of the user should be kept secret and unavailable to 
any participant, even to the user itself.
3 Preliminaries

In this section, we will illustrate the preliminaries about 
truth discovery, FL, and the additively homomorphic crypto⁃
system.
3.1 Truth Discovery

Truth discovery aims at estimating ground truth data from 
numerous heterogeneous data. In general, it is composed of 
two main steps: weight update and truth update.

1) Weight update
In this step, the weight of each user is computed based on 

the distance between their provided data and the ground 
truths. Without losing generality, we here assume the ground 
truths are fixed. Typically, each user’s weight wk can be com⁃
puted as wk = f ( ∑

m = 1

M

d ( xk
m, x*

m ) ), where f denotes a monotoni⁃
cally decreasing function, and d ( xk

m, x*
m ) is a distance function 

(i. e., the Euclidean distance). Therefore, if the provided data 
from a specific user are close to the ground truth, the user’s 
weight will be assigned to a higher value.

2) Truth update
In this step, on the basis of each user’s weight, the ground 

truth is estimated according to Eq. (1):

x*
m = ∑

k = 1

K

xk
m ⋅ wk

∑
k = 1

K

wk

 
. (1)

In the case of continuous data, x*
m means the estimated 

▼Table 2. Frequently used notations
Notation

n

Zn

Z*
n

N

K

M

Mf

xk
m

~
xk

m

x*
m

Rk

C
skk

skN + 1
Encpk (⋅)

rk

Meaning
A large positive integer

The set of integers modulo n
The multiplicative group of reversible elements of Zn

The number of users
The number of the selected users

The number of gradient types
A big integer of the magnitude of 10
The m-th gradient of the k-th user

The integer corresponding to the enlargement of xk
m

The aggregated result of the m-th gradient
The reliability (indicates the data quality) of the user k

The coefficient used to amplify users’ reliability
The secret key of the selected user k

The secret key of the aggregation server
The ciphertext encrypted by a public key
The random value selected by the user k

▲Figure 1. System model of reliable and privacy-preserving federated 
learning (RPPFL)

Upload gradients
Download aggregated results Server

User 1 User 2 User i User N

Localdataset Localdataset Local dataset(low quality) Localdataset

…
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ground truth. As for the categorical data, x*
m represents a prob⁃

ability vector. Each element in the vector means the probabil⁃
ity of a specific answer being the truth[22].
3.2 Federated Learning

As a collaborative learning paradigm, FL intends to train 
models based on data from distributed users. The basic train⁃
ing process of FL is shown below.

1) Selecting users
Assume there exist N users, each holding a local dataset 

D j, j ∈ [1,N ], which is derived from the whole training dataset 
D={(ui,vi ) ;  i = 1,2,⋯,M }, where D = ∪ j ∈ [1,N ] D j. For each 
epoch t ∈ {1,2,⋯ } in FL, the aggregation server chooses K us⁃
ers at random, where K < N.

2) Local training
Each selected user k, k ∈ [1, K ], randomly chooses a small 

batch of dataset Bk. Then, they leverage stochastic gradient de⁃
scent (SGD), a commonly used optimization algorithm, to calcu⁃
late gradients over their local datasets. Specifically, we let uk

i  and vk
i  denote the feature vector and its corresponding label in 

Bk, respectively, and θk
t  denotes the parameters of the model in 

the current epoch. The loss function, indicating the distance be⁃
tween prediction results and real labels, can be denoted as 
L (θk

t ,uk
i ,vk

i ). Then, the gradient can be calculated as Eq. (2):

∇θk
t

= ∇L (Bk,θk
t ) = ∑< ui,vi > ∈ Bk

∇L ( )θk
t ,uk

i ,vk
i

|| Bk
 . (2)

After that, ∇θk
t
 will be transmitted to the aggregation server.

3) Global aggregation
After receiving local gradients from all selected users, the 

aggregation server will aggregate the global gradients as 
Eq. (3):

Global = ∑
k = 1

K ∇θk
t

K . (3)
Finally, the global gradients will be transmitted to the users 

to update their local model as:
θk

t + 1 = θk
t - η ⋅ Global, (4)

where η denotes the learning rate.
3.3 Additively Homomorphic Cryptosystem

The cryptosystem in RPPFL is on the basis of the ( p,t)-
threshold Paillier cryptosystem[22]. As a typical asymmetric 
cryptosystem, it utilizes the public key (pk) to encrypt the 
plaintexts and secret key (sk) to recover the plaintexts. Note 
that ( p,t)-threshold Paillier cryptosystem splits the secret key 
into p parts, i.e., (sk1,sk2,…,skp ), and sends them to p differ⁃

ent parties. In ( p,t)-threshold Paillier cryptosystem-based ap⁃
plications, any entity cannot decrypt the ciphertexts alone. 
That is, the ciphertext can only be decrypted if at least t enti⁃
ties cooperate together. Moreover, even if some users are 
dropped off during the process because of the insatiability, the 
ciphertext can still be recovered.

We use Encpk( ⋅ ) to denote the ciphertexts encrypted by 
the public key. Then, assuming m ∈ Zn denotes a plaintext, 
its corresponding ciphertext can be calculated as follows:

C = Encpk(m) = gmrn mod n2, (5)
where r ∈ Z*

n is a randomly selected value and should be kept 
secret. For decryption, each party l,  l ∈ [1,p], requires to com⁃
pute the partial decryption cl according to Eq. (6) with the se⁃
cret key sk l,

cl = c2Δskl , (6)
where we denote Δ = p!. Based on the algorithm in Ref. [23], 
these partial decryptions can be composed together for de⁃
crypting the ciphertext C in order to recover the plaintext m.

Then, we further present additively homomorphic properties 
of our adapted cryptosystem. Specifically, given the cipher⁃
texts of two plaintexts, m1,m2 ∈ Zn are encrypted with the 
same public key：

C1 = Encpk( )m1 = gm1 r1 n mod n2,
C2 = Encpk( )m2 = gm2 r2 n mod n2. (7)

We have
Encpk( )m1 + m2 = Encpk( )m1 ⋅ Encpk( )m2

= gm1 + m2( )r1r2
n mod n2, (8)

Encpk(b ⋅ m1 ) = Encpk(m1 ) b = gbm1 rbn1  mod n2, (9)
where b denotes a constant.
4 Scheme Design and Details

In this section, we first illustrate the approach that we uti⁃
lize to handle anomalous users. Then, we give the details of 
our proposed RPPFL.
4.1 Approach to Handling Anomalous Users

To decrease the negative influence of anomalous users on 
the trained model in federation learning, here we describe the 
mechanism MeAU, which is inspired by the truth discovery[24]. 
In RPPFL, we assume that the data from different users are in⁃
dependently and equally distributed. We assume that each 
user holds M categories of gradients (in Section 3.2) after train⁃
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ing on their local dataset. The m-th gradient of the k-th user 
can be represented as xk

m, where m ∈ [1, M ] , k ∈ [1, K ]. We 
use x*

m to denote the global m-th gradient of K selected users. 
Additionally, we let Rk represent the reliability (indicates the 
data quality) of the user k. MeAU mainly includes two phases: 
updating the user’s reliability and updating global gradients.

1) Update user’s reliability
The user’s reliability will be given a high value when the 

calculated gradient is close to the global gradient from the 
server. Specifically, given the global gradient x*

m, the reliabil⁃
ity of user k is calculated as follows:

Rk = f (∑m = 1

M

d ( xk
m, x*

m ) ), (10)
where f denotes a monotonically decreasing function, and 
d ( ⋅ ) denotes a function that measures the distance between 
the local gradients and global gradients. In RPPFL, we use the 
same method as in Ref. [18], and formulate Eq. (10) as:

Rk = C
∑
m = 1

M

d ( )xk
m, x*

m , (11)
where C is used to amplify users’ reliability, which is calcu⁃
lated according to Eq. (12):

C = χ 2
( )1 - α

2 , || M , (12)
where χ denotes the Chi-squared distribution, and α repre⁃
sents its corresponding significance level. It is noteworthy that 
when the value of α and M (the number of gradients) is deter⁃
mined, the coefficient C can be regarded as a constant. On the 
basis of some proposed works[18, 25–26], for users with high-
quality data for training, the obtained gradients are always 
consistent in the direction of the vector with high probability. 
To guarantee the convergence of training, the direction of the 
local gradient xk

m is always required as the same with the 
global gradient x*

m. Thus, we compute d ( xk
m,x*

m ) = ( xk
m - x*

m )2 
if xk

m and x*
m are both positive or negative. If not, we set 

d ( xk
m,x*

m ) to a large positive integer (illustrated in Section 4.2).
2) Update global gradients
With the reliability of each user given, the aggregated result 

of m-gradient is calculated as

x*
m = ∑

k = 1

K

Rk xk
m

∑
k = 1

K

Rk . (13)
Note that we do not directly remove these anomalous users. 

The reason is that the reliability information is kept secret 
from all participants, even the users themselves, to prevent 

discrimination during the training phase. The existence of 
low-quality data is inevitable. In some rare cases where all 
users are normal, there is still the possibility that the trained 
model will be overfitted in the actual prediction. Based on 
the above facts, RPPFL tolerates gradients from anomalous 
users but ensures that the global gradients are mainly con⁃
tributed by normal users. However, ensuring that each par⁃
ticipant in federated learning is unaware of users’ reliability 
will inevitably increase the difficulty of reducing the impacts 
of low-quality data.
4.2 Reliable and Privacy-Preserving Federated Learning

As shown below, we first briefly summarize the main pro⁃
cess of RPPFL, i.e., reliability identification and gradient ag⁃
gregation, and then give its details. The workflow of RPPFL is 
displayed in Fig. 2, and the protocol framework is shown as 
Protocol 1. We assume that a trusted third party (TTP) has ex⁃
ecuted the ( p,t)-threshold Paillier cryptosystem before run⁃
ning the reliable and privacy-preserving federated learning 
protocol, where p = N + 1 and t = K + 1. The secret keys 
(sk1,sk2,…,skN ) are sent to N different users, respectively, 
and skN + 1 is sent to the aggregation server. Besides, the pub⁃
lic key is distributed to all entities.

• Reliability identification. In this step, each selected user 
first calculates the Euclidean distance between its local gradi⁃
ents and the global gradients from the aggregation server. 
These calculation results will be encrypted using the public 
key and then transmitted to the aggregation server. With these 
ciphertexts, the aggregation server calculates the reliability of 
each user while protecting data privacy. Ultimately, the en⁃
crypted reliability will be sent to the corresponding user for 
the following procedure.

• Gradient aggregation. In this phase, each user calcu⁃
lates the product of their gradient and reliability in the en⁃
cryption domain. These ciphertexts are transmitted to the 
server. With the help of K selected users, the server de⁃
crypts these received ciphertexts and subsequently updates 

▲ Figure 2. Workflow of reliable and privacy-preserving federated 
learning (RPPFL)

Aggregation server User k
Global gradients

Encrypted gradient information

Encrypted user reliability

Encrypted multiplication result
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the global models.
Note that the additively homomorphic cryptosystem is de⁃

fined over the integer ring. However, the gradient often con⁃
sists of many floating-point numbers in real-world federated 
learning. We define a big integer Mf, which is a magnitude of 
10. Before utilizing homomorphic encryption on the gradient 
xk

m, we calculate ⌊Mf ⋅ xk
m⌋, which we denote as ~xk

m⋅~ xk
m is the 

rounded version of the gradient for encryption, and the origi⁃
nal approximated result can be easily recovered by simply di⁃
viding ~xk

m with Mf. Unless otherwise mentioned, we also use 
this format to represent other rounded values in the remaining 
parts of the paper. Then, for each negative integer xk

m, we use 
the trick adopted in Ref. [27] by simply replacing it with its in⁃
verse in the cryptosystem.

The update of the global models in federated learning lasts 
for several iterations. Here, we give the calculation procedure 
in one of the iterations.

1) Reliability identification
Step 1: The aggregation server first selects K users and 

sends the global gradient { x*
m }M

m = 1 to them. If it is in the first 
iteration, { x*

m }M
m = 1 is the random value initialized by the ag⁃

gregation server; otherwise, { x*
m }M

m = 1 is derived in the previ⁃
ous iteration. Upon receiving { x*

m }M
m = 1, the user k, k ∈ [1,K ], 

calculates:
D = ∑

m = 1

M

d ( xk
m,x*

m ), (14)
and obtains its reciprocal, i.e., D-1. Then, to preserve the pri⁃
vacy of D-1, the user k, k ∈ [1, K ], chooses a random value 
rk ∈ Z*

n and encrypts it as follows:
Encpk(~D-1 ) = g

~D-1 rn
k  mod n2. (15)

When the encryption is completed, each user sends 
Encpk(~D-1 ) to the aggregation server.
Step 2: After receiving Encpk(~D-1 ) from all selected K users, 
the aggregation server calculates the reliability of each user in 
ciphertexts as

Encpk( )[ ]~Rk = Encpk( )ê
ë
êêêê ú

û
úúúúMf ⋅ 1

D ⋅ ë ûMf ⋅ C =

Encpk( )ê
ë
êêêê ú

û
úúúúMf ⋅ 1

D
ë ûMf ⋅ C

=

g
C͂
~1
D rC͂n

k  mod n2 , (16)
where the aggregation server calculates C and keeps it se⁃
cretly. [~  ⋅   ] denotes the product of two rounded values. After 
that, the aggregation server transmits the encrypted reliability 

Encpk([~Rk ] ) to user k, k ∈ [1,K ].
Protocol 1. Reliable and privacy-preserving federated 
learning 

Input:
K selected users, M types of gradients, local gradients 

{ xk
m }M,K

m,k = 1, initialized global gradients { x*
m }M

m = 1, and coeffi⁃
cient C

Output:
Global gradients { x*

m }M
m = 11. The aggregation server sends { x*

m }M
m = 1 to each user k.

2. Each user k computes the local gradients.
3. Each user k computes Encpk (D-1 ), where D-1 =

1/ ∑
m = 1

M

d ( xk
m, x*

m ).
4. Each user k sends Encpk (D-1 ) to the aggregation server.
5. The aggregation server computes Encpk ( [ ~Rk ]) for each 

user k.
6. The aggregation server sends Encpk ( [ ~Rk ]) back to each 

user k.
7. Each user k computes the product of local gradients and 

their reliability Encpk ( [ ~Rk ] ⋅  ~xk
m ), m ∈ [1,M ].

8. Each user k sends Encpk ( [ ~Rk ] ⋅  ~xk
m ), m ∈ [1,M ] to the 

aggregation server.
9. The aggregation server computes EncGlobal and 

Encpk( )[ ∑
k = 1

K ~Rk ] .
10. The aggregation server computes { x*

m }M
m = 1 according to 

Eqs. (19) and (20).
11. Repeat steps 3–7 until the convergence criteria in FL 

is reached.
2) Gradient aggregation
Once the reliability of each user has been obtained, the 

next step is to update the global gradients according to the reli⁃
ability and local gradients of all selected users.

Step 1: After receiving Encpk([~Rk ] ) from the aggregation 
server, the user k calculates the product of local gradients and 
their reliability in ciphertexts

Encpk( )[ ]~Rk ⋅ ~xk
m = Encpk( )[ ]~Rk

~
xk

m = g
~
xk

m [ ]~Rk r
~
xk

m n
k  mod n2. (17)

Then, Encpk([~Rk ] ⋅ ~xk
m ) will be transmitted to the aggrega⁃

tion server.
Step 2: When the aggregation server receives the cipher⁃

texts Encpk([~Rk ] ⋅ ~xk
m ) , k ∈ [1,K ], from all selected users, it 

aggregates them in ciphertexts according to the homomorphic 
property of the ( p,t)-threshold Paillier cryptosystem.
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EncGlobal = ∏
k = 1

K Encpk ( )[ ]~Rk ⋅ ~xk
m =

g
∑
k = 1

K ( )[ ]~Rk ⋅ ~xk
m ( )∏

k = 1

K

rk

n

 mod n2 =

Encpk( )∑
k = 1

K ( )[ ]~Rk ⋅ ~xk
m . (18)

After that, EncGlobal is sent to K selected users. Each user k 
uses their secret key skk to partially decrypts EncGlobal and 
then sends them to the aggregation server. The aggregation 
server first obtains the partial decryption with its secret key 
skN + 1. Then, based on K + 1 partially decrypted ciphertexts, 
the aggregation server recovers the plaintexts 
∑k = 1

K ( )[ ]~Rk ⋅ ~xk
m . Similarly, the aggregation server can also 

calculate the summation of each user’s reliability, i. e., ∑k = 1
K [ ]~Rk . Therefore, the global gradients can be updated as:

~
x*

m = ∑
k = 1

K ( )[ ]~Rk ⋅ ~xk
m

∑
k = 1

K

[ ]~Rk , (19)
which will be sent to K users to update their local models. 
Note that x*

m can be recovered by calculating
x*

m = ê
ë

ú
û

~
x*

m / ( )Mf . (20)
Reliability identification and gradient aggregation are per⁃
formed iteratively until the convergence criteria are fulfilled.
5 Security Analysis

Based on the threat model in Section 2.2, the potential 
threats mainly come from the entities (i.e., users and the aggre⁃
gation server). Thus, the objective of RPPFL is to protect the 
user’s local gradient and the user’s reliability from being ex⁃
posed to any entity in RPPFL. Furthermore, it should also be 
resilient to the user collusion attack. Here, we prove the secu⁃
rity of RPPFL by giving Theorem 1, followed by the corre⁃
sponding proof.

Theorem 1. Assuming that the aggregation server is non-
colluding with users and there are at most t - 1 users collud⁃
ing, neither the user’s local gradient nor the user’s reliability 
will be leaked to any entity in RPPFL.

Proof.First, we prove that each user cannot infer their own 
reliability from the information they have acquired and the ci⁃
phertexts returned by the aggregation server. Next, we show 
that the aggregation server cannot infer each user’s local gra⁃
dient and reliability from the information it holds and the ci⁃
phertexts returned by the user.

The user knows the ciphertexts Encpk([~Rk ] ), EncGlobal, and 
plaintexts { x*

m }M
m = 1, D = ∑m = 1

M d ( xk
m,x*

m ). Since there are at 
most t - 1 users colluding, the user cannot recover the secret 
key (sk), from skk. Additionally, the ( p,t)-threshold Paillier 
cryptosystem has already been demonstrated to defend against 
chosen-plaintext attacks[22]. Therefore, the user cannot decrypt 
these ciphertexts. With the global gradient { x*

m }M
m = 1, the user 

calculates D locally. However, since C is only known by the ag⁃
gregation server. Without knowing C, it is impossible for the 
user to acquire its reliability.

For the aggregation server, it knows the ciphertexts 
Encpk(~D-1 ), Encpk([~Rk ] ⋅ xk

m ), and plaintexts C, 
∑k = 1

K ( )Rk ⋅ xk
m , ∑k = 1

K Rk. Since the ( p,t)-threshold Paillier 
cryptosystem has been demonstrated to defend against chosen-
plaintext attacks, the aggregation server cannot recover the se⁃
cret key, and thus cannot decrypts these ciphertexts. As for C, 
without the plaintexts D, the aggregation server cannot obtain 
the users’ reliabilities. Although the aggregation server knows 
the sum of K users’ reliabilities, i. e., ∑k = 1

K Rk, it is impos⁃
sible to identify the individual reliability of each user without 
knowing other information. Similarly, it is also impossible to 
separate the individual reliability and model weight 
from ∑k = 1

K ( )Rk ⋅ xk
m .

Therefore, RPPFL can prevent the user’s local gradient 
and reliabilities from disclosing to other entities. Moreover, for 
the user collusion attack, the properties of the Paillier crypto⁃
system ensure the safety of the scheme when there are no 
more than t - 1 users colluding.
6 Experiments

In this section, we perform experiments to observe the per⁃
formance of RPPFL. The FL framework is built via PyTorch 
with Cuda 10.2, which runs on the server with two Nvidia 
Tesla-P40 GPUs for hardware and RedHat for the operating 
system. For the cryptosystem, we utilize the Paillier library for 
implementation, and the running environment is Java 18.0. 
Moreover, we choose MNIST and CIFAR-10 as the datasets in 
FL, which are commonly used in many scenarios. As for the 
users in FL, they are all equipped with the same convolutional 
neural network (CNN) to calculate local gradients with the use 
of their local data. The model in the experiments is inspired 
by LeNet widely used in various situations. Finally, as for the 
hyper-parameters, the learning rate is set to 0.001, while the 
batch size is 128.
6.1 Accuracy Performance

In this part, we observe the accuracy performance of 
RPPFL. As mentioned before, many attributes influence the 
model’s accuracy. Here, we mainly focus on the impact of the 
number of users and the number of gradients per user. With⁃
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out losing generality, we set the dataset D i for each user k in 
the same size. Meanwhile, to construct low-quality data for  
anomalous users, we replace a fixed proportion of their origi⁃
nal data with random noises ϵ ∈ [0,1]. The ratio of the re⁃
placed data is set to 20% in our experiments.

1) Number of users
We first illustrate the influence of the number of users that 

take part in the training process. To better demonstrate the 
performance of RPPFL, we take two related works[18, 28] for 
comparison.

Fig. 3 displays the comparison of accuracy based on a dif⁃
ferent number of users, where the number of gradients for 
each user is set to 2 500. The figure demonstrates that the in⁃
crement in the number of users in RPPFL does improve the 
model accuracy because more data from corresponding users 
contribute to the trained model. Moreover, for both the 
MNIST dataset in Fig. 3(a) and CIFAR-10 dataset in 
Fig. 3(b) , the accuracy of RPPFL is about the same as 
PPFDL in Ref. [18] and outperforms that in Ref. [28]. 
Therefore, we can reach the conclusion that RPPFL 
can ensure the aggregation gradients are mainly con⁃
tributed by users with data of high quality.

2) Number of gradients per user
We then discuss the influence of the number of gra⁃

dients for each user on accuracy performance.
Fig. 4 demonstrates that the model accuracy will also 

improve when the number of gradients increases. It is 
evident that more involved gradients in the FL training 
procedure will boost the convergence rate and make the 
model more accurate. From Figs. 4(a) and 4(b), the per⁃
formance of RPPFL is still better than the schemes in 
Refs. [28] and [18]. In conclusion, RPPFL ensures that 
the user with high-quality data is rewarded with high re⁃
liability and guarantees that the aggregation result is 
mainly contributed by these users.
6.2 Efficiency

In this part, we observe the efficiency performance of 
RPPFL. For simplicity, we here only discuss and visual⁃
ize the efficiency in the aggregation phase of FL. To keep 
fairness, we test the schemes in Refs. [28] and [18] on 
the same platform (hardware and software) for RPPFL. 
Specifically, the CNN network is the same for every user, 
and other hyper-parameters remain the same.

Fig. 5(a) demonstrates the computational cost for dif⁃
ferent user numbers, while Fig. 5(b) presents the one 
for different gradient numbers per user. It can be ob⁃
served that with the growth of the number of users and 
the number of gradients per user, the aggregation time  
increases for all the schemes. Moreover, RPPFL has 
better efficiency than the one in Ref. [28]. As we can 
see, the RPPFL is moderately inferior to the one in 
Ref. [18]. It is because the PPFDL in Ref. [18] adopts 

a two-cloud model, where the computational costs are shared 
between the two cloud servers, while RPPFL is established on 
a single cloud model. However, PPFDL requires two non-
colluding cloud servers, which is not practical in real-world 
scenarios compared with RPPFL.
7 Related Works

In this section, we illustrate some related works of privacy-
preserving federated learning.

Since the proposal of the original FL, many schemes have 
been designed to preserve data privacy in FL based on 
privacy-preserving techniques. These techniques can be 
mainly divided into three categories: differential privacy, secure 
multi-party computation, and homomorphic encryption. As for 
the differential privacy, the authors in Ref. [29] proposed a 

▲ Figure 4. Accuracy performance with different gradient numbers for MNIST 
and CIFAR-10 datasets
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▲Figure 5. Computational costs for different schemes
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mechanism that set different proportions of selected parameters 
to preserve data privacy while preserving training accuracy. In 
2016, ABADI et al.[30] leveraged differential privacy with a mod⁃
erate privacy budget to learn models of deep neural networks. 
When it comes to secure multi-party computation, the authors 
in Ref. [19] proposed a safe and practical aggregation protocol 
in the FL training process. SMC was adopted to ensure the pri⁃
vacy of the users’ gradients shared with the aggregation server. 
In 2018, JAYARAMAN et al.[31] introduced a distributed learn⁃
ing method that combines DP with SMC. Moreover, because the 
users’ access to power and network bandwidth is always under 
a particular constraint in real-world scenarios, secret sharing 
and key exchange protocols are also considered to enhance the 
robustness of FL. Authors in Ref. [32] proposed a scheme lever⁃
aging the secret key-sharing technique to protect privacy in FL 
while verifying the integrity of aggregation results. For homo⁃
morphic encryption, in 2018, PHONE et al. [16] presented a sys⁃
tem for privacy-preserving collaborative deep learning. It uti⁃
lizes Learning with Errors (LWE) -based homomorphic encryp⁃
tion to secure the privacy of publicly shared model parameters 
among the participants. Furthermore, the authors in Ref. [20] 
designed high-efficiency protocols by adopting secure two-party 
computation, which was established on the two-server model 
(non-collusion). In 2021, MADI et al. [28] presented a scheme 
with a combination of homomorphic encryption and verifiable 
computing. The aim was to execute a federated averaging opera⁃
tor directly in the ciphertext and prove that the operator is cor⁃
rectly executed.

In conclusion, homomorphic encryption can be applied for 
privacy-preserving federated learning according to its property 
of addition and multiplication in the ciphertext domain. How⁃
ever, the enormous computational burden is unacceptable in 
scenarios that exist plenty of users or training data with large 
dimensions. Although SMC is better that HE in terms of com⁃
putational costs, it always needs many interactions among enti⁃
ties. This brings a high communication burden and a lack of 
robustness. Compared with the other two techniques, differen⁃
tial privacy performs better in cost. But a balance between pri⁃
vacy and accuracy should always be considered. Ref. [33] 
demonstrated that if the model accuracy was acceptable, ad⁃
versaries could still reconstruct the user’s private data. Au⁃
thors in Ref. [34] successfully leveraged a generative adver⁃
sarial network (GAN) to violate data privacy even if all shared 
parameters were protected by differential privacy. Therefore, 
combining the advantages of different privacy-preserving 
mechanisms while overcoming their drawback has raised 
much concern for researchers.

Moreover, all these solutions mentioned above fail to con⁃
sider the problem of anomalous users. To tackle this problem, 
SecProbe was proposed[17] as the first solution to handling 
anomalous users in collaborative deep learning while protect⁃
ing data privacy. It utilized techniques based on DP to per⁃
turb the objective function of the target network. However, 

Ref. [34] showed that the current mechanism of DP can 
hardly reach an acceptable balance between security and ac⁃
curacy. XU et al.[18] designed PPFDL with the leverage of ad⁃
ditively homomorphic cryptosystem and garbled circuits. How⁃
ever, their system structure is based on the two-cloud model, 
and it requires two non-colluding cloud servers. Therefore, 
such limitation makes their scheme impractical in many real-
world situations like edge computing. Moreover, their PPFDL 
is also vulnerable to user collusion attacks.
8 Conclusions

In this paper, we propose RPPFL, a reliable and privacy-
preserving federated learning scheme. RPPFL uses a truth dis⁃
covery technique to identify each user’s reliability according 
to their data quality and thereby reduce the contribution of 
anomalous users on the global models. Specifically, we lever⁃
age an additively homomorphic cryptosystem to enrich the 
truth discovery technique to provide comprehensive privacy 
protection (e. g., model privacy and data quality privacy) and 
user collusion resistance. Security analysis demonstrates the 
security of RPPFL. Experimental results of two different real-
world datasets indicate that RPPFL has acceptable perfor⁃
mance on both accuracy and efficiency. For future work, con⁃
sidering that the user may infer data information of others with 
the global gradients, we will focus on designing a reliable and 
privacy-preserving federated learning scheme that can protect 
the privacy of gradients on both the aggregation server side 
and the user side.
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