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Abstract: A content-aware multi-step prediction control (CAMPC) algorithm is proposed to determine the bitrate of 360-degree videos, aim⁃
ing to enhance the quality of experience (QoE) of users and reduce the cost of video content providers (VCP). The CAMPC algorithm first em⁃
ploys a neural network to generate the content richness and combines it with the current field of view (FOV) to accurately predict the probabil⁃
ity distribution of tiles being viewed. Then, for the tiles in the predicted viewport which directly affect QoE, the CAMPC algorithm utilizes a 
multi-step prediction for future system states, and accordingly selects the bitrates of multiple subsequent steps, instead of an instantaneous 
state. Meanwhile, it controls the buffer occupancy to eliminate the impact of prediction errors. We implement CAMPC on players by building 
a 360-degree video streaming platform and evaluating other advanced adaptive bitrate (ABR) rules through the real network. Experimental re⁃
sults show that CAMPC can save 83.5% of bandwidth resources compared with the scheme that completely transmits the tiles outside the 
viewport with the Dynamic Adaptive Streaming over HTTP (DASH) protocol. Besides, the proposed method can improve the system utility by 
62.7% and 27.6% compared with the DASH official and viewport-based rules, respectively.
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1 Introduction

With the rapid development of 5G technologies, the 
immersive viewing experience led by Virtual Real⁃
ity (VR) is becoming increasingly popular. The 
360-degree video, which is one of the most critical 

portions of VR applications, has attracted a good deal of atten⁃
tion on some commercial streaming platforms, such as You⁃
tube and Bilibili. Although the 360-degree video brings a 
brand-new experience to users, it confronts new challenges as 
well. Compared with conventional 2D video streaming, the de⁃
livery of 360-degree video has much more bandwidth require⁃
ments due to its panorama feature.

Driven by the characteristic of the user field of view (FOV), 
researchers are exploring a solution that spatially divides a 
360-degree video into small parts called tiles and transmits 
them in different video qualities to cope with the large con⁃
sumption of bandwidth. In addition, benefitting from the Dy⁃

namic Adaptive Streaming over HTTP (DASH) Protocol, adap⁃
tive bitrate (ABR) algorithms have made an enormous contri⁃
bution to video streaming, especially over dynamic wireless 
network conditions. By pre-coding the video into multi-bitrate, 
the client may request video segments of different qualities to 
meet the challenge of network fluctuations.

Therefore, tile-based hyper text transfer protocol (HTTP) 
adaptive streaming is a promising approach to achieving a bet⁃
ter quality of experience (QoE) in a 360-degree video streaming 
system. The HTTP server usually crops the panoramic video 
into multiple tiles spatially, and then slices and encodes each 
tile into multi-bitrate segments. The client requests the most ap⁃
propriate bitrate version of each tile based on his viewport and 
current network status, decodes these tiles, and then renders 
them into a 360-degree video for playback. In general, the tile 
that overlaps viewports is delivered in high quality, while other 
tiles outside the FOV are delivered in lower quality. Due to the 
human visual characteristics, the user can only see the FOV ar⁃
eas, so a significant reduction in the video bitrate outside the 
viewport will not affect the users’ experience; on the contrary, 
it can save bandwidth and transmission costs, and avoid net⁃This work was supported in part by ZTE Corporation under Grant No. 

2021420118000065.
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work congestion in the case of multiple users.
In fact, due to the randomness of the user’s viewing angle 

and wireless network bandwidth, the low prediction accuracy 
will lead to an inappropriate bitrate version selected by the 
tiles in the viewport. To handle these prediction errors, the 
QoE is guaranteed by delivering tiles around the prediction 
viewport at high quality and keeping the buffer at a reasonable 
range without stopping the playback waiting buffer. In order to 
reasonably allocate the wireless network bandwidth resources, 
it is necessary to estimate the future viewport distribution and 
network state, and determine the bitrate version of the 
prefetched segments that match the overall network capacity.

Specifically, we propose a bandwidth resource scheduling 
algorithm content-aware multi-step predictive control 
(CAMPC) for 360-degree video streaming, which uses an on⁃
line predictor to obtain throughput estimation. The content 
perception score obtained by the offline machine learning 
method and online user viewport trace is used to predict the 
probability distribution of future user viewport locations. For 
tiles with high viewport probability, the change of buffer oc⁃
cupation in the next period is predicted based on the through⁃
put estimation. The bitrate decision is made by optimizing 
the predicted QoE within the viewport and the future buffer 
occupancy prediction. The remaining total bandwidth will be 
distributed according to the distribution probability for tiles 
with low viewport probability. The main contributions are 
shown as follows.

• We develop a content-aware method to predict the user’s 
viewport location. The grayscale image is obtained by a 
trained semantic segmentation model with each frame of the 
video after spatial partition as input, and the numbers of differ⁃
ent grayscale pixels are calculated to obtain the content rich⁃
ness of the current frame. Since users prefer to view the frame 
with richer content, the probability distribution of future view⁃
ing is obtained by the weighted content richness with the cur⁃
rent user viewport.

• We propose a multi-step predictive bitrate adaptation al⁃
gorithm to generate prospective bitrate decisions for players 
with high probability in the future viewport, which includes 
predicting network throughput using the Kalman filter, pre⁃
dicting buffer occupation, and solving predictive control prob⁃
lems using the generalized predictive control method.

• We provide experimental tests by building a 360-degree 
video streaming platform to implement the proposed band⁃
width resource scheduling algorithm and evaluate the network 
status algorithm through the practical network. Experimental 
results show that compared with the existing online bandwidth 
resource scheduling algorithms, the proposed algorithm can 
save bandwidth while ensuring the quality of user experience. 
Compared with the complete transmission of 360-degree vid⁃
eos, the bandwidth can be saved by 83.5% in the tiles out of 
the viewport, and the CAMPC can improve the system utility 
by 62.7% and 27.6% compared with low-on-latency-plus 

(LOLP) and DYNAMIC solutions which have been integrated 
to the official DASH.js player in v3.2.0 and the most straight⁃
forward viewport-based bitrate adaptation algorithm.

The rest of the paper is organized as follows. Section 2 sur⁃
veys related work on a tile-based 360-degree video streaming 
over DASH. Section 3 presents the system structure and QoE 
model for evaluation. Section 4 proposes the FOV prediction 
algorithm combining FOV and content priority. The band⁃
width prediction and the bitrate selection algorithm are in Sec⁃
tion 5. Section 6 describes the system implementation and 
throughput measurement in reality besides the performance 
evaluation. Finally, Section 7 concludes the paper and out⁃
lines future directions.
2 Background and Motivation

The 360-degree video is constructed by camera splicing. To 
play a 360-degree video, the client needs to run on a custom 
360-degree video player or head-mounted displays (HMDs) to 
render the video. Some commercial 360-degree video content 
providers usually employ a simple approach that streams the 
entire panoramic content regardless of the viewport[1], such as 
the widely used equirectangular projection (ERP) format, 
which causes considerable waste of wireless bandwidth re⁃
source, as users always pay attention to only a tiny portion of 
the panoramic scene in their viewports.

Inspired by these observations, several studies have aban⁃
doned traditional flat video transmission methods and begun 
to propose tile-based solutions that adaptively fetch only the 
content inside the predicted FOV or fetch the content in FOV 
with higher quality than the parts out of FOV to meet the de⁃
mand of 360-degree video streaming systems. XIE et al.[2] lev⁃
eraged a probabilistic approach to prefetch tiles countering 
viewport prediction errors, apparently reduced the side effects 
caused by wrong head movement prediction, and designed a 
QoE-driven viewport adaptation system. QIAN et al.[3] adopted 
a viewport-adaptive approach and formulated an optimization 
algorithm to determine the tile quality, achieving high band⁃
width reduction and video quality enhancement on Long Term 
Evolution (LTE). SONG et al. [4] proposed a two-tier streaming 
architecture using scalable video coding (SVC) techniques, 
which included two layers, namely, the basic layer (BL) and 
the enhanced layer (EL). In contrast, a fast-switching strategy 
was proposed by generating multiple video streams with differ⁃
ent start times for each encoded enhanced layer chunk, which 
can be randomly accessed at any instant to adapt to the user 
viewport change immediately to achieve the optimal trade-off 
between video quality and streaming robustness.

According to the above research, tile-based 360-degree 
video transmission methods have been proven to save many 
bandwidth resources, whereas viewport prediction and band⁃
width prediction are two of the most critical factors. To a great 
extent, the user’s FOV would be influenced by the video con⁃
tent. Conventional viewport prediction approaches pay atten⁃
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tion to the past viewing behavior of many users who have 
watched the same or similar videos, based on the head move⁃
ment trajectory in the dataset. SUN et al. [5] developed a trun⁃
cated linear prediction method by which we only use past 
samples that are monotonically increasing or decreasing for ex⁃
trapolation. EPASS360[6] studied the similarity of multi-user 
viewing spatial locations, looking for similarities in patterns 
across a wide range of data through a deep learning LSTM net⁃
work. These approaches apply only to the video on demand 
(VOD) case because the past viewing behavior is not available 
for live video streaming for the first time. The Pano[7] drew re⁃
searchers’ attention to the content of the video. FENG et al.[8] 
developed a new viewport prediction scheme for live 360-de⁃
gree video streaming using video content-based motion track⁃
ing and dynamic user interest modeling. QIAO et al.[9] studied 
human attention over the viewport of 360-degree videos and 
proposed a novel visual saliency model to predict fixations 
over 360 videos through the multi-task deep neural networks 
(DNN) method. YUAN et al.[10] proposed a simple yet effective 
rate adaptation algorithm to determine the requested bitrate 
for downloading the current video segment and preserved both 
the quality and the smoothness of tiles in FoV. WEI et al. [11] 
proposed a hybrid control scheme presented for segment-level 
continuous bitrate selection and tile-level bitrate allocation for 
360-degree streaming over mobile devices to increase users’ 
quality of experience.

On the other hand, to optimize QoE in the DASH video 
streaming system, the bitrates decided by the client-side ABR 
algorithm should meet the bandwidth requirements. 
Throughput-based methods often employ various mechanisms 
to predict the end-to-end available bandwidth, such as Expo⁃
nential Weighted Moving Average (EWMA) and Support Vec⁃
tor Regression. The estimation accuracy of throughput will af⁃
fect the allocation decision. SOBHANI et al. [12] utilized 
Autoregressive-Moving-Average (ARMA) [13] and Generalized 
Autoregressive Conditional Heteroscedastic (GARCH) in or⁃
der to predict the average and the variance of bandwidth. 
YUAN et al. [14] proposed an ensemble rate adaptation frame⁃
work for DASH, which aims to leverage the advantages of mul⁃
tiple methods involved in the framework to improve the QoE 
of users. The buffer-based algorithm, such as BOLA[15], formu⁃
lated bitrate adaptation as a utility maximization problem, de⁃
vised an online control algorithm, and used Lyapunov optimi⁃
zation techniques to minimize rebuffering and maximize video 
quality.

However, to achieve a fast and smooth response among mul⁃
tiple players of the 360-degree video at the same time, ABR 
algorithms should quickly adapt to sustainable changes while 
avoiding the bit rate jitter caused by sudden throughput 
changes. Existing methods are inherently unable to achieve 
this goal because they cannot determine whether a current 
change is transient or persistent with a single step of predic⁃
tive information. Thus, our work uses the idea of combining 

content awareness with the current viewport to calculate the 
viewing probability of spatial video blocks and provides effi⁃
cient network state quantification and prediction algorithms.
3 Proposed Framework

3.1 System Architecture
As shown in Fig. 1, the framework of the 360-degree video 

transmission system consists of a server and a set of video 
players. The server includes a preprocessing module and a 
sending module. The preprocessing module converts a 360-de⁃
gree video from the ERP format to the Cubemap Projection 
(CMP) and separates it into six tiles spatially so that each tile 
corresponds to a cube map. Then each tile is divided into a set 
of temporal segments and encoded at different bitrate levels 
according to DASH, and the information which describes the 
structure of bitrate representations for each tile is stored in the 
media presentation description (MPD). The sending module 
sends the segments at a specific bitrate selected by the ABR 
controller of the player.

The client includes a receiving module, video players, a sys⁃
tem monitor, multi-step predictors, and bitrate decision en⁃
gines. The receiving module receives and decodes the tiles to 
reconstruct the 360-degree video. Players extract and display 
the viewport corresponding to the current viewing direction of 
the user. The system monitor is responsible for monitoring the 
viewport, network status (e. g., throughput), and player status 
(e.g., buffer occupancy). Multi-step predictors and bitrate deci⁃
sion engines assist ABR controllers to compute the bitrate 
level of the next segment and return it to the server. Each 
multi-step predictor module calculates the future throughput 
through the network status, and the bitrate decision engines 
obtain the bitrate level by optimizing the target based on the 
multi-step throughput and buffer occupancy prediction.
3.2 Problem Formulation

The server divides a 360-degree video into N tiles of the 
same size in space corresponding to a cube map, and each tile 
V is initialized to a DASH player. Then, each tile is sliced into 
M × K segments, indicating that there are M optimal bitrate 
versions divided into K segments in time, and each segment 
has the exact duration of L seconds. The system encapsulates 
and stores N × M × K segments in an HTTP server for adap⁃
tive streaming.

The serial number of the tile V is represented by i, where 
i ∈ Z. V in and V out indicate that the current tile is located in⁃
side and outside the viewport, respectively. For V in, the qual⁃
ity of experience is determined by three factors: the selected 
bitrate version, the bitrate fluctuation range, and the rebuffer⁃
ing time. Spatial tiles that are not in the viewport will not af⁃
fect QoE. For this reason, the value of QoE is given by:

ϕ (Vi ) = ∑
k = 1

K

r (V in
i,k ) - ∑

k = 1

K - 1
| r (V in

i,k + 1 ) - |r (V in
i,k ) - μ ∑

k = 1

K

TV in
i,k, (1)
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where r (V in
i,k ) is the bitrate version when the player Vi starts 

to download chunk V in
i,k, Tvi,k is the rebuffering time of chunk 

V in
i,k, and μ is the rebuffering penalty which is generally set 

to μ = 4.3.
The system ensures that the bandwidth is saved as much as 

possible when the QoE is the highest. The system utility in⁃
cludes the QoE and the bandwidth consumed compared with 
the situation where players request all chunks at the highest 
bitrate, which is:

ϕ (V ) = ωu ∑
Vi ∈ V in

i = 1

N

αi ϕ (Vi ) + ωo ∑
Vj ∈ V out

j = 1

N D̄Vj
- DVj

D̄Vj , (2)
where (α1,α2,⋯,αN ) is the importance of the tile depending 
on the percentage in the viewport, Vi indicates the tile inside 
the viewport, Vj indicates the tile outside the viewport,  D̄Vj

 and 
DVj

 respectively represent the bandwidth consumed by the 
player Vj if chunks are buffered at the highest bitrate and the 
bandwidth consumed by the actual download, and D̄Vj

- DVj

D̄Vj

 
means the bandwidth saving rate of the player Vj. ωu and ωo are the weights of QoE and transmission cost respectively. A 
higher ωu means more emphasis on the QoE and vice versa. 
We take ωu = 0.5 and  ωt = 0.5.

We find a sequence of suitable bitrate versions for each tile 

Vi to schedule bandwidth resources that maximize the system 
utility and satisfy:

ì

í

î

ï
ïï
ï

ï
ïï
ï

∑
Vi ∈ V in

i = 1

N ∑
k = 1

K

r (Vi,k ) ≤ C

r (Vi,k ) ∈ R              . (3)
Our solution consists of the following aspects:

• Prediction of the probability distribution of the viewport on 
spatial tiles, including viewport estimation and prediction 
based on content;
• Computation of multi-player total bandwidth and estimation 
of the bitrate constraint C (or throughput);
• Decision on the optimal version of each tile.

In the following section, we will address each of these 
aspects.
4 Viewport Prediction

A distinctive feature of 360-degree video is that the attention 
is not evenly distributed. Therefore, the viewport-driven stream 
is an effective solution to the improvement of the quality of the 
360-degree video, but it is always challenging to predict the 
viewpoint trajectory accurately. Recent studies have proposed 
adaptive bitrate algorithms based on FOV prediction, but these 
algorithms have the following shortcomings. Firstly, it lacks 
consideration for the video content itself. Secondly, there is a 
strong dependence on the FOV, and any FOV prediction error 

▲Figure 1. Streaming video system structure
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probably causes a decline in video quality and even significant 
rebuffering. Therefore, in this section, we propose a viewport 
prediction approach based on the priority of FOV and content.
4.1 FOV priority

The system divides the 360-degree video into six faces cor⁃
responding to a cube map as in Fig. 2(a), where six video 
tiles are placed on the six faces of the cube. The browser ren⁃
ders it into a sphere, and the VR user is located in the center 
of the sphere to observe the surface of the sphere. The red 
point is the center point on each surface of the cube, with the 
Cartesian coordinates of the point in brackets. The spherical 
coordinates of each tile mapped on the sphere are shown in 
Table 1, expressed in the form of latitude and longitude, and 
the latitude and longitude centers mean the spherical coordi⁃
nate of the center of the tile. In Fig. 2(b), the green area 
shows the user’s FOV, the yellow area indicates that a part 
of the current tile is inside the FOV and may be viewed later, 
and the red area illustrates that the current tile is absolutely 
outside the FOV. We calculate the overlap between the tile 
and FOV according to Table 2 to get the priority of the tile. 

The higher the value, the higher the proportion of the tile in 
the FOV, and the higher the bitrate version should be buff⁃
ered later.

The FOV of common head-mounted devices is about 110 
degrees. Since the final verification scene is a browser win⁃
dow, obviously it is easier to obtain the spherical coordinates 
of the center of the window. We define the priority of each tile 
based on the relative position of each face and the center of 
the viewport. As shown in Table 2, the system divides the pri⁃
ority into five levels: 100, 75, 50, 25, and 0. In order to obtain 
the final FOV priority, the adaptive bitrate algorithm traverses 
latitude and longitude in order from high score to low score to 
find the mapping interval of the two dimensions.

4.2 Content Priority
Different from predicting the future viewport based only on 

the online viewport, the system server will convert the original 
video into frames in advance, and perform operations such as 
gradient calculation and semantic segmentation through the 
pre-trained neural network model, to get the priority of bitrate 
allocation shown in Fig. 2(b).

In this work, we mainly use FC-DenseNets with U-Net struc⁃
ture as a model for extracting features. Through the 56-layer 
network, the model analyzes content features and then classi⁃

▲ Figure 2. (a) 360-degree video segmentation that the content-aware 
multi-step prediction control algrithm (CAMPC) uses to judge the im⁃
portance of tiles; (b) example of FOV priority allocation according to 
FOV at a certain moment

▼Table 1. Spherical coordinates of tiles

V1
V2
V3
V4
V5
V6

Latitude Range
[ 225°, 315°]
[ 45°, 135° ]
[ 0°, 360° ]
[ 0°, 360° ]

[135°, 225°]
[ 315°, 45° ]

Latitude Center
270°
90°
*
*

180°
0°

Longitude Range
[ 45°, 135°]
[ 45°, 135° ]

[ 0°, 45° ]
[135°, 180°]
[ 45°, 135° ]
[ 45°,  135° ]

Longitude Center
90°
90°
0

180°
90°
90°

▼Table 2. Tile priority and spherical coordinates mapping relations
Priority

V1

V2

V3
V4

V5

V6

100

(90°, 270°)

(90°, 90°)

(0°~5°,*)
(175°~180°,*)

(90°, 0°)

(90°, 180°)

75

(45°~135°,
225°~315°)

(45°~135°,
45°~135°)

(5°~10°,*)
(170°~175°,*)

(45°~135°,
135°~225°)

(45°~135°,
315°~45°)

50
(10°~170°,
225°~315°)
(45°~135°,
180°~360°)
(10°~170°,
45°~135°)
(45°~135°,
0°~180°)
(0°~45°,*)

(135°~180°,*)
(10°~170°,
135°~225°)
(45°~135°,
270°~90°)
(10°~170°,
315°~45°)
(45°~135°,
90°~270°)

25

(10°~170°,
180°~360°)

(10°~170°,
0°~180°)

(0°~90°,*)
(90°~180°,*)

(10°~170°,
270°~90°)

(10°~170°,
90°~270°)

0

Others

Others

(90°~180°,*)
(0°~90°,*)

Others

Others
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fies and slices them. After training 300 samples in 300 epochs 
through the model, a better checkpoint is obtained, and the fol⁃
lowing semantic segmentation results are obtained by using the 
own dataset as the test data. Among them, the segmented cat⁃
egory must be consistent with the category applied in training.

The original image shown in Fig. 3(a) is inputted into the 
trained network model to obtain segmentation results as in Fig. 3
(b) and then transformed into an image with only 0 and 255 gray⁃
scales as shown in Fig. 3(c). Despite some errors and the defect 
that there are unclear boundaries of categories, the results are 
generally sufficient to judge the priority of content perception. 
We count the number of black and white pixels on the obtained 
grayscale image. The whiter pixels there are, the richer the im⁃
age content. The higher priority of content perception means 
that in the MPD file of the video tiles, the bandwidth attribute 
corresponding to each bitrate level will be relatively higher. In 
other words, the video segment has a larger file size than the seg⁃
ment with a lower perception priority, containing complex con⁃
tent that may grab the user’s attention. After the above process 
is performed on each frame of the original video, the average 
value of the content richness of each video segment can be calcu⁃
lated, and this information is stored in the JavaScript Object No⁃
tation (JSON) file used for the request for the terminal to read 
while allocating bandwidth among multi-players.
4.3 Probability Distributions of Future FOV

The viewport distribution probability αi of any tile Vi in the 
future is determined by the FOV priority SF and content per⁃
ception priority SC. The total priority αi of a tile can be calcu⁃
lated by S = ωF SF + ωC SC, where ωF represents the weight of 
SF, ωC represents the weight of SC, and they depend on the cur⁃
rent occupancy of the buffer Bf,k:• Bf,k ≥ Br - L (when ωF = 0.3,   ωC = 0.7) means that when 
the video buffer is sufficient, more emphasis is placed on the 
score based on the richness of video content, where Br repre⁃
sents the length of the safe buffer that players want to keep, 
and L represents the duration of the video segment.

• Bf,k ≤ L (when  ωF = 0.8,   ωC = 0.2) means that the FOV 

score is more emphasized while the insufficient buffered video 
is facing the danger of rebuffering.

• L ≤ Bf,k ≤ Br - L and ωF = 0.5,   ωC = 0.5 represent that 
when the video buffer occupancy is within the normal range, 
the content score and the FOV score are jointly influenced by 
the priority.

S represents the importance of the impact of the current 
face on the QoE. Since the calculation method for the total 
score of each tile may be different, it is necessary to normalize 
the score S by αi = Si

∑
j = 1

N

Sj

, and finally, get a set of probability 

distributions (α1,α2,⋯,αN ) of future FOV.
5 Adaptive Bitrate

5.1 Video Streaming Model
The download process of video slices is modeled as a time 

sequence[16], with the start download time of chunk Vi,k as the 
sampling point. At this time, the buffer occupancy is repre⁃
sented as b (Vi,k ). After Vi,k is downloaded, the buffer is con⁃
sumed for r (Vi,k )L

c (Vi,k )  as the user watches the video and is filled 
with L seconds when the time has passed. Therefore, when the 
download of Vi,k has been completed, the buffer occupancy can 
be expressed as:

b (Vi,k + 1 ) = b (Vi,k ) - r (Vi,k )L
c (Vi,k ) + L. (4)

The premise is b (Vi,k ) > r (Vi,k )L
c (Vi,k )  to ensure that the content of 

the chunks in the buffer is enough to play without rebuffering. 
Similarly, in the case before downloading chunk Vi,k, we have

b (Vi,k ) = b (Vi,k - 1 ) - r (Vi,k - 1 )L
c (Vi,k - 1 ) + L. (5)

In order to describe 
the relationship be⁃
tween the bitrate 
change and the buffer 
occupancy evolution, 
we make a subtraction 
between Eqs. (4) and 
(5). Since previous stud⁃
ies showed that the 
throughput of a cellular 
network would not 
change significantly for 
a period of time, we as⁃
sume c (Vi,k + 1 ) = c (Vi,k ), 
and ξ (Vi,k ) is used to ex⁃▲Figure 3. Analyzing the priority of content perception under the semantic segmentation model
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press the impact of this assumption, which obtainins that

b (Vi,k + 1 ) = 2b (Vi,k ) - b (Vi,k - 1 ) - Δr ( )Vi,k L

c ( )Vi,k
+ ξ (Vi,k )

. (6)
The adaptive bitrate algorithm among multi-players needs to 

balance a set of conflicting QoE elements such as video quality 
maximization, rebuffering events minimization, and quality fluc⁃
tuations. For chunks in V in that directly affect the QoE, we opti⁃
mize the QoE metrics over the multi-step prediction horizon and 
at the same time control the future buffer occupancy. And for 
chunks in V out of which the importance is obviously less than 
chunks inside FOV, we subtract the predicted bandwidth and 
the used bandwidth to obtain the currently available bandwidth, 
and then according to (α1,α2,⋯,αN ) we allocate the remaining 
bandwidth to each tile. Note that the tiles contained in sets V in 
and V out are updated in real-time as the FOV changes.

Since the network status, in reality, is hard to predict accu⁃
rately, it requires the algorithm performance to be robust to 
the prediction error. Therefore, minimizing buffer control er⁃
ror achieves quality maximization and rebuffering minimiza⁃
tion simultaneously by keeping buffer occupancy at a con⁃
stant level Br. However, due to changes in throughput, accu⁃
rate control of buffer occupancy requires frequent quality 
switching. Since buffer occupancy changes will not affect 
QoE directly and switching bitrates reduces QoE, it should 
tolerate some buffer occupancy fluctuations but limit the vari⁃
ability of video quality. Therefore, the optimization goal is de⁃
signed to minimize the buffer control error and the weighted 
combination of the bitrate change Δr (Vi,k ) = r (Vi,k ) -
r (Vi,k - 1 ) between two consecutive video chunks. Then the to⁃
tal cost function from chunks 1 to K for any tiles in V in is ex⁃
pressed as

J K1 = E { ∑
k = 1

K [ b (Vi,k + 1 ) - br (Vi,k + 1 ) ]2 + ∑
k = 1

K [ λkΔr (Vi,k ) ]2 },
(7)

where λk is the penalty of changing the bitrate at Vi,K. The algo⁃
rithm controls b (Vi,k + 1 ) to smoothly reach br (Vi,k + 1 ) along the 
trajectory br (Vi,k + 1 ) = βb (Vi,k ) + (1 - β ) Br, where β ∈ [ 0,1). A 
smaller β means moving towards br (Vi,k + 1 ) faster. The defini⁃
tion of the cost function allows us to meet the requirements of 
different users for video playback. A larger λ is employed if us⁃
ers are more concerned about smooth playback. A trimmer is 
adopted in cases where they do not care about bitrate variations.

When the average throughput c (Vi,k ) ,…,c (Vi,K ) of down⁃
loading K chunks in the future is known, the bitrate 
r (Vi,k ) ,…,r (Vi,K ) allocated to each chunk can be obtained by 
minimizing the cost function. Therefore, the bitrate selection 
for Vi,K in V in can be formulated as an optimal predictive con⁃
trol problem over an N-step horizon.

min Ĵ k + T
k + 1 = E { ∑

t = 1

T [ b̂ (Vi,k + t|Vi,k ) - br (Vi,k + t ) ]2 +

∑
t = 1

T [ λtΔr (Vi,k + t - 1 ) ]2 }

s.t.
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b (Vi,k + 1 ) = 2b (Vi,k ) - b (Vi,k - 1 ) - Δr ( )Vi,k L

c ( )Vi,k
+ ξ (Vi,k )

br (Vi,k + 1 ) = βb (Vi,k ) + (1 - β ) Br, β ∈ [ 0,1)
b (Vi,1 ) = L,b (Vi,k ) ∈ [ L,Bm ]
r (Vi,k ) ∈ R,λt = λ(Vi,T - t + 1 )   ,

(8)
where the b̂ (Vi,k + t|Vi,k ) is the t-step ahead estimated value of 
the buffer occupancy while downloading Vi,k + 1 up to Vi,k + t, and λt is the discount rate for switching bitrate from r (V in

i,k + t ) to r (V in
i,k + t + 1 ). And as the number of prediction steps in⁃

creases, λt is gradually reduced to λ(Vi,T - t + 1 ), representing 
that the far future will have less impact on the current cost.

With the bandwidth prediction ĉ [ Vi,k,Vi,k + T - 1 ] of the future 
K chunks as the input, the prediction optimization controller 
outputs the bitrate r (Vi,k ) selected for Vi,K so that the QoE indi⁃
cators achieve the expected balance.
5.2 Link Bandwidth Predictor

The algorithm first gets the real-time throughput and then 
uses the Kalman filter method to obtain the predicted value 
used in the bitrate selector for control optimization.

The Kalman filter dynamically adjusts parameters to output 
the estimated value for online prediction. The prediction is 
based on two equations: a dynamic state equation that describes 
the dynamics hidden state (e.g., the predicted bandwidth) and a 
static output equation describing the relationship between the 
hidden state and the measured value (e.g., throughput). The Kal⁃
man filter method, which can filter out temporary throughput fl
uctuations and reflect the stable change, matches the observa⁃
tions in the previous work that the evolution of the throughput 
within a session exhibits stateful characteristics and the through⁃
put is essentially Gaussian within each state.

The throughput prediction model based on the Kalman fil⁃
ter employs a classic time series model and an auto-regressive 
model assuming c (Vi,k + 1 ) = ∑j = 0

p
aj c (Vi,k - j) + w (Vi,k ), where 

{aj}
p

j = 0 is the weight parameter and w (Vi,k ) is Gaussian noise 
with zero mean, satisfying W = E [ w (Vi,k )2 ]. Existing 
works[17–18] have shown that the network throughput is piece⁃
wise stationary. The statistical properties, including mean and 
variance, do not change over tens of seconds or minutes. We 
assume the dynamic state model is c (Vi,k + 1 ) = c (Vi,k ) +
w (Vi,k ), where c (Vi,k ) represents the average download speed 
that needs to be estimated during the downloading process of 
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the video chunk Vi,k.
Let v (Vi,k ) denote the video throughput measurement when 

downloading chunk Vi,k. Recent studies show that the observed 
throughput fluctuates around the link capacity following 
Gaussian. Therefore, v (Vi,k ) is modeled as the summation of 
capacity c (Vi,k ) and measurement noise q (Vi,k ) denoted by Q =
E [ q (Vi,k )2 ]. Finally, the whole system model is given by:

ì
í
î

ïï

ïïïï

c ( )Vi,k + 1 = c ( )Vi,k + w ( )Vi,k

v ( )Vi,k = c ( )Vi,k + q ( )Vi,k . (9)
The Kalman filter consists of model prediction and measure⁃

ment correction. In the prediction stage, the Kalman filter 
uses the estimated value of the previous link capacity 
ĉ (Vi,k - 1 ) to predict the current state:

ĉ (Vi,k|Vi,k - 1 ) = ĉ (Vi,k - 1 ). (10)
Then the initial estimate of capacity ĉ (Vi,k|Vi,k - 1 ) is cor⁃

rected to a new estimated value ĉ (Vi,k ) by the measurement 
correction model. The correction equation is:

ĉ (Vi,k ) = ĉ (Vi,k|Vi,k - 1 ) + Kg (Vi,k )[ v (Vi,k ) - ĉ (Vi,k|Vi,k - 1 ) ].
(11)

Fig. 4 shows how to obtain a new estimate ĉ (Vi,k ). The differ⁃
ence between the initial estimate ĉ (Vi,k|Vi,k - 1 ) and the mea⁃
sured throughput v (Vi,k ) is multiplied by the Kalman gain 
Kg (Vi,k ), which then serves as a correction to the initial esti⁃
mate ĉ (Vi,k ). The estimation produced by the Kalman filter is 
attributed to two terms: the previous estimate ĉ (Vi,k - 1 ) and the 
throughput v (Vi,k ). The Kalman gain Kg (Vi,k ) balances contri⁃
butions of the two terms: a larger one means more weight is 
given to the measured value; conversely, a smaller one de⁃
notes that the model trusts the estimated value more. The up⁃
dated process of the Kalman gain is:

Kg (Vi,k ) = P ( )Vi,k - 1 + W

P ( )Vi,k - 1 + W + Q  , (12)

where P (Vi,k ) is the system error defined as P (Vi,k ) = E é
ë
êêêê( ĉ (Vi,k ) -

c (Vi,k ) ) 2ù
û
úúúú . This value will be recursively modified at each step:

P (Vi,k ) = (1 - Kg (Vi,k ) ) (P (Vi,k - 1 ) + W ). (13)
The above process is executed continuously, obtaining the pre⁃

dicted throughput as the gray blocks in Fig. 5 while buffering the 
next chunk every time. In order to obtain the multi-step bandwidth 
prediction value, the average throughput of five video chunks in the 
future is predicted at each step. Since the average throughput 
measurements v (Vi,k + 1 ), v (Vi,k + 2 ), v (Vi,k + 3 ), and v (Vi,k + 4 ) are 
unknown when downloading chunks Vi, k , the network throughput 
can be approximately stable for a while[17–18]. Therefore, it is as⁃
sumed that the measurement throughput v (Vi,k ) of the next chunks 
meets v (Vi,k + 1 ) = v (Vi,k + 2 ) = v (Vi,k + 3 ) = v (Vi,k + 4 ) = v (Vi,k ). Fig. 
6 shows the prediction iteration process, which is the continuation 
of the one-step Kalman filter. Blocks of the same color have the 
same predicted value, and the gray blocks have the same value as 
the same block in Fig. 5. Various parameter initialization prob⁃
lems involved in the process are described in Section 6.
5.3 Bitrate Selector

The CAMPC selects the bitrate according to the minimization 
cost function in Eq. (8) within the prediction range. To solve it, 
we first obtain the multi-step prediction of buffer occupancy 
based on the predicted link bandwidth. With the future buffer 
occupancy expressed by a bitrate function, the cost function can 
be derived to be only relevant to the variable video bitrate. Then, 
the bitrate that minimizes the cost function can be obtained.

After obtaining the average throughput c (Vi,k ) ,…,c (Vi,K ) of 
downloading K chunks in the future, the buffer occupation of 
the t-step is defined as b (Vi,k ) and b (Vi,k - 1 ), experiencing a re⁃
cursive process:

b̂ (Vi,k + t|Vi,k ) = ( t + 1)b (Vi,k ) - tb (Vi,k - 1 ) -
NΔr ( )Vi,k L

c ( )Vi,k
- ... - 2Δr ( )Vi,k + t - 2 L

c ( )Vi,k + t - 2
- Δr ( )Vi,k + t - 1 L

c ( )Vi,k + t - 1 .
(14)

▲Figure 5. Continuous bandwidth predictor working process▲Figure 4. Bandwidth predictor using a Kalman filter
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Then the buffer occupation of the player Vi is finally given 
by the following:

B̂ =
é

ë

ê

ê

ê

ê

ê
êê
ê
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ê

ê

ê ù

û

ú

ú

ú

ú

ú
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ú
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úb̂ (Vi,k + 1 )
b̂ (Vi,k + 2 )
      ...
b̂ (Vi,k + K )

=
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ú- LΔr (Vi,k )
c (Vi,k )

- 2LΔr (Vi,k )
c (Vi,k ) - LΔr (Vi,k + 1 )

c (Vi,k + 1 )
                                    ...
- TLΔr (Vi,k )

c (Vi,k ) ... - 2LΔr (Vi,k + T - 2 )
c (Vi,k + T - 2 ) - LΔr (Vi,k + T - 1 )

c (Vi,k + T - 1 ) .
(15)

Among them, Δr (Vi,k + T - 2 ) is replaced by z-1Δr (Vi,k + T - 1 ),…, 
and Δr (Vi,k + 1 ) is replaced by z-T + 2Δr (Vi,k + T - 1 ). Similarly 
b (Vi,k ) is replaced by z-1b (Vi,k ), and then the b̂ (Vi,k + T ) is for⁃
mulated as:

b̂ (Vi,k + T ) = (T + 1 - Tz-1 )b (Vi,k ) +
(- L

ĉ (Vi,k + T - 1 ) - 2L
ĉ (Vi,k + T - 2 ) z-1 - ... - TL

ĉ (Vi,k ) z-T + 1 ) =
GT ( z-1 )b (Vi,k ) + FT ( z-1 )Δr (Vi,k + t - 1 )  . (16)
The vector of future buffer occupancy is B̂ = GB (Vi,k ) +

FΔR, which can be written as:

B̂ =
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úΔr (Vi,k )
Δr (Vi,k + 1 )
         ...
Δr (Vi,k + T - 1 ) . (17)

Substituting B̂ = GB (Vi,k ) + FΔR into the cost function Eq. 
(8), we get:

min Ĵ k + T
k + 1 = E { ∑

t = 1

T [GB (Vi,k ) + FΔR - Br ]T

[GB (Vi,k ) + FΔR - Br ] + ΔRTΛΔR }

s.t.
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B̂ = [ b̂ (Vi,k + 1 ),b̂ (Vi,k + 2 ),…,b̂ (Vi,k + T ) ]T

ΔR = [ Δr (Vi,k ),Δr (Vi,k + 1 ),…,Δr (Vi,k + T - 1 ) ]T

B (Vi,k ) = [ b (Vi,k ),b (Vi,k - 1 ) ]T

Br = [ Br,Br,Br,Br,Br ]T

Λ = diag (λ1,λ2,…,λT )  .           (18)

▲Figure 6. Multi-step bandwidth predictor working process
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In order to minimize the cost, let ∂Ĵ k + T
k + 1∂ΔR

= 0，and then we 
get ΔR = (FTF + Λ )-1FT (Br - GB (Vi,k ) ). The final band⁃
width allocation takes the first vector of ΔR, that is Δr (Vi,k ), 
and the bitrate finally selected for the chunk Vi,k is h (Vi,k ). We 
assume H (Vi,k ) = { h1,h2,h3,…,hm } to be the set of available bi⁃
trate versions for chunk Vi,k, where h (Vi,k ) = hi satisfies hi <
r (Vi,k - 1 ) + Δr (Vi,k ) and hi + 1 > r (Vi,k - 1 ) + Δr (Vi,k ).

The above bandwidth scheduling method helps spatial tiles 
V in with high probability in the future viewport allocated band⁃
width. For tiles V out segmentation with low probability in the 
FOV, the system first uses the one-step bandwidth predictor to 
obtain the predicted link capacity. After the bandwidth alloca⁃
tion of the V in, the difference between the predicted value and 
the consumed value indicates the currently available band⁃
width, which will be scheduled to each tile out of FOV accord⁃
ing to the weight (α1,α2,⋯,αN ) given in Section 4.
6 Evaluation

6.1 Methodology

6.1.1 Experimental Setup
Our emulated DASH system consists of a server and a video 

player based on Dash. js (version 3.2), an open-source imple⁃
mentation of the DASH standard. The client video player is a 
Google Chrome browser. The throughput is computed by the 
method in the next section in real time. Key classes of adap⁃
tive streaming-related functions are modified. First of all, we 
modify the media-player settings and add attributes that indi⁃
cate the current chunk and tile serial number. ABR algo⁃
rithms are implemented in the AbrController class, and HTTP 
requests for throughput measurement are collected from the 
Throughput History function. At the same time, we modify the 
buffer threshold of each player when the FOV is switched. For 
the tile in the viewport, the maximum buffer size is 10 s, and 
the safety threshold is 6 s. While the tile is outside FOV, the 
above two values are 4 s and 2 s, respectively. The purpose is 
to respond to this change faster when the viewing angle is 
switched. We use the Angular.js framework to unify the front-
end communication of the platform, monitoring system state in⁃
formation such as buffer occupancy, bitrates, rebuffering time, 
and the predicted/actual capacity. These also are logged for 
the performance analysis.
6.1.2 Link Capacity Traces

To verify the effectiveness of the throughput predictor and 
control optimizing model on a single media player in realistic 
network conditions, we use link capacity traces based on the 
public dataset, which collects throughput measurements in 4G/
LTE networks. Belgium 4G/LTE dataset records the available 
bandwidth while downloading a large file in and around Ghent, 
Belgium. Figs. 7(a) and 7(b) show the single simulator’s pre⁃

dictor and selector, respectively, running status on a 4G/LTE 
trace, which can verify the algorithm accuracy on one player.
6.1.3 Video Parameters

We transform a 4K 360-degree panoramic video into six 
faces corresponding to a cube map for evaluation. Each video 
tile with 1 080 resolution is split into 123 chunks of 1 s and is 
encoded by VP9 codec in six bitrate versions, i.e., {0.18, 0.45, 
0.91, 3.10, 4.55, 6.05} Mbit/s. The specific bitrate mapping to 
the same level among different video tiles varies with the 
video content richness; that is, a video about the sky is often 
simpler and has a lower bitrate than a portrait video.
6.1.4 Adaptation Algorithms

We evaluate CAMPC and the following widely adopted 
ABR algorithms and simple ABR rules for a 360-degree video:

• DASH. js. DYNAMIC dynamically switches between 
ThroughputRule and BolaRule. These two algorithms are 
based on rate and buffer to select bitrate.

▲ Figure 7. Single simulator running status over Belgium 4G/Long 
Term Evolution (LTE) dataset
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• DASH. js. LoL+ is based on the learning adaptive bitrate 
algorithm Low-on-Latency (LoL), with improving adjustment 
of the weight for the self-organizing mapping (SOM) features 
and controlling the playback speed and taking into account la⁃
tency and buffering levels.

• FOV is an adaptive bitrate algorithm based on the real-
time viewport implemented by our experiment platform. The 
bandwidth allocation weight is calculated according to the 
angle deviation between each tile in the viewport and the cen⁃
ter point of the FOV.

• FOVCONTENT is an adaptive bitrate algorithm based on 
the real-time viewport and content perception implemented by 
our experiment platform. It predicts the viewport based on the 
user’s current viewport and the content richness obtained 
from offline training, and the average throughput within a pe⁃
riod is used for bit rate allocation.
6.2 Choice of CAMPC Parameters

In the bandwidth predictor, we set the initial system error 
variance P (Vi,0 ) to 7 Mbit/s and the process noise variance W 
to 3 Mbit/s, which denotes that the prior estimate of the network 
bandwidth fluctuates by 3 Mbit/s. When the initial value is set, 
it is necessary to ensure that the system error variance is not 
less than the process noise variance. A higher variance of the 
system error will make the prediction process more trustworthy 
in the throughput measurement at the initial stage, resulting in 
a better fitting curve. The measuring noise is updated by Q (k ) =
αQ (k - 1) + (1 - α ) [ v (k ) - ĉ (k|k - 1) ]2, α = 0.8. The initial 
value of the throughput estimate c (Vi,0 ) is set to 8 Mbit/s.
6.3 Real-Time Throughput Measurement

Different from the single player, which can directly measure 
the throughput according to the application programming inter⁃
face (API) in DASH to get the throughput, multiple players 
share the link for synchronous transmission, with inaccuracy in 
the throughput obtained by any player from API. According to 
DASH, at the end of transmission for a chunk, the start time⁃
stamp d, the end timestamp, and the number of data transferred 
can be obtained by the player. Therefore, the transmission state 
of the video chunks, as in Fig. 8, shows a possible state.

The outermost black box represents a time slot, which is the 
smallest unit of our timing measurement throughput. The blue 
blocks in Fig. 8 indicate the downloading process of each 
player. The value on the blue block indicates which player is 
downloading. Although they request videos in sequential order 
Vi,k,Vi,k + 1,Vi,k + 2,…, the order in which the players appear in 
the picture is random since each player is an independent 
download process. The blue blocks marked by the dotted line 
represents the download process that players’ monitor cannot 
capture at the end of the time slot. Therefore, when calculat⁃
ing the throughput, the time should remove the part that has 
no data transmission from a slot and the total number of data 
should be all the data that can be sensed.

Assuming that the start time of the slot is t and the end time 
is t + d, in order to avoid the impact of the chunks that cannot 
be captured as much as possible, we move the start and end 
timestamps forward for a short period dback, then the actual 
start time of the time slot for calculating the throughput is t -
dback, and the actual end time is t + d - dback.The calculator cyclically judges whether the response starts 
timestamp reqk and finishes timestamp fink in the HTTP re⁃
quest list satisfy reqk < t + d - dback and t - dback < fink; if sat⁃
isfied, it indicates that at least part of the download process 
within the time gap needs to be further judged and calculated:

• When the start and end time of the request response is 
both within the timestamp, that is t - dback < reqk and fink ≤ t +
d - dback, the total number of downloaded data Dk is directly 
added to the total number of downloaded data in this time slot;

• When the end time of the request response is outside the 
right timestamp, that is t - dback < reqk and fink > t + d - dback, 
all the downloaded data are in proportion t + d - dback - reqkfink - reqk

 to 
the total downloaded data in this time slot.

• When the request response start time is outside the time 
stamp on the left, that is reqk < t - dback and fink ≤ t + d -
dback, add all the downloaded data Dk in proportion fink - ( t - dback )

fink - reqk
 are added to the total downloaded data in 

this time slot.
• When the start time and end time of the request response 

are outside the timestamp, that is reqk < t - dback and fink >
t + d - dback, the total number of downloaded data Dk in pro⁃
portion d

fink - reqk
 are added to the total downloaded data in 

this time slot.
In addition, it is necessary to avoid gaps in which no data is 

transmitted to the middle, beginning, and end of the slot due 
to buffer control rather than the current link capacity being 0. 
In the process, we record the current minimum request-

▲ Figure 8. Time sequence of downloading process that may occur in 
multiple players
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response start timestamp reqmin, which means there is no gap 
after the timestamp. If fink is less than reqmin, then we subtract 
the gap time reqmin - fink from d. Finally, the throughput of 
the current time slot can be obtained by dividing the actual 
time interval by the total number of actual transmitted data.
6.4 Performance

We compare the performance of ABR algorithms in a real 
and a weak network environment limited by the NetLimiter 4.

As shown in Fig. 9(a), the momentary fluctuation of QoE oc⁃
curs when the viewport changes. Because the two rules of 
Dash. js treat each video player fairly, even if the viewport 
changes suddenly, the QoE fluctuation is minimal. For other 
rules, the tiles not in the FOV are often transmitted at a lower 
bitrate to save bandwidth, resulting in severe (30–50 s) QoE 
fluctuation when the FOV suddenly changes to a player out⁃
side the original viewport. However, the CAMPC rule can re⁃
cover to the highest achievable QoE and remain stable in 
about 5 s, while the FOV and FOVContent rules need about 
10 s to deal with this sudden change.

Fig. 9(b) shows the time-varying bandwidth saving rate com⁃
pared with full video transmission. Although the CAMPC rule 
is slightly inferior to the LoL+ rule on QoE, it can achieve a 
bandwidth saving rate of 83% for tiles not in the viewport. More 
costs for transmissions are saved and congestion is reduced 
when multiple users request the same video source. No rebuff⁃
ering event has occurred in the actual network environment.

In the actual network environment, the performance com⁃
parison of each ABR algorithm is shown in Table 3. The user 
QoE of the LoL+ rule can reach 100; the DYNAMIC rule 
shows that the initial bitrate can be reached in multiple tests, 
but the bitrate requested gradually decreases owing to the vi⁃
cious circle of continuously requesting lower bitrates; the aver⁃
age QoE of the CAMPC rule proposed by this paper can be 
maintained at 80. The FOV and FOVContent rules cannot re⁃
spond to the change of the user viewport in time, resulting in a 
sudden decrease in quality every time the user viewport 
changes. The bitrate is allocated according to the weight di⁃
rectly, leading to the case that the bandwidth within the user 
viewport is not made full use of, and the average QoE is low. 
The FOV and FOVContent rules have the highest bandwidth 
savings, reaching about 90%, and CAMPC can achieve 83% 
bandwidth savings. If both bandwidth savings and QoE are 
given a weight of 0.5, CAMPC can get the highest system util⁃
ity of 81.9. The weight can be changed according to the impor⁃
tance of the cost and the QoE.

We conducted the same test in a weak network environment 
(the speed limit is 0.5 MB/s). Changes in the system utility 
metrics of each ABR rule over time show the same laws as in 
the natural environment, but the average QoE is lower and un⁃
stable. The performance comparison of the ABR rules in a 
weak network environment is shown in Table 4, where the 
bandwidth saving rate of each rule is about 90%. Rebuffering 

time changes are shown in Fig. 9(c). The FOV rule does not 
have rebuffering, the FOVContent rule has a rebuffering time 
of less than 1 s, and the CAMPC algorithm is the next, but all 
of these are below 2 s, which accounts for less than 1.64% of 
the total length of the video. The LoL+ and DYNAMIC rules 
have a relatively high rebuffering time, accounting for 4.73% 

▲Figure 9.  Changes in the system utility metrics of each advanced 
adaptive bitrate (ABR) rule over time
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and 6.64% of the total video length, respectively. The FOV 
rule has the highest system utility because, with the current 
rate limit of 0.5 MB/s, it happens to be enough for the player 
with the highest weight in FOV to request a video chunk with 
a quality of 6. If the network speed is lower than 0.5 MB/s, the 
FOV rule must have a severe rebuffering event. However, 
what is certain is that the FOV rule has better system utility in 
the range of about 0.5 MB/s. CAMPC rules are better than 
LoL+ and DYNAMIC rules in QoE, bandwidth saving rate, 
and rebuffering time. The overall utility is slightly inferior to 
the FOV and FOVContent rules.

7 Conclusions
Existing adaptive bitrate algorithms cannot provide smooth 

video quality for the 360-degree video in a network with high 
dynamic characteristics because of uncertain viewport predic⁃
tion and bitrate selection. In order to achieve good QoE, the al⁃
gorithm proposed in this paper considers the future multi-step 
network status and combines the richness of video content and 
the real-time user viewport to predict the future FOV, which 
can effectively save bandwidth resources. CAMPC uses a 
multi-step predictive control formulation that selects bitrate 
by controlling the buffer occupancy and optimizing QoE met⁃
rics over the prediction horizon. The formulation can select 
the bitrate level with the highest QoE and high fault tolerance. 
Through the above two prediction algorithms and control opti⁃
mization, a content-aware 360-degree video ABR algorithm 
has been designed. The algorithm is implemented on the 
DASH video player and evaluated in reality. Experimental re⁃
sults show that CAMPC can save 83.5% of bandwidth re⁃
sources compared with the scheme that completely transmits 
the tiles outside the viewport with the DASH protocol. Be⁃

sides, the proposed method can improve the system utility by 
62.7% and 27.6% compared with official and viewport-based 
rules, respectively.
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