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Abstract: A unified deep learning (DL) based algorithm is proposed for channel state information (CSI) compression in massive multiple-
input multiple-output (MIMO) systems. More importantly, the element filling strategy is investigated to address the problem of model redesign⁃
ing and retraining for different antenna typologies in practical systems. The results show that the proposed DL-based algorithm achieves better 
performance than the enhanced Type Ⅱ algorithm in Release 16 of 3GPP. The proposed element filling strategy enables one-time training of a 
unified model to compress and reconstruct different channel state matrices in a practical MIMO system.
Keywords: deep learning; channel state information; element filling strategy

Citation (IEEE Format) : Z. G. Gao, L. Li, H. Wu, et al., “A unified deep learning method for CSI feedback in massive MIMO systems,” ZTE 
Communications, vol. 20, no. 4, pp. 110–115, Dec. 2022. doi: 10.12142/ZTECOM.202204013.

1 Introduction

In 5G and Beyond networks, massive multiple-input 
multiple-output (MIMO) is considered one of the key en⁃
abling technologies to improve link capacity and energy 
efficiency for wireless communications[1–5]. To achieve 

these potential advantages, simultaneous channel state infor⁃
mation (CSI) is required to optimize the precoding for massive 
MIMO systems. In frequency division duplex (FDD) MIMO 
systems of 4G, the downlink CSI obtained at the user equip⁃
ment (UE) is sent to the base station, and vector quantization 
or codebook-based approaches are adopted as the compres⁃
sion algorithms for CSI to decrease feedback overhead[6]. How⁃
ever, the feedback overhead increases significantly in massive 
MIMO systems because the feedback quantity of the current 
methods increases linearly with the number of antennas. This 
challenge has inspired researchers to explore an effective algo⁃
rithm to compress the CSI in massive MIMO systems. The 
technology of compressive sensing (CS) is exploited to address 
this issue[7–8]. Based on the uncorrelated sparse vector trans⁃
formed from the correlated CSI matrix, the CS-based methods 
are expected to achieve an accurate performance for CSI com⁃
pression. Several CS-based algorithms have been proposed in 
massive MIMO systems, such as the least absolute shrinkage 
and selection operator (LASSO) l1-solver and approximate 
message passing (AMP)[9]. The advanced CS-based algorithms 
which include TV minimization by augmented Lagrangian and 

alternating direction algorithms (TVAL3) as well as block-
matching and 3D filtering (BM3D) -AMP have also been pro⁃
posed to improve the accuracy[10–11]. Although CS-based meth⁃
ods have been investigated comprehensively, it still has inher⁃
ent disadvantages[11]. Firstly, the effectiveness of CS-based 
methods relies on the assumption that CSI matrices are sparse 
in some bases whereas channels are not always sparse in prac⁃
tical systems. And the random projection of CS-based methods 
cannot extract useful information from the channel structure of 
MIMO systems, which has negative impacts on the algorithm 
performance. Finally, the decoding process always requires it⁃
erative solving, therefore the decompression of the CS-based 
method is sub-optimal and time-consuming. In a word, the CS-
based method cannot achieve high performance for the reason 
that the CSI matrix is not sparse enough under the large com⁃
pression ratio, and the slow reconstruction of the CS-based 
method makes it difficult to adapt many real-time scenarios in 
practical systems. Recently, deep learning has been explored 
in signal detection and network planning[12–13]. Motivated by 
the rapid progress of deep learning in computer vision (CV), in 
particular, the successful trial of image compression and re⁃
construction by the autoencoder, the researcher has explored 
DL-based algorithms for CSI compression comprehensively.

A novel residual neural network-based model called CsiNet 
is proposed in Ref. [14], which shows that the performance of 
CsiNet outperforms existing CS-based methods significantly, 
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especially for low compression regions. To exploit the tempo⁃
ral correlations of CSI, a long-short time memory (LSTM) ar⁃
chitecture is combined with CsiNet as CsiNet-LSTM in Ref. 
[15], and it shows that considering the temporal correlations 
benefits the accuracy of CSI reconstruction. The CsiNet is 
modified and redesigned as CsiNet+ in Ref. [16], which im⁃
proves the performance of CSI compression. More importantly, 
a novel quantization layer is introduced in the DL model for 
end-to-end training, which meets the practical requirement of 
CSI feedback in massive MIMO systems. Recently two novel 
DL-based models called CRNet and ACRNet have been pro⁃
posed for better performance in Refs. [17–18]. In Ref. [17], 
multi-resolution CRBlocks are designed in CRNet, and the 
warm-up aided training scheduler is implemented to achieve 
better performance. The result proves the effectiveness of 
multi-resolution CRBlocks and the novel training scheduler. 
In Ref. [18], a novel model called ACRNet is proposed to pro⁃
vide the state-of-the-art performance with network aggregation 
and parametric rectified linear unit (PReLU) activation. Be⁃
sides, the network binarization technique is implemented to 
ensure the high performance and small memory cost. Most of 
the above works have achieved the state-of-art performance 
previously and outperformed CS-based methods significantly 
in some regions, while some problems still exist in the follow⁃
ing aspects. Most enlightening works focus on novel designs of 
the DL model to improve the performance of CSI compression, 
but ignore the quantization of information in bit-streams for 
transmission in practical MIMO systems. These models should 
consider the quantization layer and have end-to-end training 
and testing to evaluate the performance of practical systems. In 
addition, the proposed DL-based algorithms are evaluated in 
the COST2100 dataset[19], which only includes data with the 
same shape. However, the shape of the CSI matrix changes with 
antenna arrangements in massive MIMO systems. Generally, 
misalignment problems exist between the previous model and 
the coming data with different shapes. To our knowledge, there 
are no published works discussing how to deal with this issue in 
practical systems. Motivated by this, a unified DL-based 
method for CSI feedback is proposed in massive MIMO Sys⁃
tems. The rest of this paper are organized as follows.

A novel DL-based network named ACRNet+ is proposed in 
Section 2. To improve the performance in the practical mas⁃
sive MIMO system, the advanced module of channel attention 
and spatial attention is used to enhance the ability of feature 
extraction. And a 3-bit uniform quantization layer is imple⁃
mented in ACRNet+ for end-to-end training in Section 3, 
which minimizes the impact of the accuracy quantization of 
the model. In addition, an element filling strategy is proposed 
to address the incompatible problem of the trained model for 
the CSI matrix with a different size. Section 4 shows the ex⁃
perimental results that ACRNet+ provides better performance 
than the enhanced Type Ⅱ (eType Ⅱ) algorithm in the 901 da⁃
taset which focuses on outdoor scenarios with dual-polarized 

antennas. The element filling strategy enables the trained 
model to compress the diversified CSI matrices accurately 
without further training. Section 5 concludes the paper.
2 System Model

A simple single-cell downlink is adopted in massive MIMO 
systems with Nt antennas at the base station (BS) and Nr anten⁃
nas at UE, where Nt ≥ 1 and Nr = 1 in this paper. The system 
considers orthogonal frequency division multiplexing (OFDM) 
with subcarrier Nc

[20], so the received signal yn at the n-th sub⁃
carrier can be expressed as:

yn = hH
n pn xn + zn , (1)

where hn ∈ CNt × 1 is the downlink channel vector, and 
pn ∈ CNt × 1 is the precoding vector based on CSI. xn ∈ C and 
zn ∈ C are the transmitted symbol and additive Gaussian noise 
for the n-th subcarrier. To obtain the advantage of channel 
gain in massive MIMO systems, the downlink CSI should be 
acquired at the BS to optimize the channel precoding. Since 
the downlink channel matrix Ĥ = [h1,h2,…,hNc

]Hcontains 2 ×
Nc × Nt elements of the float type, the direct feedback of CSI 
for downlink is not feasible obviously. In order to reduce the 
overhead of CSI feedback, a 2D discrete Fourier transform 
(DFT) is used to make the matrix sparse in the angular delay 
domain as[21]

H = Fd ĤF
H
a , (2)

where Fd and F H
a  are DFT matrices with the shape of Nc × Nc and Nt × Nt respectively. The obtained matrix H contains only 

the first Na rows of useful elements whereas other rows of ele⁃
ments are near zero. Although the DFT can reduce the elements 
of the downlink channel matrix, the first Na row of the trans⁃
formed matrix called Ha is still too large to be sent directly 
through the uplink channel. According to the inaccuracy of the 
large compression ratio and the slowing decoding procedure of 
CS-based methods, a DL-based encoder and decoder are con⁃
sidered for CSI compression at UE and reconstruction at the 
BS. An auto-encoder is a neural network-based model to recon⁃
struct the raw data through self-supervised learning. It firstly 
builds the main features into a lower-dimensional representa⁃
tion of the input data, and then the decoder tries to reconstruct 
the data as similarly as possible[22].

The overview of the DL-based model for uplink feedback is 
shown in Fig. 1. The CSI matrix Ha in the angular-delay do⁃
main is obtained from the DFT of Ĥ and matrix truncation. 
The encoder of ACRNet+ compresses the input of Ha into a 
one-dimensional vector v with M elements. Therefore, the com⁃
pressive ratio can be expressed as

η = M
2Na Nt . (3)
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In practical systems, the bitstream is required for uplink 
feedback, so a 3-bit uniform quantizer is used to convert the 
float vector v into a binary vector vb. The above process is ab⁃
stracted as
H = Fq(Fen(Ha, Wen ) ), (4)

where Fq denotes the function of quantization, Fen stands for 
the encoder of ACRNet+ , and Wen is the trainable parameter 
of the encoder. After uplink transmission, the bitstream vb is 
dequantized into the float vector, and then the float feature is 
reconstructed into Ĥa. The decoding process can be formu⁃
lated as
Ĥa = Fde( )Fdq( )vb , Wde , (5)

where Fdq denotes the function of dequantization, Fde stands 
for the decoder of ACRNet+ , and Wde is the trainable param⁃
eter of the decoder. After the decoding process, the estimated 
channel matrix for the downlink can be obtained from the in⁃
verse DFT of Ĥa.
3 Description of ACRNet+

3.1 Design of ACRNet+
ACRNet is one of the most effective models in existing 

works, which provides the state-of-
art performance for CSI compres⁃
sion in COST2100[18]. Based on the 
network aggregation technique, a 
novel feedback block that contains 
parallel convolutional groups is 
implemented to extract relatively in⁃
dependent features[23–24]. In addi⁃
tion, a learnable activation function 
of the parametric ReLU and an ad⁃
vanced training scheme are used to 
boost the performance of the model.

To inherit the advantages of 
ACRNet, ACREnBlock and 
ACRDeBlock are introduced in the 
proposed ACRNet+ .  In addition, 

channel attention (CA) and spatial at⁃tention (SA) are implemented to ex⁃tract the useful features accurately from the CSI matrices, especially for outdoor scenarios with the random⁃ness of multi-path fading and unpre⁃dicted interferences[25]. Inspired by the design of multi-resolution net⁃works for CSI feedback tasks in pre⁃vious works[17], two independent channels with different convolution layers are built to provide more fea⁃ture granularity. After the combination of the features from 
these two channels, CA and SA are used to make further ex⁃
traction of the combined features. Different from the design of 
ACRNet, a quantized layer is added to convert the com⁃
pressed data into bitstreams for feedback transmission on the 
uplink. At the BS, the bitstream is dequantized into the float 
features, and then the compressed vector from the dequantized 
layer is reconstructed into Ĥa through one fully connected net⁃
work and two ACRDeBlocks.

The detailed architecture of ACRNet+ is shown in Fig. 2. 
The image input Ha with the shape 2 × Ha × Ht is fed into 
two independent channels. The first channel includes a 
5 × 5 convolution layer, and the second channel is made up 
of two convolution layers with a 1 × 9 kernel and a 9 × 1 
kernel respectively. Then the outputs of the two channels are 
combined through element addition. To boost the representa⁃
tion power of networks, a convolutional block attention mod⁃
ule (CBAM) is implemented to focus on important features 
and suppress unnecessary ones along two separate dimen⁃
sions[25]. After the adaptive feature refinement by CBAM, the 
output of CBAM passes through the two ACREnBlocks 
which include a 1 × 9 kernel and a 9 × 1 kernel for further 
feature processing, and then the flattened feature from 
ACREnBlock is condensed into the vector with M elements. 
To meet the practical requirement for transmission of wire⁃
less communication, a 3-bit uniform quantizer is imple⁃

▲Figure 2. Proposed ACRNet+ architecture

▲Figure 1. Pipeline of ACRNet+ model for channel state information (CSI) compression
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mented for quantization. The quantizer is embedded in neu⁃
ral networks as the quantization layer for end-to-end training, 
which can minimize the negative impacts on the model accu⁃
racy. At the BS, the bitstream is firstly recovered to the com⁃
pressed vector through dequantization. Then the vector 
passes through a fully connected layer for element augmenta⁃
tion, the output is reshaped in the same dimension as the in⁃
put. Finally, the reshaped feature passes one convolution 
layer with a 5 × 5 kernel and two ACRDeblocks which in⁃
clude a 1 × 9 kernel, a 7 × 7 kernel and a 9 × 1 kernel for 
the final reconstruction.
3.2 Generalization Scheme for CSI Compression

One of the main concerns for DL-based methods is the gen⁃
eralization problem. For data with the same shape, we can 
evaluate the model through the performance of cross validation 
and testing. DL-based methods for CSI compression have been 
proven effective in most previous works. However, the general⁃
ization of the DL-based model has never been discussed for 
data with different shapes. In practical MIMO systems, the 
shape of the downlink channel matrix changes with the ar⁃
rangement of antennas. The misalignment problem happens in 
this scenario. The direct method is to get several models 
trained for different antenna typologies, but it requires huge 
computation resources for several well-trained models as well 
as the corresponding switching strategy. Therefore, the ele⁃
ment filling strategy is proposed to support the training of a 
unified model for different scenarios covering several antenna 
combinations. At first, the dataset with the largest size is se⁃
lected as the benchmark. Then the dataset with other shapes is 
filled by the constant elements with the same shape as the 
benchmark. Finally, a unified DL-based model is trained on 
the hybrid dataset covering the data from several antenna com⁃
binations in massive MIMO systems. Considering the fact that 
most elements in Ha are close to 0.5, the padding element is 
set to 0.5, which can decrease the disturbance of the padding 
elements for the compression and reconstruction of the actual 
elements.

In this paper, we consider three scenarios including  4 × 4  
MIMO, 2 × 4 MIMO, and 1 × 8 MIMO with dual-polarized 
antennas, and the corresponding datasets are represented as 
data1, data2 and data3. During the training process, the real 
and imaginary parts of the data are represented as the third 
dimension, and the shapes for these datasets are 
2 × 32 × 32, 2 × 16 × 32, and 2 × 16 × 32 respectively. 
According to the element filling strategy, we perform the pad⁃
ding operation to data2 and data3, which reshapes them as 
the size of 2 × 32 × 32. After the same shape for these sce⁃
narios is obtained, a unified model is trained on the dataset 
which randomly samples from data1, data2 and data3. We 
compare the performance of the model trained on the hybrid 
dataset with the model trained separately on one of the three 
datasets.

4 Experiment Results and Analysis
Most previous works are based on COST2100, which de⁃

ploys a uniform linear array with 32 antennas at the BS and 
1 024 subcarriers. In this paper, more complicated scenarios 
are considered to evaluate the effectiveness of the DL-based 
model. To evaluate the practical performance of ACRNet+, we 
first compare the performance of ACRNet+ with eType2 algo⁃
rithm of Release 16 (R16) from 3GPP in two outdoor scenarios 
with dual-polarized antennas and two antenna topologies. The 
shape of the two datasets is 2 × 32 × 32. In addition, a uni⁃
fied model is trained on three datasets with different shapes 
through the element filling strategy. The performance of 
ACRNet+ trained on the hybrid dataset is compared with 
ACRNet+ trained separately on one of these datasets.

In order to evaluate the proposed model in more practical 
scenarios, 901data is generated according to the 3GPP Long 
Term Evolution (LTE) structure, in which parameters of chan⁃
nel models are specified in TR38: 901[26]. We compare 
ACRNet+ and eType2 algorithms on 901data containing two 
datasets, in which 16×1 MIMO and 8×2 MIMO with dual-
polarized antennas are used. The generalized cosine similarity 
(GCS) of these two methods is presented in Figs. 3 and 4. The 
figures show that ACRNet+ outperforms eType Ⅱ in terms of 
GCS when consuming similar bits. For the scenario in Fig. 3, 
the GCS of eType Ⅱ is 0.745 4 under 410 bits. The corre⁃
sponding GCS of ACRNet+ is 0.758 9 under 408 bits. It 
should be noted that it is difficult to completely match the 
number of bits for the two algorithms on the x-axis. The num⁃
ber of bits for eType Ⅱ is 410, 636, 770, 1 220, and 1 668, 
and the consumed bits for ACRNet+ are 408, 511, 768, 1 024, 
and 1 536. We can see that the GCS of ACRNet+ is better 
than that of eType Ⅱ although the ACRNet+ requires fewer 
bits. For the scenario in Fig. 4, the advantage of ACRNet+ is 
more obvious. The closest performance for ACRNet+ and 
eType Ⅱ occurs when the number of bits is about 770. The 
corresponding GCS for eType Ⅱ is about 0.793 9 where the 

▲Figure 3. GCS of ACRNet+ and eType Ⅱ for the scenario with 1×16 
multiple-input multiple-output (MIMO)
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GCS of ACRNet+ under 768 bits is about 0.845 8. Finally, it 
can be seen from Fig. 3 that the GCSs of the algorithms are 
not linearly related to the consumed bits. The GCS cannot be 
significantly improved when the used bit is below some thresh⁃
old, and the improvement is also unobvious when the con⁃
sumed bit is enough for the eType Ⅱ algorithm. These results 
provide a useful reference for the actual deployment of these 
algorithms.

One of the main concerns for DL-based CSI compression 
methods is the generalization of the model. When the topology 
of antennas changes, the coming data of the channel matrix 
are incompatible with the original DL-based model. The re⁃
training of the model requires huge computation resources and 
training time. Therefore, an element filling strategy is pro⁃
posed to unify the input shape. Then a unified model is 
trained on the datasets which cover several scenarios with dif⁃
ferent typologies. In the experiment, three datasets including 
4×4 MIMO, 2×4 MIMO, and 1×8 MIMO with dual-polarized 
antennas are generated in outdoor scenarios, and the corre⁃
sponding datasets are represented as data1, data2 and data3. 
The training, validation, and testing sets for each dataset con⁃
tain 85 000, 5 000, and 10 000 samples. The shapes of these 
datasets are 2 × 32 × 32, 2 × 16 × 32, and  2 × 16 × 32 re⁃
spectively. At first, data2 and data3 are reshaped into 2 ×
32 × 32, where the padding element is 0.5 for all the places. 
We mix the reshaped datasets and randomly sample one-third 
of the mixed data as the training set. Therefore, the mixed 
training dataset also contains 85 000 samples. Finally, the per⁃
formance of ACRNet+ trained on the mixed dataset is com⁃
pared with the model trained on the original dataset to evalu⁃
ate the effectiveness of the element filling strategy.

The results of ACRNet+ trained on the mixed dataset and 
the original dataset are presented in Table 1, in which 
ACRNetH represents the performance of the model trained on 
a mixed dataset and ACRNet+ stands for the model trained 
separately on the original dataset. We can see from the table 

that the performance of ACRNetH which needs to be trained 
once is only slightly lower than ACRNet+ which needs retrain⁃
ing for data with different antenna topologies. For example, 
the GCS of ACRNet+ under 15 times compression ratio is 
0.746 2, 0.875 4 and 0.844 9, and the performance of 
ACRNetH that only requires one-time training reaches a simi⁃
lar performance as 0.722 8, 0.850 9 and 0.810 5. The results 
show that the proposed element filling strategy enables the 
unified training of the model for the dataset which contains 
the samples with different sizes, and the corresponding perfor⁃
mance reaches a similar performance trained separately.

One thing that should be noted is that the proposed model 
as well as the mentioned models in the paper addresses the 
CSI compression in low-speed scenarios within 3 km/h, while 
unknown and complex factors on the performance of the CSI 
feedback still exist in high-speed scenarios, which we plan to 
analyze in future works.
5 Conclusions

In this paper, a unified DL-based model called ACRNet+ 
has been proposed to compress the CSI in massive MIMO sys⁃
tems. The proposed model outperforms eType Ⅱ algorithms in 
R16 of 3GPP in two outdoor scenarios. More importantly, the 
element filling strategy allows a unified training of the model 
on the dataset containing samples with different shapes, which 
enables the one-time training of DL-based model to address 
the CSI compression for different antenna typologies. The ex⁃
perimental results show that the performance of a unified 
model can reach a similar performance of the DL-based model 
trained separately for the dataset of a certain scenario.
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