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Abstract: As a popular distributed machine learning framework, wireless federated edge learning (FEEL) can keep original data local, while 
uploading model training updates to protect privacy and prevent data silos. However, since wireless channels are usually unreliable, there is 
no guarantee that the model updates uploaded by local devices are correct, thus greatly degrading the performance of the wireless FEEL. Con⁃
ventional retransmission schemes designed for wireless systems generally aim to maximize the system throughput or minimize the packet error 
rate, which is not suitable for the FEEL system. A novel retransmission scheme is proposed for the FEEL system to make a tradeoff between 
model training accuracy and retransmission latency. In the proposed scheme, a retransmission device selection criterion is first designed 
based on the channel condition, the number of local data, and the importance of model updates. In addition, we design the air interface signal⁃
ing under this retransmission scheme to facilitate the implementation of the proposed scheme in practical scenarios. Finally, the effectiveness 
of the proposed retransmission scheme is validated through simulation experiments.
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1 Introduction

With the construction of smart cities, a large num⁃
ber of Internet of Things devices, smartphones 
and other mobile devices have emerged from all 
aspects of our lives. The current society has en⁃

tered the era of big data, and hundreds of millions of data are 
generated on mobile terminals every day[1–3], which poses 
novel challenges to both traditional centralized machine 
learning approaches and wireless communication tech⁃
niques[4–5]. On the one hand, due to a large number of data, 
uploading all data to the cloud would result in a huge commu⁃
nication burden[6], and on the other hand, since the data con⁃
tain user privacy, such as medical health and personal prefer⁃
ences, uploading raw data to the cloud would bring about the 
problem of privacy leakage[7–8].

To overcome the abovementioned challenges, a distributed 
machine learning framework named federated edge learning 
(FEEL) has been proposed recently[9–11]. Under FEEL, mul⁃
tiple distributed mobile devices use their locally dispersed 
data to jointly train a common machine learning model, rather 
than transferring raw data to a central node. The original data 
containing user privacy are stored on mobile devices, and only 
the intermediate data, such as gradients and parameters, are 
transmitted so that user privacy can be protected. In addition, 
FEEL shifts the model training process from the center to the 
local devices, thus making full use of distributed computing 

resources. Due to the advantages brought by the special archi⁃
tecture of FEEL, it has been intensively used in the fields of 
healthcare, computer vision, finance, etc.[12–15]

Recently, most research on FEEL assumes that communica⁃
tion links are reliable. For example, Ref. [16] considers the 
method of minimizing the transmitted energy under the delay 
constraint to improve the performance of FFEL. However, in 
practice, especially in wireless FEEL, channel transmission is 
generally unreliable due to random channel fading, shadow⁃
ing, and noise. The accuracy of the intermediate data transmis⁃
sion during training cannot be guaranteed[17]. Retransmission 
is an important means to improve the accuracy of transmission 
in wireless communication systems, but with the cost of in⁃
creasing the communication delay[18]. However, with the appli⁃
cation of FEEL in medical and autonomous driving, it is more 
sensitive to the accuracy and delay of transmission[19]. This 
motivates us to investigate novel retransmission schemes for 
FEEL in this paper.
1.1 Related Work

There have been several studies considering the channel 
unreliability of wireless communications in distributed learn⁃
ing systems. In Ref. [20], the wireless channel in the FEEL 
system is modeled as an erasure channel and a scheme for 
this situation is proposed, which inherits the previous round 
of gradient when the packet is lost. Based on this, the au⁃
thors further analyze the influence of coding rate on wireless 
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FEEL in Ref. [21]. In Ref. [22], a decentralized stochastic 
gradient descent method under the user datagram protocol 
(UDP) is proposed to reduce the impact of unreliable chan⁃
nels on decentralized federated learning. Moreover, an asyn⁃
chronous decentralized stochastic gradient descent algorithm 
is proposed in Ref. [23] to reduce the impact of unreliable 
channels by performing asynchronous learning and reusing 
outdated gradients in device-to-device (D2D) networks. The 
authors in Ref. [24] have proposed an unbiased statistical re⁃
weighted aggregation scheme from the perspective of gradi⁃
ent aggregation, which comprehensively considers node fair⁃
ness, unreliable parameter transmission, and resource con⁃
straints. In Ref. [25], a sparse federated learning framework 
is proposed, which compensates for the bias caused by unre⁃
liable communication through the similarity between local 
models, and adds local sparseness to reduce communication 
cost, which further improves performance. In Ref. [26], a fed⁃
erated learning framework is proposed, where the central 
server aggregates the global model according to the received 
parameters and the transmission correct probability, thereby 
reducing the impact of unreliable transmission. The authors 
in Ref. [27] further propose a decentralized D2D framework 
under unreliable channels, which reduces the impact of unre⁃
liable channels by jointly optimizing the transmission rate 
and bandwidth distribution.

From the perspective of wireless communication, retrans⁃
mission has been applied to many current communication 
standards, including 5G and WiFi. So far, only a few works 
have studied the retransmission issue in distributed learning. 
Retransmission can improve the reliability of data packets, 
but it also reduces the timeliness of data. In some scenarios, it 
may even be considered to improve the timeliness of data at 
the cost of reduced reliability[28]. In Ref. [29], a Hybrid Auto⁃
matic Repeat reQuest (HARQ) protocol suitable for multi-
layer cellular networks has been proposed, which can enhance 
error detection and correction in D2D communications. In 
Ref. [30], a retransmission scheme based on data importance 
is proposed for the edge learning system. The specific ap⁃
proach of this scheme is to make a tradeoff between the signal-
to-noise ratio (SNR) and the uncertainty of the data, and corre⁃
spondingly establish a threshold for retransmission.
1.2 Motivations and Contributions

As aforementioned, in wireless FEEL, devices upload gradi⁃
ents to the edge server through wireless channels, which is un⁃
reliable. This will affect the performance of model training. 
The goal of conventional retransmission schemes is to maxi⁃
mize the throughput of correctly transmitted data. However, 
the performance of FEEL with unreliable channels is limited 
by traditional retransmission since FEEL has different goals of 
learning accuracy and learning latency. In particular, the im⁃
portance of data from different devices is different and gener⁃
ally contributes differently to the model training process. In 

addition, the communication cost introduced by retransmis⁃
sion of each device is also different due to various channel fad⁃
ing environments. The above factors need to be considered 
when developing a retransmission scheme for the edge learn⁃
ing system. The main contributions of this paper can be sum⁃
marized as follows.

• We first propose a FEEL framework with unreliable chan⁃
nels, in which the gradients uploaded by the local devices are 
split into multiple packets, and the wireless channel exists the 
packet error rate (PER). Unreliable transmission leads to bias 
between the actual global gradient and the theoretical one, 
which is detrimental to model training.

• We mathematically analyze the effect of PER on the con⁃
vergence rate and communication cost. To mitigate the impact 
of unreliable communications on learning performance, the re⁃
transmission device selection is optimized by making a trad⁃
eoff between convergence rate and communication cost.

• We derive the optimal solution to device retransmission 
selection, which greatly improves the model training perfor⁃
mance. We also analyze the performance of the proposed re⁃
transmission selection scheme and develop a signaling proto⁃
col for retransmission.

• We employ a convolutional neural network (CNN) model 
of the CIFAR-10 and MNIST datasets to test the learning per⁃
formance of our proposed retransmission selection scheme. 
Test results show that our proposed scheme outperforms sev⁃
eral existing retransmission schemes.

The rest of the paper is organized as follows. In Section 2, 
we introduce the system model. In Section 3, the principle of 
retransmission design is introduced, and the corresponding 
protocol is proposed. In Section 4, we analyze the retransmis⁃
sion gain and cost and formulate the retransmission selection 
optimization problem. The retransmission selection is derived 
in Section 5. Finally, we draw the conclusions in Section 6.
2 System Model

2.1 Machine Learning Model
As depicted in Fig. 1, we consider a FEEL system consist⁃

ing of one edge server and K devices. Device k has nk locally  
labeled data, and the total number of data in the entire system 
can be represented as n = ∑

k = 1

K

nk. All devices only use their 
own data to jointly train a machine learning model w with the 
edge server, and the specific method is stochastic gradient de⁃
scent (SGD). Considering the imbalance of data distribution, 
the global loss function can be written as:

L (w ) = 1
n ∑

k = 1

K

nk Lk (w ), (1)
where Lk (w ) is the loss function of device k, and we have
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Lk (w ) = 1
nk

∑
i = 1

nk

f (w, xi,k, yi,k ), (2)
where xi,k represents the i-th training data of device k, yi, k rep⁃
resents the corresponding label, and f (⋅) represents the loss 
function of the training model. Some popular machine learning 
loss functions are summarized in Table 1.

The purpose of federated training is to find the optimal w* 
that minimizes L (w ). FEEL is different from the traditional 
centralized machine learning framework. In the FEEL frame⁃
work, all the original data are kept on local devices, and the 
training results are uploaded to the edge server. In the t-th 
round of training, the selected devices use the local data and 
the global model wt received from the edge server to obtain the 
loss function Lk (wt ), and upload the gradient of Lk (wt ) to the 
edge server, which can be written as:  

gt
k = ∇Lk (wt ). (3)

After receiving the uploaded gradients of all selected de⁃
vices, the edge server decodes the data packets and aggre⁃
gates the global gradient gt as:

gt = 1
n ∑

k = 1

K

nk gt
k. (4)

Then the edge server uses the global gradient gt obtained by 
the aggregation to update the model, that is, wt + 1 = wt - ηgt, 
where η is the learning ratio. After completing the update of 
the global model, the edge server broadcasts it to each device 
in the system. In this way, one round of iterative training of 
FEEL is completed.
2.2 Wireless Communication Model

In this paper, we utilize time division multiple access 
(TDMA) as the multiple access method. In a TDMA scenario, 
all devices use the same frequency band in different time slots 
and upload gradients to the edge server in turn. During one 
training iteration, it is assumed that the expected channel 
state information can be obtained by the channel estimation al⁃
gorithms. Among the training iterations, the channel of the it⁃
eration differs from one another. The expected channel state 
information in each iteration is separately adopted for the per⁃
formance analysis. Therefore, when a device uploads the gradi⁃
ents, it will occupy the full bandwidth, denoted by B. For ease 
of analysis, it is assumed that the wireless channel is static at 
each training gradient upload and changes in different rounds 
of training iterations. It is further assumed that the distances 
of all local devices to the edge server are known, and the 
small-scale fading is modeled as Rayleigh fading. Then, we 
can express the uploaded data rate of the device k as:

Rk = B log2( )1 + PU
k |hU

k |2
N0 , (5)

where PU
k  is the transmit power of device k, hU

k  is the channel 
power gain between the device and the edge server, and N0 is 
the noise power over the whole bandwidth B. We assume that 
each device is uploading and retransmitting data at the maxi⁃
mum available power. Note that this assumption fits many sce⁃
narios, such as LTE[31].

Since wireless channels are generally unreliable, channel er⁃
rors need to be considered. It is assumed that the uploaded gra⁃
dients of each device are divided into several packets, and each 
packet has redundant encoding for error detection. In this pa⁃
per, the cyclic redundancy check (CRC) code is used to check 
for errors. Then the PER of device k can be expressed as:

pk = 1 - exp ( - mBN0
PU

k hU
k ), (6)

where m is the PER decision threshold[32].
Since the global model sent by the edge server to all de⁃

vices is the same, the downlink channel can be modeled as a 
broadcast channel and a more robust encoding method can be 
used. In this paper, we consider that the channel error occurs 
only in the uplink channel, and assume that there is no chan⁃
nel error in the downlink channel. Let the channel bandwidth 
of the downlink channel be BD, and denote γ as the smallest 

▼Table 1. Loss function for popular machine learning models
Learning Model

Linear regression
Least-squared support vector 

machine
Neural network

Loss Function f (w, x, y )
1
2  y - wT x

2

1
2 max { 0,1 - ywT x }2

1
2  y - ϕ (w,x ) , where ϕ (w,x ) is the learning output

▲Figure 1. Federated edge learning system

Device 1

Device 2

Device K

Upload gradient

Retransmission selection

Global model broadcast…
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SNR among all devices, and then the achievable downlink 
data rate is expressed as:

RD = BD log2 (1 + γ ). (7)

3 Retransmission Protocol
In this section, we first introduce the principle of retrans⁃

mission design in FEEL. Then, we propose a novel retransmis⁃
sion protocol and develop the corresponding processing mod⁃
ules for both devices and the edge server.
3.1 Principle of Retransmission Design

In FEEL, the edge server performs global model updates by 
periodically aggregating local gradients uploaded by devices. 
Therefore, the performance of the trained model depends on 
the quality of the gradients received by the edge server. How⁃
ever, unreliable gradient transmission may occur due to wire⁃
less channel impairments including interference, noise and 
shadowing. Therefore, it is predicted that the performance of 
model training is largely affected by channel impairments.

A common solution to unreliable transmission is retransmis⁃
sion. Conventionally, the purpose of retransmission is to ensure 
the reliability of data and at the same time maximize the system 
throughput. However, the main goal of FEEL is to maximize the 
training accuracy for a given training time. Therefore, a novel 
retransmission protocol is required for the FEEL system.

When designing the retransmission protocol for a FEEL sys⁃
tem, one should consider both the training accuracy and the ad⁃
ditional communication cost brought by retransmission. Re⁃
transmission can reduce erroneous packets so that the gradient 
updates received by the edge server deviate less from the 
ground-truth gradient, which can improve the 
convergence speed and the accuracy of model 
training. However, retransmission also increases 
the communication latency, resulting in an in⁃
crease in training time. Therefore, we need to 
properly select the devices that need to be re⁃
transmitted and design appropriate signaling to 
make a fair tradeoff between learning accuracy 
and learning latency.
3.2 Retransmission Protocol and Processing 

Module
In our proposed retransmission protocol, not 

all devices participate in retransmission, that 
is, retransmission selection is required. Consid⁃
ering the characteristics of FEEL, the device se⁃
lection depends on not only the channel condi⁃
tions but also the local data volume and the im⁃
portance of the upload gradient. Gradient up⁃
dates that have a more significant impact on 
global model training will be retransmitted with 
a larger probability. Moreover, the latency 

caused by retransmission should also be accounted for. In our 
proposed protocol, a device with a higher data rate is also 
more likely to be retransmitted because it brings less addi⁃
tional communication cost. In addition, the PER between the 
device and the edge server shall also be taken into account. 
Due to the robustness of model training, devices with a small 
PER would bring little performance gain when retransmitting. 
Also, for a device with a large PER, the reduction of the PER 
after retransmission is very limited, but it will cause a rela⁃
tively large communication cost. Therefore, when the PER is 
too large or too small, the probability of the device being se⁃
lected for retransmission is both small.

We also consider a new design of retransmission signaling, 
as shown in Fig. 2. Under the traditional retransmission 
scheme, after receiving an erroneous packet, the edge server 
only sends a negative acknowledgement (NACK) signal to the 
device, requiring the device to retransmit. Until the edge 
server successfully decodes the data packet, it sends an ac⁃
knowledgement (ACK) signal to the device, and the device 
starts to transmit the next data packet. In our protocol, when 
an edge server receives a packet and detects an error using 
CRC codes, it sends a signal to the corresponding device that 
includes the information shown in Fig. 2.

In Fig. 2, NACK indicates that the packet is transmitted 
with an error, but unlike that in the traditional retransmission 
schemes, it does not indicate that the device needs to retrans⁃
mit the packet. Whether to retransmit needs to be judged ac⁃
cording to the retransmission selection algorithm. Retransmis⁃
sion allowed signal νk indicates whether the device is selected 
for retransmission, which is related to the channel conditions, 
the number of local data, and the importance of the gradient. 

▲Figure 2. Retransmission signaling
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Specifically, νk = 1 indicates that the device k is selected for re⁃
transmission; otherwise νk = 0 indicates no retransmission. 
When νk = 1, it is equivalent to traditional NACK. Error packet 
index represents the gradient position contained in the transmis⁃
sion data packet. If it is selected for retransmission, the device 
can retransmit the gradient of the corresponding position.

According to the received signal, the device will determine 
whether the uploaded packet is transmitted correctly and 
whether it is allowed to retransmit. After that, it retransmits 
the particular data corresponding to the erroneous packet, as 
indicated by the edge server.
4 Retransmission Design

In this section, we first analyze the one-round convergence 
rate with unreliable channels. Then, we propose a new crite⁃
rion to evaluate the gain of retransmission on learning perfor⁃
mance. The retransmission cost is analyzed as well. Based on 
this, we formulate a mathematical optimization problem to 
make a tradeoff between retransmission gain and retransmis⁃
sion cost.
4.1 One-Round Convergence

Due to the PER, during one round of training, the global 
gradient obtained by the edge server using the received gradi⁃
ent is not equal to the theoretical gradient gt in Eq. (4). There⁃
fore, we define the actual global gradient obtained by the ag⁃
gregation under the unreliable channel as ĝt, and we have:

ĝt = ∑
k = 1

K

nk ĝt
k

n , (8)
where ĝt

k is the actual local gradient of device k received by 
the edge server. Therefore, when there exists PER, the model 
update is:
wt + 1 = wt - ηĝt = wt - η ( gt - ot ), (9)

where ot is the deviation of the global gradient introduced by 
unreliable transmission, and we have:

ot = gt - ∑
k = 1

K

nk ĝt
k

n . (10)
To facilitate mathematical analysis, we make the following 

assumption.
Assumption 1: (ℓ-smooth loss function) The global loss 

function is Lipschitz continuous with positive parameter ℓ, 
shown as:

 gt + 1 - gt ≤ ℓ wt + 1 - wt . (11)
Based on the above assumption, we can obtain the conver⁃

gence rate of one round under an unreliable channel.
Theorem 1: When the learning rate η = 1

ℓ
, the training loss 

function in one round can be written as:
E{L (wt + 1 )} ≤ E{L (wt )} - 1

2ℓ E{ gt 2} + 1
2ℓ E{ ot 2}.

(12)
See Appendix A for details.

From Eq. (12), it can be seen that the loss function is con⁃
strained by three terms. The first term E{L (wt )} represents 
the loss function of the previous training round, which is inde⁃
pendent of unreliable transmissions. The second item 1
2ℓ E{ gt 2} is related to the theoretical gradient value of this 
round, which depends on the data in local devices, but is inde⁃
pendent of PER and the retransmission scheme. The third 
term 1

2ℓ E{ ot 2} is the bias term introduced by channel er⁃
rors, which will reduce the loss function, thus affecting the 
convergence speed. In order to reduce the influence of unreli⁃
able channels and improve training performance, we need to 
reduce channel interference. Therefore, we next analyze the 
impact of PER ( pt

k ) on the gradient bias E{ ot 2}. Since we 
focus on the retransmission design of each round, for the con⁃
venience of presentation, we ignore the superscript t that rep⁃
resents the number of training rounds in the following.

We first assume that the machine learning model has a total 
of D layers of neural networks, and the device divides the cor⁃
responding gradients into D packets during the uploading pro⁃
cess. The d-th packet contains gradient updates for the d-th 
layer of the neural network, which is denoted as gk,d. Let indi⁃
cator ρk,d denote whether the transmission of the d-th packet of 
device k is correct. That is, ρk,d = 1 indicates that there is no 
error in the transmission, which means that the edge server 
can decode and obtain the correct gradient gk,d, and there is a 
probability of P ( ρk,d = 1) = 1 - pk. Similarly, we let ρk,d = 0 
denote the occurrence of a transmission error with probability 
of P ( ρk,d = 0) = pk. After the edge server receives the pack⁃
ets, if the error is detected and retransmission is not consid⁃
ered, the corresponding gradient is set to zero, which can be 
written as:

ĝk,d = ì
í
î

gk,d, ρk,d = 1
0, ρk,d = 0  . (13)

Lemma 1: The impact of error transmission on learning per⁃
formance can be expressed as the bias of gradients caused by 
packet transmission errors, which can be written as:
E{ o 2} ≤ K

n2 ∑
k = 1

K

n2
k p2

k ḡ2
k, (14)
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where ḡk = ∑
d = 1

D

gk,d denotes the sum of the gradient of device k.
See Appendix B for details.

First, the gradient bias term is affected by the PER pk. The 
larger the PER of the device is, the larger the error term will 
be, and the smaller the loss function will decrease in one 
round. Second, the error term is affected by the number of lo⁃
cal data on each device. The larger the number is, the more 
significant the impact of the device’s PER on the entire 
model. Third, the error term is also affected by the gradient ob⁃
tained from training. The larger the sum of uploaded gradients 
is, the larger the bias term would be introduced. Finally, since 
the global gradient is obtained by aggregating the uploaded 
gradients of selected devices, the bias term can be expressed 
as the sum of the bias introduced by each device due to unreli⁃
able transmission. Through the above analysis, we can obtain 
the convergence rate of one round in the presence of transmis⁃
sion errors as:
E{L (wt + 1 )} ≤ E{L (wt )} - 1

2ℓ E{ gt 2} +
K

2ℓn2 ∑
k = 1

K

n2
k p2

k ḡ2
k. (15)

4.2 Gain of Retransmission
Next, we analyze the learning performance gain brought by 

retransmission. Define the PER of device k after the retrans⁃
mission selection as qk, which can be written as:

qk = pk(1 - νk(1 - pk ) ), (16)
where pk is the probability that an error occurs in one transmis⁃
sion, and νk (1 - pk ) represents the probability that device k is 
selected for retransmission and there is no error in the retrans⁃
mission. Based on Eq. (14), considering the retransmission, 
the impact of PER on the convergence can be expressed as:
E{ or

2} ≤ K
n2 ∑

k = 1

K

n2
k q2

k ḡ2
k, (17)

where or represents the bias between the theoretical gradients 
and the actual gradients after retransmission.

The PER of the device selected for retransmission will be 
reduced after retransmission, and its impact on learning per⁃
formance will also be reduced. Therefore, we can present the 
following definition to analyze the gain which is achieved by 
retransmission.

Definition 1: We define the gain of retransmission as the 
difference between the bias of global gradients before and af⁃
ter retransmission on the learning performance, which can be 
written as

Ω = K
n2 ∑

k = 1

K

n2
k p2

k ḡ2
k - K

n2 ∑
k = 1

K

n2
k q2

k ḡ2
k = ∑

k = 1

K Ωk, (18)
where Ωk is the gain of retransmission of device k. Since the whole 
system can be regarded as a collection of all devices, we have:

Ωk = K
n2 n2

k ḡ2
k( p2

k - q2
k ). (19)

Eq. (19) reveals that the retransmission gain of the device 
is related to the number of local data, the value of the gradi⁃
ent update, and the reduction of the PER before and after re⁃
transmission. A larger data volume and gradient value of the 
device will bring a larger gain of retransmission to the learn⁃
ing performance. This solution can also be applied to dy⁃
namic wireless channels, just changing the retransmission 
PER to the actual PER.
4.3 Cost of Retransmission

Although device retransmission will bring gains to the learn⁃
ing performance, retransmission will also increase communica⁃
tion latency due to the additional resource required by retrans⁃
mission. Therefore, we give the definition of the cost of retrans⁃
mission as follows.

Definition 2: The cost of retransmission of device k is de⁃
fined as the increase in latency introduced by retransmission, 
which can be expressed as

Ck = qNpk

Rk
νk, (20)

where q is the number of quantization bits and N is the total 
number of parameters.
4.4 Problem Formulation

Until now we have analyzed the gain and cost of retransmis⁃
sion. Retransmission will bring a gain in learning performance 
but increase additional communication costs. Therefore, we 
need to consider the tradeoff between cost and gain when de⁃
veloping a retransmission scheme. Our goal is to maximize re⁃
transmission gain while minimizing retransmission cost. We 
define β ∈ [ 0,1 ] as a factor for the tradeoff between retrans⁃
mission gain and retransmission cost, and the following re⁃
transmission gain-cost tradeoff problem can be established.

P1: min
νk

∑
k = 1

K ( )-βΩk + ( )1 - β Ck , (21)
subject to
νk ∈ {0,1},∀k. (21a)

Eq. (21a) represents the retransmission indicator limitation. 
When β is close to 0, it means that the main goal is to reduce 
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the latency when retransmission is selected. When β is close 
to 1, it means that improving the convergence rate is the 
main goal.
5 Retransmission Optimization and Theoreti⁃

cal Analysis
In this section, we first give a retransmission selection strat⁃

egy based on P1. Then, we analyze the effect of PER on re⁃
transmission selection.
5.1 Optimal Solution

By inserting Eqs. (16), (19), and (2) into Eq. (21), and relax⁃
ing the { 0,1 } variable νk to [0,1], P1 can be formulated as:

P2: min
νk

∑
k = 1

K - β K
n2 n2

k ḡ2
k( p2

k - ( pk - νk pk(1 - pk ) ) 2 ) +

(1 - β ) qNpk

Rk
νk, (22)

subject to
νk ∈ [ 0,1 ] ,∀k. (22a)

Eq. (22) consists of two parts: the first part is related to feder⁃
ated learning (FL) training loss, and the second part is related 
to FL one-round training latency. This is a classical convex op⁃
timization problem, and the optimal solution can be obtained 
through the Karush-Kuhn-Tucker (KKT) condition.

Theorem 2: The retransmission selection policy can be ex⁃
pressed as:

ν*
k = é

ë

ê
êê
ê 1

1 - pk
- (1 - β )qNn2

2βKn2
k ḡ2

k p2
k (1 - pk )2 Rk

ù

û

ú
úú
ú

1

0
,∀k, (23)

where [ X ]10 = min {1, max { X,0 } }. See Appendix C for fur⁃
ther details.

Theorem 2 reveals that the retransmission indicator is a 
value bounded by 0 and 1, which is related to the local data vol⁃
ume, gradient value, data rate, and the PER of the device. Spe⁃
cifically, the probability of being selected for retransmission ν*

k increases with the data number nk and the gradient value ḡk in 
the order of - 1

2 . This is because with a large number of device 
data and gradient values, the learning performance gain ob⁃
tained by retransmission is also large. Also, ν*

k increases with 
the data rate Rk in the order of −1. Since the data rate is large, 
the communication cost of retransmission will be small, and the 
probability of the device being selected for retransmission will 
increase. The impact of the device PER on the retransmission 
selection will be analyzed in the next section.

Since the obtained ν*
k is the optimal solution after relax⁃

ation, we need to consider how to convert it into a { 0,1 } vari⁃
able for retransmission selection. We give two strategies. The 

first is to perform threshold processing on ν*
k, with 0.5 as the 

limit. If ν*
k ≥ 0.5, it means retransmission, and if ν*

k < 0.5, it 
will not be retransmitted. The second is to sort all devices 
from large to small according to the value of ν*

k, and select the 
largest proportion M% of devices of ν*

k for retransmission. The 
choice of M reflects the tradeoff between model accuracy and 
training latency.
5.2 Theoretical Analysis

In this section, we will analyze the impact of PER on the re⁃
transmission indicator. We first define:

mk = (1 - β )qNn2

2βKn2
k ḡ2

k Rk . (24)
From Eq. (24), mk is related to the number of local data, gra⁃

dient value and data rate, but is irrelevant to the PER. When 
the local data volume, the gradient value, and the uploaded 
data rate of device k are large, device k is more important in 
the retransmission design, and mk is correspondingly small. 
Therefore, mk reflects the contribution of the gradient of de⁃
vice k to the global model training, as well as the state of its 
channel. And mk is always greater than 0. Moreover, the im⁃
portance of device decreases as mk increases. Then, in order 
to analyze the influence of pk on the retransmission indicator 
ν*

k, we define the following function:
f ( pk ) = 1

1 - pk
- (1 - β )qNn2

2βKn2
k ḡ2

k p2
k (1 - pk )2 Rk

= 1
1 - pk

-
mk

p2
k (1 - pk )2 , (25)

where f ( pk ) is a strictly unimodal function with pk ∈ [ 0,1 ].
See Appendix D for details.

Theorem 2 reveals that the optimal retransmission indicator 
first increases and then decreases with pk. Therefore, there ex⁃
ists an optimal p*

k that maximizes f ( pk ). This result is rather 
intuitive, which shows that there is a tradeoff between retrans⁃
mission gain and cost. For the device with a low PER, due to 
the robustness of neural networks, retransmission has little 
gain in learning performance, but will increase communica⁃
tion cost. Therefore, its probability of being selected for re⁃
transmission is relatively low. For the device with a relatively 
high PER, there will still be a high PER after retransmission. 
Thus, the gain in model training performance is not large. 
Also, the retransmission cost is large, and the probability of 
being selected is low. Note that devices with intermediate 
PER can improve the accuracy of gradient data after retrans⁃
mission, and will not bring reused data or additional deviation.
6 Numerical Result

In this section, we conduct extensive experiments to verify 
the effectiveness of the proposed retransmission scheme.
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6.1 Simulation Settings
Assume that the coverage area of the edge server is 1.5 km, 

and there are K (K=10) mobile devices that are randomly dis⁃
tributed across the cellular network. The transmit power of 
each device is 28 dBm, and the transmit power of the edge 
server is 33 dBm. Then, the noise power spectral density is 
-174 dBm/Hz and the PER decision threshold m = 0.2 dB. 
Since in the TDMA scenario, all devices occupy one channel 
to upload gradients. The uplink channel takes into account 
large-scale fading, given by 128.1 + 37.6log (d), where d rep⁃
resents the distance between the device and the edge server 
in kilometers. We also consider small-scale fading of the 
channel, specifically represented by Rayleigh fading. All de⁃
vices and the edge server jointly train a CNN model. We 
choose CIFAR-10 and MNIST as datasets. CIFAR-10 con⁃
sists of 50 000 training images and 10 000 testing images. 
And MNIST consists of 55 000 training images and 5 000 
testing images. The datasets are both non-identically and in⁃
dependently distributed (non-IID) and divided into 10 cat⁃
egories. Also, we choose the learning ratio η = 0.05. We 
quantize each element of the uploaded gradient with 16 
bits. All elements of each layer are treated as one packet, 
and a 32-bit CRC code is added. Other major parameters 
are listed in Table 2.
6.2 Performance of Proposed Retransmission Scheme

Based on the previous theoretical analysis, the proposed al⁃
gorithm can make a tradeoff between reducing the gradient ag⁃
gregation bias caused by unreliable transmission and control⁃
ling the transmission delay, thereby accelerating the model 
convergence. We use the global training loss and global test 
accuracy to evaluate the learning performance of the whole 
learning system. In the simulation of this section, the discreti⁃
zation method for the retransmission factor ν*

k is to take 0.5 as 
the threshold. That is, the selection indicator is set to 0 if ν*

k is 
less than 0.5 and set to 1 if it is larger than 0.5.

The comparison algorithms in Fig. 3 are shown as follows.
• Without PER: The wireless channel is ideal and PER-

free, meaning that all gradients can be transmit⁃
ted correctly.

• Without retransmission: There is PER in 
the uplink channel, but retransmission is not 
considered. If the uploaded data packet is 
judged to be incorrect, it will be set to zero and 
the packet will be discarded.

• Existing retransmission schemes: Using the 
existing retransmission scheme based on the 
transmission result. The devices retransmit the er⁃
roneous data packets after receiving the NACK.

• The proposed retransmission scheme: Us⁃
ing the scheme proposed in this paper, we made 
the retransmission selection according to the de⁃
vice’s local data, gradient data, and PER.

We first perform simulations under the CIFAR-10 dataset. 
The curves of training loss and test accuracy versus training 
time under different retransmission schemes are shown in 
Fig. 3. As can be seen from the figure, when transmitting on 
a reliable channel, no retransmission is required. At this 
time, the model training can reach convergence in a very 
short time with a high model accuracy. When the channels 
are unreliable and retransmission is not performed, the per⁃
formance of model training will be greatly degraded. When 
retransmission is not performed, model training can reach 
convergence very fast, but the accuracy of the final model is 
pretty low. As a result, when there is no retransmission, the 
communication cost is relatively small. Although multiple 
rounds of training are required, one round of training latency 
is short, so the overall latency is short. However, due to the 
large bias between the received gradient and the local gradi⁃
ent, the performance of the final trained model is not satisfac⁃
tory, which also confirms the necessity of retransmission. It 
can also be seen that, in the existing retransmission scheme, 
although the accuracy of the final model is high, it takes 
much longer time to converge. This is because the existing re⁃
transmission scheme aims to maximize the throughput, without 
considering selecting retransmission devices, or the importance 
of uploading gradients for model training. Due to a large num⁃
ber of transmitted gradient data and participating training de⁃
▼Table 2. Simulation parameters

Parameters
Path loss model

Transmission power of the edge server
Transmission power of device

Additive white Gaussian noise power
Bandwidth of downlink

Quantization bit of each element
Number of devices

Bandwidth of uplink
CRC code

Values
128.1 + 37.6 log (d)

33 dBm
28 dBm

−174 dBm/Hz
10 MHz

16
10

10 MHz
32

CRC: cyclic redundancy check

Training time/s ×104
0 0.5 1 1.5 2
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1
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×104
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0.8
0.7
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0.5
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(a) Training loss versus training time (b) Training accuracy versus training time

▲Figure 3. Performance comparison between transmission schemes under CIFAR-10

PER: packet error rate
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vices, the wireless FEEL system needs to spend 
a lot of time to achieve model convergence with⁃
out retransmission selection. Therefore, the exist⁃
ing retransmission schemes cannot exhibit good 
performance under the FEEL system. As shown 
in Fig. 3, the retransmission scheme proposed in 
this paper can make the model training converge 
in a short time, and achieve high accuracy at the 
same time. The reason is that the influence of 
different gradients has been considered in the re⁃
transmission. This scheme can maximize the re⁃
transmission gain, reduce the influence of chan⁃
nel errors, and improve the performance of 
model training by selecting proper retransmis⁃
sion devices. In order to further illustrate the ef⁃
fectiveness of our proposed scheme, we increase 
the number of devices to 20 for simulation, and 
the results are shown in Fig. 4.
6.3 Performance with Difference Retrans⁃

mission Ratios
When selecting M% of devices for retrans⁃

mission in each round of transmission, the 
choice of parameter M may reflect the tradeoff 
between model accuracy and training latency in 
our proposed retransmission scheme.

From Fig. 4, when M is too small, e.g., 20% or 
40%, both the convergence rate and final model 
accuracy become low. This is because the im⁃
pact of channel error is strong when the number 
of selected retransmission devices is small. 
When M is too big, e. g., 80%, the convergence 
speed is low and the final accuracy has no sig⁃
nificant advantage. This is because retransmis⁃
sion will increase the latency, and some devices 
are not of high importance, resulting in limited 
retransmission gain.
6.4 Performance Comparison Under Other 

Datasets
To verify the broad effectiveness of our pro⁃

posed scheme, we change the training dataset 
to MNIST for further simulations. MNIST con⁃
sists of 0–9 numbers handwritten by different 
people. The curves of training loss and test ac⁃
curacy are shown in Fig. 6. After the dataset is 
changed, the effect of channel unreliability on 
model training and the performance improve⁃
ment of our proposed scheme can still be seen. 
From Fig. 7, the proportion M of retransmission 
devices still affects performance, which further 
proves the necessity of retransmission device 
selection.

▲ Figure 4. Performance comparison between different retransmission schemes under 
CIFAR-10 with device number K=20

PER: packet error rate

(a) Training loss versus training time (b) Training accuracy versus training time
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7 Conclusions
In this paper, we mainly study the retransmission design for 

FEEL under unreliable channels. We first analyze the impact 
of unreliable transmission on the training performance of the 
FEEL model, and derive the relation between the loss function 
and the channel PER in one round. Based on this, we analyze 
the gain to the convergence rate brought by device retransmis⁃
sion, as well as the communication cost introduced. Then, we 
propose a retransmission selection scheme for FEEL with un⁃
reliable channels, which can make a tradeoff between the 
training accuracy and the transmission latency. It comprehen⁃
sively considers the channel conditions, the number of local 
data, and the importance of updates. We also present the air 
interface signaling and retransmission protocol design under 
the proposed retransmission selection scheme. Finally, the ef⁃
fectiveness of the proposed retransmission scheme is verified 
by extensive simulation experiments. The results show that 
our proposal can effectively reduce the impact of unreliable 
wireless channels on the training of the FEEL model, and is 
superior to the existing retransmission schemes.

Appendix A
Proof of Theorem 1

We first use the second-order Taylor expansion of L (wt + 1 ) to get
L (wt + 1 ) = L (wt ) + (wt + 1 - wt )∇L (wt ) +
1
2 (wt + 1 - wt ) T∇2 L (wt ) (wt + 1 - wt ) . (26)

Based on Eq.  (11) in Assumption 1, we can get
L (wt + 1 ) ≤ L (wt ) + (wt + 1 - wt ) gt + 1

2 β  wt + 1 - wt 2.
(27)

By taking expectation over both sides, it follows
E { L (wt + 1 ) } ≤ E { L (wt ) } + E {-η (gt - ot ) T

gt } +
1
2 βη2E {  gt - ot 2 } . (28)

To remove the cross-term, we fix η = 1
β .  Then it follows

E { L (wt + 1 ) } ≤ E { L (wt ) } -
1
β E { (gt - ot ) T

gt } + 1
2β

E {  gt - ot 2 } =

 E { L ( )wt } - 1
2β

E { (gt - ot ) T
gt } + 1

2β
E { (gt - ot ) T

ot } =
     E { L (wt ) } - 1

2β
E { (gt - ot ) T(gt + ot ) } =E { L (wt ) } -

     1
2β

E {  gt 2 } + 1
2β

E {  ot 2 }. (29)

Thus, we have completed the proof of Theorem 1.

Appendix B
Proof of Lemma 1

First, the bias term can be expressed as the difference be⁃
tween the ground-truth gradient and the aggregated gradient, 
which can be expressed as
E{ o 2} = E{ gt - ĝt 2} =

E
ì
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
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K

nk ∑
d = 1

D (1 - ρk,d ) gk,d
n

2

. (30)
By opening it with the sum of squares formula and substitut⁃

ing the probability of the indicator ρk,d, P ( ρk,d = 0) = pk and 
P ( ρk,d = 1) = 1 - pk, we can get

E{ o 2} = 1
n2 E

ì
í
î

ïï
ïï∑k1 = 1

K ∑
k2 = 1

K ∑
d1 = 1

D ∑
d2 = 1

D

nk1 (1 - ρk1,d1 ) gk1,d1 nk2(1 -

ρk2,d2 ) gk2,d2

ü
ý
þ

ïï
ïï

= 1
n2 ∑

k1 = 1

K ∑
k2 = 1

K ∑
d1 = 1

D ∑
d2 = 1

D

nk1 pk1 gk1,d1 nk2 pk2 gk2,d2 =
1
n2 ( )∑

k = 1

K

nk pk∑
d = 1

D

gk,d
2

≤ K
n2 ∑

k = 1

K

n2
k p2

k( )∑
d = 1

D

gk,d
2

. (31)

Denoting ḡk = ∑
d = 1

D

gk,d, we can obtain the solution in Lemma 1.

Appendix C
Proof of Theorem 2

First, we take the first-order and second-order differentials 
of the objective function, and get

∂∑
k = 1

K ( )-βΩk + ( )1 - β Ck

∂νk
=

- 2βK
n2 n2

k ḡ2
k p2

k(1 - pk - νk(1 - pk ) 2 ) + (1 - β ) qNpk

Rk , (32)

∂2∑
k = 1

K ( )-βΩk + ( )1 - β Ck

∂ν2
k

= 2βK
n2 n2

k ḡ2
k p2

k(1 - pk ) 2 ≥ 0 .(33)
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So the objective function of P2 is convex.  In addition, Eq.  
(22a) is a linear constraint.  Therefore, we can conclude that 
P2 is convex and we can use the KKT condition to find the 
optimal solution.  We define the Lagrangian function L un⁃
der the inequality constraints, as
L = ∑

k = 1

K

β K
n2 n2

k ḡ2
k( p2

k - ( pk - νk pk(1 - pk ) ) 2 ) +

(1 - β ) qNpk

Rk
νk + ∑

k = 1

K

μk( - νk ) + ∑
k = 1

K

λk(νk - 1), (34)
where μk ≥ 0 and λk ≥ 0, which are both constraint coeffi⁃
cients of Eq.  (22a).  Let ν*

k represent the optimal solution of 
P2.  Then using the KKT condition, we can get

∂L
∂ν*

k

= - 2βK
n2 n2

k ḡ2
k p2

k(1 - pk - ν*
k(1 - pk ) 2 ) +

(1 - β ) qNpk

Rk
- μk + λk,∀k, (35)

μk( - ν*
k ) = 0,∀k, (36)

λk(ν*
k - 1) = 0,∀k. (37)

By solving the above equations, we can get the optimal solu⁃
tion, as shown in Theorem 2.

Appendix D
Proof of Theorem 3

Taking the partial derivative of f ( pk ) over pk, it follows
∂f ( )pk∂pk

= p3
k( )1 - pk + 2mk( )1 - 2pk

p3
k( )1 - pk . (38)

Then we define h ( pk ) = p3
k(1 - pk ) + 2mk(1 - 2pk ).  Tak⁃

ing the first-order and second-order differentials of h ( pk ), we 
have:

∂h ( )pk∂pk
= 3p2

k - 4p3
k - 4mk, ∂2 h ( )pk

∂p2
k

= 6pk(1 - 2pk ) . (39)

Let ∂2 h ( )pk

∂p2
k

= 0, we have ∂h ( )pk∂pk
 that increases on (0, 

0. 5) and decreases on (0. 5, 1).  There is a unique p*
k so that

h ( pk )
ì

í

î

ïïïï

ïïïï

< 0, pk ∈ ( p*
k , 0 )

= 0, pk = p*
k

> 0, pk ∈ ( p*
k , 1) . (40)

where p*
k is related to mk.  And since mk > 0, p*

k ∈ (0,1).
Therefore, we can prove that f ( pk ) increases on (0, p*

k ) and 
decreases on ( p*

k ,1).
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