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Abstract: Federated learning (FL) is a distributed machine learning approach that could provide secure 6G communications to preserve user 
privacy. In 6G communications, unmanned aerial vehicles (UAVs) are widely used as FL parameter servers to collect and broadcast related 
parameters due to the advantages of easy deployment and high flexibility. However, the challenge of limited energy restricts the populariza⁃
tion of UAV-enabled FL applications. An air-ground integrated low-energy federated learning framework is proposed, which minimizes the 
overall energy consumption of application communication while maintaining the quality of the FL model. Specifically, a hierarchical FL 
framework is proposed, where base stations (BSs) aggregate model parameters updated from their surrounding users separately and send the 
aggregated model parameters to the server, thereby reducing the energy consumption of communication. In addition, we optimize the deploy⁃
ment of UAVs through a deep Q-network approach to minimize their energy consumption for transmission as well as movement, thus improv⁃
ing the energy efficiency of the air-ground integrated system. The evaluation results show that our proposed method can reduce the system en⁃
ergy consumption while maintaining the accuracy of the FL model.
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1 Introduction

Even though 5G specifications are still being developed, 
6G of mobile communications has already attracted 
great attention from both academia and industry[1]. Com⁃
pared with 5G communications, 6G[2] will achieve faster 

speed, higher energy efficiency, wider coverage, etc. However, 
the wireless channel used for 6G is usually open, which gives 
wireless users the freedom to communicate but brings insecu⁃
rity factors at the same time[3]. For example, the communication 
content can be easily eavesdropped or tampered with[4]. At the 
same time, data servicers collect large amounts of user informa⁃
tion[5], which leads to frequent private data leaks. These factors 

pose a threat to the data security of 6G users.
Federated learning (FL) is a distributed machine learning 

framework[6]. In FL, participants train the model with local da⁃
tasets and upload the obtained model parameters instead of 
the user privacy data to the parameter server, which aggre⁃
gates the parameters to obtain the updated global model. With 
the distributed nature of FL, users can benefit from the global 
model while keeping the data in their own hands[7–8]. There⁃
fore, utilizing FL at the 6G edge can protect user data, thus 
making users more willing to participate and fully utilize the 
value of their local dataset for the training of the global 
model[9]. In recent years, there have been some studies on inte⁃
grating FL into wireless communication to improve its privacy 
and security[10–12], but they still face many realistic problems, 
e. g., low deployment flexibility in terrestrial communication 
networks and huge communication costs.

Unmanned aerial vehicles (UAVs) have the advantages of 
high flexibility and mobility which can give FL more possibili⁃
ties. Specifically, it can easily provide air-ground integrated 
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line-of-sight communication and effectively improve the trans⁃
mission range of terahertz signals in 6G networks. As a result, 
the air-ground integrated network (AGIN) has gradually be⁃
come the trend for 6G development, aiming to provide users 
with ubiquitous connectivity and seamless global coverage. In 
this paper, we consider the organic combination of the air-
ground integrated network and FL in the 6G network. We uti⁃
lize UAVs as parameter servers for FL to collect data from dis⁃
persed users, providing wider coverage for users while protect⁃
ing the private data of 6G users. However, in 6G communica⁃
tions, the framework will face the challenge of limited energy 
for mobile users as well as for UAVs[13–14]. Specifically, users 
are reluctant to spend too much energy on the FL process, and 
the UAV does not have a constant source of energy to support 
multiple rounds of the FL model transfer and aggregation pro⁃
cess. As a result, it may lead to delays in updating the global 
model. Therefore, to achieve a sustainable FL solution, the is⁃
sue of energy efficiency in the system has to be considered. 
Existing solutions that optimize the energy efficiency of air-
ground integrated FL[15] generally focus on UAV scheduling 
optimization and resource allocation, in which mobile devices 
need to communicate directly with the server, which may in⁃
crease energy consumption.

In this paper, we propose air-ground integrated low-energy 
federated learning (AGILFL). Specifically, we use terrestrial 
base stations (BSs) as message middleware for users and the 
UAV parameter server to aggregate model parameter updates 
from their surrounding users separately and send the aggre⁃
gated model parameters to the server, thus reducing the en⁃
ergy consumption of communication. In addition, deep Q-
network (DQN) is adopted to optimize the deployment of 
UAVs, thus further reducing the overall energy consumption. 
To implement this procedure, we face the challenge that in 
some dynamic scenarios, the users’ locations are not fixed[16], 
which would lead to a load on the BS when too many users 
move within a range of a certain BS. In such a case, users are 
required to send model parameters directly to the UAV server. 
To ensure that the 6G communication is always highly reli⁃
able, we consider predicting the BS load situation in advance 
and performing an emergency scheduling for the UAV. Our 
main contributions are summarized as follows:

1) We propose AGILFL, a framework that integrates AGIN 
and FL, which is devised to provide low-energy FL for secure 
6G communications.

2) We use hierarchical aggregation to reduce the communi⁃
cation consumption efficiency of AGILFL by using BSs as 
middleware between users and the UAV parameter server sig⁃
nificantly. The BS collects and aggregates the updated param⁃
eters of users within its coverage area, and sends the aggre⁃
gated parameters to the UAV server for a second aggregation. 
With this approach, we can reduce the aggregation workload 
of the UAV server and the redundant communication between 
the UAV and users.

3) To ensure the reliability of 6G communication, we con⁃
sider predicting the BS load situation in advance and urgently 
dispatching the UAV to cope with extreme situations, e.g., sce⁃
narios with a high density of smart devices such as weekend 
supermarket promotions and concerts, etc.

4) Extensive evaluation experiments are conducted on the 
MINIST dataset to demonstrate the effectiveness of our pro⁃
posed method. Experiments have shown that our method can 
improve the system’s overall energy efficiency while maintain⁃
ing the model’s accuracy, which is better than the comparison 
algorithm.

The remainder of this paper is organized as follows. Section 
2 presents the current research work combining FL and wire⁃
less networks, with consideration of their energy consumption. 
Section 3 provides an overview of FL and presents the system 
model and problem formulation of this paper. DQN and our al⁃
location strategy for the UAV are introduced in Section 4. Sec⁃
tion 5 verifies the effectiveness of AGILFL through experi⁃
ments. Finally, we summarize the contributions and experi⁃
ments of this paper and present future work in Section 6.
2 Related Work

FL enables a large number of users to train a machine learn⁃
ing (ML) model together in a distributed manner, as a result, it 
provides a secure and effective training model for ubiquitous 
6G intelligence. Recently, studies have explored how FL can 
be integrated into wireless networks while considering their 
energy consumption. TRAN et al. [17] proposed a wireless FL 
model that implemented a trade-off between FL learning time 
and user energy consumption. HAMER et al. [18] proposed an⁃
other FL approach to reduce the costs of server-to-client and 
client-to-server communications by building an ensemble of 
pretrained base predictors. However, the above studies are 
limited to terrestrial networks.

ZENG et al. [19] first investigated the possibility of imple⁃
menting FL on UAVs. They proposed an optimization issue by 
considering the problem of limited energy of UAVs and de⁃
signing algorithms to optimize the convergence performance of 
FL, thus reducing the energy consumption of UAVs in the sys⁃
tem. SHIRI et al. [20] proposed an algorithm that combined 
channel allocation as well as equipment scheduling optimiza⁃
tion to reduce the communication among swarms of a large 
number of UAVs. PHAM et al. [21] proposed a sustainable fed⁃
eral learning framework that used UAVs to provide wireless 
power to energy-limited FL participants’ devices while im⁃
proving the energy efficiency of UAVs. However, none of the 
above methods consider integrating UAVs into terrestrial com⁃
munication networks.

To make full use of UAVs, QU et al.[22] first proposed a concep⁃
tual framework of air-ground integrated federated learning 
(AGIFL) to give FL greater flexibility, thus enhancing the much-
needed artificial intelligence in 6G communication networks. 
JING et al. [23] verified for the first time the feasibility of FL de⁃
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ployment between UAVs and the terrestrial network through a 
practical platform based on AGIFL. However, none of them 
solves the problem of the huge energy consumption of the system.

In summary, few extant studies has considered how to re⁃
duce the energy consumption of AGIFL. In addition, the above 
approaches require terminal nodes to communicate directly 
with the parameter server, which may increase transmission 
costs. Therefore, in this paper, we propose AGILFL, in which 
BSs are used as message middleware between users and the 
UAV parameter server in the FL system. We also use the 
DQN algorithm to optimize the location of the UAV and mini⁃
mize the total energy consumption for its movement and trans⁃
mission, so that AGIFL can effectively reduce the energy con⁃
sumption of the system.
3 Preliminaries

3.1 Federated Learning
FL is a distributed ML approach that trains shared models 

in the context of protecting individual privacy. In FL, many 
participants train the global model in cooperation through a 
parameter server by aggregating model parameter updates[24]. 
Participants download the latest global model from the param⁃
eter server in each communication round, train the model on 
their own devices using local datasets, and then upload the up⁃
dated parameters of the trained model to the server. The 
server then aggregates (e.g., using FedAvg[6]) the collected up⁃
dates to get a new global model. In the process, users can ben⁃
efit from the global model while keeping the data in their own 
hands.

Let [n] =  {1,…, n } represents the set of participants, the 
private dataset for each participant i is Di for i ∈ [ n ], and D =
D1 ∪ D2 ∪ … ∪ Dn is the complete training dataset. In the t-
round of communication rounds, the participant i first down⁃
loads the latest global model wt from the parameter server and 
then conducts local training. Then, the cumulative computa⁃
tional gradient w( )i

t + 1 - wt is sent to the parameter server for 
the global model update, e.g., using FedAvg as in Eq. (1).

wt + 1 = wt + 1
n∑i ∈ [ ]n ( )w( )i

t + 1 - wt . (1)
Note that the above process will be repeated until the global 

model reaches convergence.
3.2 System Model

In this paper, we consider an air-ground integrated 6G com⁃
munication FL system that can protect the private security of 
6G users, as shown in Fig. 1. It consists of a UAV server, m us⁃
ers (e. g., mobile users, Internet of things devices, and the 
UAV carrying data), and n BSs. These devices are randomly 
distributed in the air-ground domain. We define the set of us⁃
ers as U = { u1 ,u2 ,…,um }, the UAV server as V, the n BSs as 
B = { b1 ,…,bn }, and the model size of FL training is Ω.

The user ui is a participant who provides the model in the 
FL system. The user ui receives the global model from the BS 
or the UAV, uses its own data for local training, and sends the 
trained model to the BS or the UAV. We define that if the user 
transmits the global model parameters to BS bj, then xij= 1, 
yi = 0; otherwise, the user passes the global model parameters 
to the UAV, and then ∑j

xij= 0, yi = 1. The transmission 
rate[25] from user ui to UAV V is expressed in Eq. (2).

Ri = bi log2(1 + gi pi

bk N0 ), (2)
where bi,  gi , pi, and N0 represent transmission bandwidth, 
channel gain, transmission power, and noise power density re⁃
spectively. In order to ensure that Ω is transmitted within the 
upload time ti, constraint Ω ≤  Riti needs to be satisfied. In 
this case, the energy transmitted to BS Eu2b

i  and the energy 
transmitted to UAV Eu2v

i  are expressed in Eq. (3).
Eu2b

i = Eu2v
i = ti pi. (3)

In this paper, we use BS bj  as the message middleware be⁃
tween users and UAV V in the FL system. The BS set B is re⁃
sponsible for processing the global model parameters sent by 
surrounding users and then aggregating them. After aggrega⁃
tion,  B will send the aggregation results of the global model 
parameters to UAV V. The transmission rate from BS bj to 
UAV V is Rj. We assume that the transmission power of the BS 
is defined as pj. Within the upload time tj, the energy trans⁃
ferred between BS bj and UAV is defined as Eb2v

j , which is the 
same as the calculation method of energy when the user trans⁃
fers global model parameters.

When transferring global model parameters, we have the fol⁃

▲Figure 1. Overview of AGILFL’s framework
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lowing restrictions. There is path loss during the transmission 
of global model parameters, that is, with the increase of trans⁃
mission distance, the power gradually decreases. The corre⁃
sponding relationship is expressed in Eq. (4).

Pr(Ps ,ls ,lr ) = ς
Ps

d2( )ls ,lr

, (4)
where Ps  and Pr represent the transmission power of the sender 
and the receiver respectively, ls  and lr represent the location of 
the sender and the receiver respectively, d (⋅) is the distance func⁃
tion, and ς is the influence factor under different environments. 
We also limit the minimum received power of all devices to pmin.UAV V acts as the global model manager of the FL system. 
UAV V is responsible for automatically sending or receiving 
global model parameters from surrounding users or base sta⁃
tions, aggregating local training models, and updating global 
model parameters. We assume that UAV V has a fixed height 
H and moves only in the horizontal direction. Suppose the po⁃
sition of the UAV is l =  ( x, y ) and the position after moving is 
l' =  ( x', y'). According to Ref. [26], the energy of UAV V 
movement is expressed in Eq. (5).

Es ( l,l') = PH
d ( l,l')

vh , (5)
where vh is the velocity in the horizontal direction and PH rep⁃
resents the power consumed by the energy of horizontal move⁃
ment. PH can be expressed in Eq. (6).

PH = Pp + PI , (6)
where Pp is the energy consumption power to overcome its own 
skin friction from drag and its calculation formula is shown as 
follows.

PP = 1
2 ρCD Sv3

h + π
4 MρcbCD w3 β4 (1 + 3( vh

w ) 2 ), (7)
where CD is the drag coefficient, cb is the rotor chord, S is the 
front area of the UAV, w is the angular velocity, β is the rotor 
disk radius, and ρ denotes the fluid density of air. PI is the en⁃
ergy consumed by the wing to redirect air to generate lift to 
compensate for the weight of the aircraft, and the specific for⁃
mula is expressed as follows.

PI = G
λ - v2

h2 , (8)

where λ = v4
h + ( G

πρβ2 ) 2  and G is the gravity of the UAV.

3.3 Problem Formulation
Our goal is to optimize the UAV position to minimize the 

energy consumed by the entire FL system while protecting the 
private security of 6G users. Because parameter aggregation 
and global model update are necessary tasks of the FL system, 
the energy of parameter aggregation and global model update 
is not considered when the energy is minimized. Aiming to op⁃
timize the energy of the AGILFL system, we will focus on the 
optimization problems as in Eq. (9).

min ∑i = 1
m (∑j

xij E
u2b
i + yi E

u2v
i ) + ∑j = 1

n Eb2v
j + Es ( l,l'), (9)

s.t.             xi ∈ {0,1}, yi ∈ {0,1}, (9a) 

                      ∑j
xij + yi = 1 , ∀i, (9b)

                       ti Ri ≥  Ω , ∀i, (9c)

                           tj Rj ≥  Ω , ∀j, (9d)

                           0 < l' < lmax, (9e)

             Pr( pi,li,lj ) ≥  xij pmin , ∀i,j, (9f)

               Pr( pi,li,l') ≥  yi pmin , ∀i, (9g)

                   Pr( pj,lj,l') ≥  pmin , ∀j, (9h)
where xij represents whether user ui sends local model param⁃
eters to BS bj, yi indicates whether user ui sends local model 
parameters to UAV V, Eb2v

j  denotes the energy required for BS 
bj to transmit to UAV V, li represents the location of user ui, lj means the location of BS bj, l indicates the initial location of 
UAV V, l' shows the location of UAV V after it moves, and lmax represents the maximum movement range of UAV V.

In the problem, Constraint (9a) limits the range of values of 
xi and yi; Constraint (9b) denotes that the user sends the 
global model parameters to either the BS or the UAV; Con⁃
straints (9c) and (9d) limit the time and rate of transmission 
parameters to ensure that the model size of FL training Ω is 
transmitted within upload time ti or tj; Constraint (9e) limits 
the range of movement of the UAV; Constraints (9f), (9g) and 
(9h) indicate that the power of the signal received by all the 
devices must be higher than the minimum power.
4 Allocation Strategy of UAV

In this section, we detail the strategy for UAV deployment. 
The algorithm we propose in this paper consists of two sepa⁃
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rate processes: model training and model application. We first 
train the model by the DQN algorithm to obtain the output Q-
network model. Then we continuously update the environmen⁃
tal state of UAV V and put it into the Q-network to make the 
optimal action decision for the current state.
4.1 Deep Q-Network

The DQN algorithm is a reinforcement learning method 
combining deep learning and Q-learning, which has both the 
powerful feature-aware capability of deep learning and the 
trial-and-error learning advantage of reinforcement learning. 
In the DQN algorithm, Q ( s, a ) represents the value assess⁃
ment of action a taken by the agent under state s, and the 
agent selects the action with the highest Q value to perform to 
obtain a higher reward. In the Q-learning method, the Q-table 
is used to store the corresponding Q values of the actions in 
each state. However, the disadvantage of Q-learning is that it 
takes up a lot of memory space in a more complex state space 
and the calculation process is also complicated. Compared 
with traditional Q-learning, DQN can compute the Q-table of 
the current state in a huge state space as in Eq. (10).

Qθ ( s, a ) = Q ( s, a ), (10)
where Qθ ( s, a ) is a neural network with parameter θ, which is 
called Q-network, and its output result is an estimate of Q.

DQN proposes two improvements to overcome the problems 
of unstable learning targets and excessive correlation of con⁃
secutive samples: 1) experience replay; 2) target Q-network. 
In this context, the goal of the training process is to minimize 
the value of the loss function, and the loss function is the 
mean-square error between the target Q value and the Q 
value, which is expressed as in Eq. (11).

D (θi ) = Es,a,r,s' [ (Yi - Q ( s, a|θi ) ) 2 ], (11)
where θi is the parameter of Q-network; Yi is the target Q 
value. The formula is expressed as in Eq. (12).

Yi = γmaxa' Q ( s', a'|θ'i ) + r, (12)
where θ'i is the parameter of the target Q-network. By fixing 
the Q value, the stability of the Q value can be guaranteed for 
a period of training time.
Algorithm 1. DQN model training for the UAV parameter server
Input: Distribution of BSs and users, state space and action 
space of UAV, learning rate α, and discount rate γ.
Output: Q-network Q ( s, a )
1. Initialize action space A, state space S, learning rate α, dis⁃
count rate γ, and replay buffer M.
2. Initialize Q-network parameters θ and target Q-network pa⁃
rameters θ'
3. for I in max_epoch do

4. Let the users move.
5. Calculate the energy consumption for the new system.
6. Initialize s as the previous state of the UAV parameter 
server;
7. Decide which action to be taken, using the greedy algo⁃
rithm
8. Take action a, calculate reward rt, and calculate the next 
state s' of the UAV parameter server;
9. Store interaction information ( s, a, rt , s') in experience 
pool M
10. Random batch sampling of batch samples ( si , ai , rsum,i , si ') 
from M
11. Qi = ì

í
î

rsum,i,        if s' is terminal
rsum,i + γmax Qθ' ( s', a')

12. ∑i = 1
batch (Qi - Qθ ( s, a ) ) as the loss function

13. Update state s of the UAV parameter server;
14. Update the Q-network θ' ← θ;
15. end for
16. output Q-network Q ( s, a )
4.2 Allocation Strategy

We use the DQN algorithm to determine the 3D position of 
UAV V, thereby minimizing its communication and movement 
costs. The DQN algorithm predicts the value of the agent’s be⁃
havior through a deep neural network, thus allowing the agent 
to obtain a higher return in subsequent decisions. Specifically, 
in our method, UAV V needs to decide on the appropriate 
working position based on the large number of distributed BSs 
around, which is a more complex task scenario. Due to many 
environmental elements in complex scenes in reinforcement 
learning, not only will it increase the training cycle and slow 
down the convergence of the model, but also bring the prob⁃
lem of sparse rewards, which causes the model to work improp⁃
erly. Aiming to solve the potential sparse reward problem, we 
propose an energy field model to abstract various parameters 
in the environment and simplify the UAV state representation, 
thus speeding up the model convergence and avoiding the 
sparse reward problem. The energy field is modeled as in 
Eq. (13).

E = ∑i = 1
n εLi DiUri

di , (13)
where ε is the weight parameter used to control the order of 
magnitude of energy; di is the Euclidean distance between V 
and bi; Li is the load situation of bi; Di is the number of data 
that bi needs to transmit to V; Uri is the number of users con⁃
nected to bi. The formula calculates the energy situation of the 
UAV’s location, and the total energy is the sum of the sub-
energy of all BSs. The higher value of E means more users and 
base station loads near the point and more need for UAV V to 
serve. This energy field model can guide UAV V to fly to a 
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more suitable working area and also generate the correspond⁃
ing decision for the high load situation in the area.

The state space of UAV V is composed of spatial coordi⁃
nates, current energy consumption power, user coverage, and 
BS coverage. For the action space of UAV V, we have defined 
six possible actions: forward, backward, left, right, up, and 
down. The six actions are denoted as a1 , a2 ,…,a6 respectively. 
If the energy consumption of the transmission of UAV V is 
higher than the previous energy consumption, UAV V needs to 
change its location. In this case, the agent must make behav⁃
ioral decisions based on the state of the environment in which 
it is located. UAV V takes action aj based on decisions and 
transfers to a new state s', while receiving a reward or punish⁃
ment according to the reward rule to optimize the behavioral 
decision of the intelligence.

The purpose of this section is to determine suitable UAV lo⁃
cations to reduce the energy loss of the mission and also to 
perform emergency scheduling for possible regional loads 
(such as large sporting events, supermarket events, concerts, 
etc.). Combined with the energy field model proposed above, 
this paper proposes the reward function as in Eq. (14).

rt = ∆E + ω
Dsum

Eu2b + Eu2v + Es ( l,l')      , (14) 
where ∆E is the change in energy at the location of the UAV. 
When the energy increases, which means that UAV V flies to 
a more suitable space position, it will be rewarded and the op⁃
posite will be punished; ω is the weight parameter that con⁃
trols the order of magnitude of the reward; Dsum is the total 
amount of data transferred by the system.
Algorithm 2. DQN algorithm for 3D placement of the UAV pa⁃
rameter server
Input: Distribution of BSs and users, Q-network Q ( s, a )
Output: Optimum position of the UAV parameter server
1. E th is the calculated energy consumption for communication 
among UAV, users and BSs and UAV movement.
2. while the system is running do
3. Let the users move.
4. Calculate the energy consumption for the new system.
5. if (the energy consumption > E th ) then
6.  for step in max_step do
7.   Initialize s as the previous state of the UAV param⁃
eter server;
8.   input s into Q ( s, a ) to get the best decision at9.   Take action at, calculate the next state s of the UAV 
parameter server;
10.   Update state s of the UAV parameter server;
11.  end for
12. else
13. There is no need to move the UAV parameter server
14. end if
15: end while

The algorithm we propose in this paper consists of two sepa⁃
rate processes: model training and model application. The 
training is performed in a simulated environment, the specific 
details are shown in Algorithm 1, where the target Q-network 
and Q-network are first initialized to predict the Q value of the 
previous step of the behavior and the current Q value, respec⁃
tively. In each training epoch, the environmental status of 
UAV V is first updated, such as pedestrian movement, BS 
model aggregation, BS load, user model training, system en⁃
ergy consumption, etc. Then current state s of the UAV is de⁃
termined according to the external state, and is input into the 
Q-network to get the Q values of all actions. Action a is se⁃
lected for execution based on the greedy method, UAV state s 
is changed to s' after the execution of the action, and then re⁃
ward information rt is obtained. Then quaternion ( s, a, rt , s') is 
stored in replay buffer M and batch samples are taken from M 
to train the Q-network. After that, the Q-network is updated 
with the target Q-network and finally, the Q-network model is 
output. Although the process of training UAV V requires some 
energy, the energy consumption of the proposed DQN method 
is much smaller and even negligible compared with the tradi⁃
tional greedy scheme[27].

Algorithm 2 shows the process of applying our DQN 
model, which continuously updates the environment state 
during the system operation and then calculates the re⁃
quired energy consumption of the system. If the energy con⁃
sumption is greater than the threshold value, it means that 
UAV V is required to move, and in this process, UAV V con⁃
stantly updates its state and inputs the state into the Q-
network. UAV V makes action decisions based on the Q-
network output and then updates the environment state until 
the step reaches the max.
5 Experiment and Evaluation

In this section, we evaluate the performance of our pro⁃
posed algorithm. Firstly, we introduce the default settings, da⁃
tasets, benchmarks, and metrics in detail. Secondly, we evalu⁃
ate the utility of AGILFL on the overall energy. Finally, we 
evaluate the utility of AGILFL on average resource utilization 
and model accuracy.
5.1 Default Settings

We consider that the FL system is composed of users, BSs, 
and the UAV. In order to reduce the space for parameter 
search, we set up 100 users, 5 BSs, and 1 UAV. Each train⁃
able device trains locally using the lenet-5 model. The maxi⁃
mum number of iterations of the global model is set to 200, 
which is optimized by the mini batch stochastic gradient de⁃
scent (SGD) optimizer, and the minimum mini batch is 50. 
During model training, the learning rate is set to 0.03, and the 
loss function uses cross entropy. The maximum epoch to train 
the UAV mobile model is set to 200, and the maximum epoch 
to train the FL model is set to 40.
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5.2 Dataset
We use a well-known image classification data set named 

MINIST, which is composed of 70 000 grayscale pictures of 
28 × 28 pixels and each picture corresponds to a number from 
0 to 9. In the MINIST dataset, 55 000 pictures are used as the 
training set, 5 000 pictures as the verification set, and 10 000 
pictures as the test set. In our experiment, we evenly place 55 
000 pictures among 50 users, and each device contains 1 000 
pictures. The parameter UAV places 10 000 pictures as a test 
set for model training.
5.3 Benchmarks

Firstly, in order to evaluate the advantage of the AGILFL 
system, we choose the FL system without BSs and the multi-
hop transmission (MHT) with BSs as the benchmark. They all 
have the same number of users. Secondly, in assessing the ad⁃
vantage of AGILFL UAV training, we use DQN training and 
random movement as benchmarks. Finally, to prove that 
AGILFL can achieve precision without degradation, we use 
FL and ML as benchmarks. AGILFL, ML and FL use the same 
number of data for training, and AGILFL and FL have the 
same number of users.
5.4 Metrics

We adopt the total energy consumption as an evaluation 
metric, that is, the energy consumed by the whole system in 
energy transmission and UAV movement during each training 
of FL. In assessing the UAV training performance of AGILFL, 
we use the reward function during training as a metric. Fi⁃
nally, we also use accuracy as a metric to evaluate the impact 
on the FL model accuracy.
5.5 Results Analysis

We uniformly generate five BSs in the 200×200×200 air-
ground integrated area. To evaluate the impact of user growth 
on total energy consumption, we randomly generate 100 to 
500 users in the region and calculate the total energy con⁃
sumption. Fig. 2 shows the energy comparison of AGILFL and 
other benchmarks in the AGIFL system. AGILFL can reduce 
the total energy consumption by using the BSs as caching de⁃
vices and by controlling the UAV to find the best position. 
This experiment shows that AGILFL reduces the overall en⁃
ergy by 11.9% and 18.4% respectively, compared with the 
other two algorithms.

Our UAV, which is trained to complete the DQN intensive 
learning network, is placed in the AGIFL system. The UAV 
starts from a random point and moves in the FL system accord⁃
ing to the movement strategy. Fig. 3 shows the trajectory of the 
UAV in AGILFL. Each step of the UAV’s movement maxi⁃
mizes the reward function. Every step the UAV moves, it 
moves toward the BS and is close to the central BS. We can 
also see that UAVs will not be far away from users or base sta⁃
tions to avoid wasting energy.

In default settings, we evaluate the performance of the UAV 

movement strategy. Fig. 4 shows the performance of our opti⁃
mization algorithm. In the AGIFL system, we use AGILFL, 
DQN algorithm and random movement respectively to com⁃
pare their performance in the reward function. AGIFL adopts 
DQN with an empirical replay algorithm. AGILFL can learn 
the optimal parameters faster than the DQN algorithm, and ex⁃
perience replay can make the training more stable. Compared 
with the other two algorithms, AGILFL improves the reward 
function by 59.5% and 13.5%, respectively.

In default settings, we evaluate the accuracy change of the 
training model using users’ data in different scenarios. Fig. 5 
shows the accuracy performance of AGILFL, FL, and ML. 
AGILFL can reduce total energy consumption without causing 

▲Figure 2. Performance of total energy consumption

▲Figure 3. Movement trajectory of UAV
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serious accuracy degradation. Therefore, we propose AGILFL 
as a friendly, privacy-safe, and low-energy FL framework.
6 Conclusions and Future Work

In this paper, we investigate the problem of how to improve 
the energy efficiency of AGIFL and propose the AGILFL 
framework which can guarantee the private security of 6G us⁃
ers. Specifically, in AGILFL, we use a hierarchical aggrega⁃
tion method to improve the energy efficiency of communica⁃
tion by using BSs as middleware between users and the UAV 
parameter server. At the same time, to ensure that the 6G com⁃
munication is always in a highly reliable state, we predict the 
overloaded BSs in advance and make emergency scheduling 
of the UAV. We use the DQN algorithm to optimize the posi⁃

tion of the UAV to minimize the overall energy consumption 
for UAV movement as well as communication. Finally, 
through simulation experiments, our proposed method is 
proven to be real and effective. Compared with the baseline, 
AGILFL reduces the overall energy by 11.9% and 18.4%, re⁃
spectively, and improves the reward function by 59.5% and 
13.5%, respectively.

The way to reduce the energy consumption of local comput⁃
ing for 6G users in the AGILFL framework is not explored in 
this paper. In the mechanism we designed, we should also con⁃
sider a replacement option when the UAV is almost out of 
power. Our future work will focus on addressing the above is⁃
sues and exploring the possibility of applying our solutions on 
a large scale in real-world environments.
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