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Abstract: The structure of key-value data is a typical data structure generated by mobile devices. The collection and analysis of the data from 
mobile devices are critical for service providers to improve service quality. Nevertheless, collecting raw data, which may contain various per⁃
sonal information, would lead to serious personal privacy leaks. Local differential privacy (LDP) has been proposed to protect privacy on the 
device side so that the server cannot obtain the raw data. However, existing mechanisms assume that all keys are equally sensitive, which can⁃
not produce high-precision statistical results. A utility-improved data collection framework with LDP for key-value formed mobile data is pro⁃
posed to solve this issue. More specifically, we divide the key-value data into sensitive and non-sensitive parts and only provide an LDP-
equivalent privacy guarantee for sensitive keys and all values. We instantiate our framework by using a utility-improved key value-unary en⁃
coding (UKV-UE) mechanism based on unary encoding, with which our framework can work effectively for a large key domain. We then vali⁃
date our mechanism which provides better utility and is suitable for mobile devices by evaluating it in two real datasets. Finally, some pos⁃
sible future research directions are envisioned.
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1 Introduction

With the development of mobile communication 
technologies, service providers are more willing to 
collect data from mobile devices to enhance the 
service experience for users. As a classical data 

structure, key-value data are widespread in practical mobile 
applications[1–2]. The structure of key-value data is a hybrid 
data structure, where the key is the identifier of data and the 
value is the content of data. The following three examples 
show its potential applications:

1) Mobile devices (such as wearable devices, smartphones, 
tablets, etc.) generate a large number of data, the majority of 
which are in a key-value format, i.e., device_id, device_value  
or timestamp, device_value . These data could show the usage 
habits of users on a specific device or during a particular pe⁃
riod, which can help data collectors provide a personalized ex⁃
perience for the user. For example, the service center collects 
device_id, sleep duration  from the user’s smart bracelet to 

remind the user to rest properly at a suitable time[3].
2) Software vendors, such as Android and iOS, collect us⁃

ers’ data to enhance the users’ experience, i. e. 

app_name, user rating  or app_name, length of visit , in a 
key-value format, where the key is the name of an APP, and 
the value is the length of time or a score to access the APP. 
These data could show the users’ experience with a particular 
application, which can help software vendors study future 
product improvements. For example, software vendors provide 
users with personalized recommendations by collecting their 
specific interest[4].

3) Advertisers are interested in knowing whether the video 
advertisements they place on mobile devices appeal to poten⁃
tial customers[5]. Therefore, they are willing to collect adver⁃
tisement ratings from users in the form of key-value, where the 
key is the ID of the advertisement, and the value is the num⁃
ber of minutes that users watch the advertisement.

However, the key-value data involves a lot of personal infor⁃
mation, thus users may be reluctant to upload data from their 
mobile devices. To address the privacy-preserving data collec⁃
tion issue, some researchers proposed local differential pri⁃
vacy[6] to obfuscate local information in the data collection 
phase. Because of its decentralization and strict mathematical 
proof, it has been adopted by mainstream systems such as Ma⁃
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cOS[7] and Windows[8] to collect data. In addition, local differ⁃
ential privacy (LDP) reduces the communication costs of large-
scale computing and the frequent interaction with the data 
center, making it well-suited for mobile devices with limited 
resources and low computing power.

Recently, there has been extensive research on key-value 
data collections with LDP. YE et al. [9] first proposed PrivKVM 
to protect key-value data using synchronized key and value 
perturbation protocols. It adopted one iteration to obtain fre⁃
quency estimation and several iterations to achieve an approxi⁃
mately unbiased mean estimation. The result of the last itera⁃
tion is sent to the next iteration as input. However, it requires 
all users to be online in all the iterations, which is difficult to 
achieve in practical scenarios. Moreover, PrivKVM may lead 
to a high estimation error when the key domain is large. SUN 
et al. [2] proposed a series of LDP mechanisms based on 
PrivKVM and introduced conditional analysis for key-value 
data analysis. However, the mean estimation obtained by SUN 
et al. is biased. Subsequently, GU et al. [10] proposed a private 
correlated key-value (PCKV) data collection mechanism, 
which adopts the padding-and-sampling mechanism to solve 
the large key domain problem of previous work[9]. Moreover, a 
budget composition theorem for the relevant perturbation 
mechanism is further given to enhance the data utility using 
privacy budget relaxation. However, according to the defini⁃
tion of LDP, we cannot distinguish whether the output key is 
genuine. Because the virtual values significantly reduce the 
aggregation accuracy, the aforementioned mean estimation 
mechanisms perform poorly in the case of a small privacy bud⁃
get. Therefore, there is a requirement to enhance the utility of 
key-value data collection under LDP.

Moreover, the mechanisms aforementioned regard all data 
as equally sensitive and thus provide excessive protection for 
some data and leave much room for improving data utility. In 
real-world scenarios, there is quite a lot of non-sensitive data. 
For example, when the server collects application names and 
ratings from cell phones, attackers cannot infer users’ privacy 
preferences even if they know that the user logs in WeChat, 
which is a social APP that has a huge user base. Therefore, us⁃
ing WeChat provides non-sensitive data for users. In contrast, 
using some minority applications provides sensitive data. 
Based on this idea, MURAKAMI et al. [11] proposed the con⁃
cept of utility-optimized LDP (ULDP), which only requires 
LDP protection for sensitive data to reduce the frequency esti⁃
mation error. Nevertheless, ULDP is only suitable for fre⁃
quency estimation, thus the accuracy of data collection under 
the privacy protection for key-value data needs further en⁃
hancements.

To address these issues, we propose a new framework for mo⁃
bile devices called the utility-improved key value (UKV) data 
collection with LDP. In UKV, mobile devices take different per⁃
turbations based on whether the data are sensitive or not to 
achieve a balance between privacy and utility. We then intro⁃

duce an initial implementation of the UKV framework and verify 
its performance in terms of data utility using public datasets.

The remainder of the paper is organized as follows. The 
overview and benefits of the UKV framework are introduced in 
Section 2. Some key challenges are presented in Section 3. In 
Section 4, we describe a case study of an initial implementa⁃
tion of the UKV framework for mobile devices. The perfor⁃
mance of our mechanisms is evaluated in Section 5, and some 
possible future directions are given in Section 6. Finally, we 
conclude the paper in Section 7.
2 Overview and Benefits

In this section, we briefly introduce data collection under lo⁃
cal differential privacy. Then we describe the UKV framework 
and its benefits for data protection.
2.1 Data Collection Under Local Differential Privacy

Data collection is an important means of obtaining data 
from mobile devices. By collecting and analyzing users’ data, 
data collectors can mine users’ characteristics (such as living 
habits and health status) and thus formulate more appropriate 
development strategies. However, users’ data often contains a 
large amount of personal information. Collecting raw data may 
lead to serious personal privacy leaks, which not only harms 
privacy leakers but also brings a series of legal risks and eco⁃
nomic losses to data collectors. Therefore, this issue needs to 
be solved urgently.

Differential privacy[12] provides a feasible solution to the 
problem of personal privacy leakage due to its characteristic 
of being plausible and deniable. It provides strictly provable 
privacy protection without relying on the background knowl⁃
edge possessed by the attacker. LDP is one of the differential 
privacy technologies that specifically address the problem of 
personal privacy leakage during data collection. Unlike cen⁃
tral differential privacy, which assumes the existence of a 
trusted data collector with access to the user’s raw data, LDP 
does not require any qualification on the credibility of the data 
collector. In particular, LDP requires each user to locally per⁃
turb the raw data with a local perturbation mechanism before 
sending it to the data collector. Therefore, the data security of 
the users is guaranteed. Because of this unique advantage, 
LDP has been widely adopted in practice. A successful case is 
RAPPOR[13] on Google Chrome, which enables Google to col⁃
lect users’ browsing information while protecting user privacy.

A basic LDP mechanism is Generalized Randomized Re⁃
sponse (GRR) [14]. The main idea of   GRR is to set the output 
range to be the same as the input range, with a certain prob⁃
ability of providing a “fake” response while maximizing the 
likelihood of providing a “true” response. Specifically, each 
user perturbs x to itself with a large probability p, and per⁃
turbs x to other data with a small probability q. However, the 
utility of GRR drops rapidly when the data domain is large. 
UE[15] solves this problem. UE first encodes the input data as a 
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one-hot d-dimensional vector with only the bit corresponding 
to the data set to 1, where d is the size of input domain. Then 
each bit is perturbed independently. Here, each user retains 
(only) input 1 with large probability p, and perturbs each 0 to 
1 with probability q. Our work is based on the above scheme 
and achieves secure data collection adapted to mobile devices.
2.2 Overview

Fig. 1 shows the overview of our framework, which contains 
three parts: mobile devices, the server side, and data analysts. 
And, we will describe each part of our framework in detail.

•Mobile devices. Mobile devices are individual users who 
own personal data. They can not only generate and collect 
data of users but also perturb the raw data with local differen⁃
tial privacy mechanisms to protect information privacy.

•Server side. The server, which has a large number of com⁃
puting and storage resources, is responsible for collecting the 
data sent by mobile devices, and aggregating and estimating 
the data. Finally, the server releases the data and its corre⁃
sponding estimations. In this paper, we assume that the server 
is “semi-honest”. Here, “semi-honest” means that the server 
honestly executes the data collection protocol while poten⁃
tially leaking the user’s historical data to attackers.

•Data analysts. Data analysts are the actual users of the 
data. The data analyst submits a query request to the server 
and gets the noise-added results. These analysts may be ordi⁃
nary users or malicious attackers.

We briefly describe the data flow in a UKV framework to 
understand the data processing procedure. The raw data are 
generated by the mobile device and locally perturbed by 
UKV. Then, the mobile device sends it to the server side. In 
addition, the key-value data are divided into two categories: 
sensitive data and non-sensitive data. In the data perturba⁃
tion phase, UKV divides the privacy budget ε into two 
parts, namely ε1 and ε2, where ε1 is used for perturbation of 
key and ε2 is used for perturbation of value. For sensitive 
key-value data, the key consumes all privacy budget ε1; for 
non-sensitive key-value data, the key does not consume any 
privacy budget. Furthermore, UKV consumes the privacy 
budget of ε2 to perturb the value for two types of key-value 

data. Finally, the server releases the estimated results to 
the data analyst.
2.3 Benefits

By applying the UKV framework, users perturb the raw data 
before sending key-value data to the server. In addition, the 
UKV framework also provides the following benefits.

• Privacy protection and efficient utility of data. In data col⁃
lection, each user sends the noise-added data to the server. 
Then the server aggregates and analyzes the data where the 
frequency and mean estimation are important data analysis 
components. UKV can maintain high efficiency with a low pri⁃
vacy budget. As the number of non-sensitive keys increases, 
the data utility improves rapidly.

• No trusted third party is required. LDP transfers the part 
that adds noise to the raw data to local devices so that the 
third-party data collectors cannot get the raw data; thus it 
avoids the risk of privacy leakage by third parties.
3 Key Challenges

In order to take full advantage of the UKV framework for 
mobile devices, we still face challenges in the implementation 
of the proposed framework, which seriously hinders the boom⁃
ing development of related applications.

1) Individuals have different privacy needs for data. The dif⁃
ference between sensitive and non-sensitive data can vary 
from one user to another (e.g., some people even want to keep 
the name of the APP that they use and the scores of the movie 
they give private). Moreover, we concentrate on a situation in 
which users can easily choose, no matter it is sensitive or not. 
Nevertheless, there is also a situation in which the user knows 
nothing about the sensitive data type. For the latter case, the 
improvement of our UKV framework for data utility is greatly 
reduced. Therefore, how to divide sensitive data and non-
sensitive data is crucial.

2) Association of sensitive data with non-sensitive data. 
First, we assume that each user sends a key-value data pair 
and each user’s data are irrelevant. This makes sense for most 
personal data (e.g., application ratings). Yet, for certain types 
of personal data (e.g., flu status[16]), users may be extremely in⁃

fluenced by other users. Moreover, 
when users send more than one pair 
of data, sensitive and non-sensitive 
data may also be correlated with 
each other, which means that non-
sensitive data release may lead to 
sensitive data leakage[17]. Therefore, 
designing a scheme for sending mul⁃
tiple data pairs per user is an impor⁃
tant and challenging problem.

3) Lightweight. In practical appli⁃
cations, the communication band⁃▲Figure 1. Overview of the proposed framework
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width cost between the mobile device and the server is propor⁃
tionate to the domain size of the key. The time complexity of 
UKV proposed in this paper is O (d ). When the key domain is 
too large, the communication cost increases dramatically, 
which is unacceptable in many practical applications. More⁃
over, because of the limited computing resources of mobile de⁃
vices, they lack the ability to perform complex computing 
tasks. Thus, designing a lightweight privacy-preserving algo⁃
rithm for mobile devices is necessary.

4) Selection of parameters. The Padding-and-Sampling pro⁃
tocol is used in the UKV framework, where the padding length 
l needs to be set in advance. In theory, it should be set based 
on the data distribution. A small l will reduce the frequency 
estimation for the key, while a large l will increase the quan⁃
tity of virtual key-value data, leading to a larger estimation er⁃
ror. However, the best selection of l is not possible because 
the purpose of UKV is to learn the data distribution. In addi⁃
tion, the choice of privacy budget is essential for balancing pri⁃
vacy and utility. Therefore, it is crucial to choose parameters 
to achieve near-optimal efficiency.
4 Case Study

In this section, we provide a case study to introduce the ini⁃
tial implementation of the UKV framework for mobile device 
data collection.

Fig. 2 shows the implementation of the UKV framework for 
mobile devices. It consists of two parts:

1) The mobile device perturbs key-value data with LDP to 
provide provable privacy guarantees.

2) The server estimates data to generate usable data from 
the collected key-value data for analysis.

The two parts are combined to improve the accuracy of 
server data analysis while protecting the privacy of key-value 
data. We then describe the details of the two parts in the fol⁃
lowing sections.

4.1 Mobile Device
• Padding-and-sampling[18]: Each user samples one datum 

from possessed key-value data instead of sampling one datum 
from the domain of all key-value data. In order to make all 
samplings rate the same, each user first adds different random 
dummy data to possessed key-value data until he has l key-
value data.

• Perturbation: The general overview of the perturbation 
method includes the key input domain, key output domain, 
and flip probability. The input domain has sensitive key 
ks ∈ ΚS and non-sensitive key kn ∈ ΚN, where ΚS and ΚN are 
the sets of sensitive and non-sensitive keys, respectively. In 
the output domain, kr ∈ ΚS \k denotes the rest sensitive keys 
except k, where k may not belong to ΚS. When the user inputs 
ks to UKV, her output includes ks with pss probability and kr with psr probability, where the values of pss and psr are related 
to the privacy budget ε1. When the user inputs kn, her output 
includes kr with the pnr probability and kn with the pnn prob⁃
ability, where pnr is equal to psr.Combining the thought with UE [15], we instantiate a mecha⁃
nism named UKV-UE under the UKV framework. For the data 
obtained by sampling, UKV-UE first transforms the input data 
into a one-dimensional array, e. g., the second data is 
id_2,0.9 , which we transform into a vector 

( 0,0 , 1,1 , 0,0 ,⋯, 0,0 ) with vector length l, and per⁃
turbs each bit independently. Each array is divided into two 
parts: sensitive and non-sensitive bits. Here, we use k to de⁃
note the k-th bit of the array and i to denote the rest of the bits 
of the array. According to the transformation, we know that the 
k-th bit is 1, v  and the rest bits are 0, 0 . For the results of 
perturbation: 1) when k belongs to sensitive bits, -1 (or 1) in⁃
dicates the presence of the key, where -1 (or 1) is obtained by 
a stochastic rounding (SR) mechanism[19] (the SR mechanism 
is to perturb the value to -1 or 1 with different probabilities 
depending on the input) and 0 indicates the absence of the 
key; 2) when k belongs to non-sensitive bits, v' obtained by 
perturbing v with the hybrid mechanism (HM)[20] indicates the 
presence of the key (HM output domain is boundedly continu⁃
ous) and the specified out-of-domain element M indicates the 
absence of the key.
4.2 Server-Side

Data estimation: The server collects the data uploaded by 
users. For the sensitive key, the server computes the counts of 
1 and -1 that support key k from all the data sent by users, de⁃
noted by n0 and n1, respectively. Then we could calculate the 
frequency estimation f ̂k and the corresponding mean estima⁃
tion m̂k by

f ̂k = ( )n0 + n1 n - pss

pss - psn ,

m̂k = l ( )n0 - n1 ( )eε2

n ( )eε2 - 1 f ̂k pss , (1)
where n is the number of the users.

For the non-sensitive key, the server computes the number 
of v that supports key k from all the data sent by users, de⁃

▲Figure 2. Implementation of the utility-improved key value framework
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noted by n2. Then we could calculate the frequency estimation 
f ̂k and the corresponding mean estimation m̂k by

f ̂k = n2
n∙pnn ,

m̂k = ∑k,v ∈ P
v

n2 , (2)
where P is the set of perturbed values sent by the users.

In summary, UKV improves the data utility by slackening 
privacy protection for non-sensitive data.
5 Performance Evaluation

In this section, we evaluate the privacy and utility assurance 
performance of UKV for data collection in public datasets.

Datasets: In this paper, we use the e-commerce (Ec) data⁃
set[21] and the clothing (Cl) dataset[22] to evaluate the perfor⁃
mance of UKV on privacy protection and utility assurance. 
The Ec dataset includes 23 486 key-value pairs and 1 206 cat⁃
egory keys for a total of 23 486 users. The Cl dataset includes 
192 544 key-value pairs and 5 850 types of keys, with a total 
of 105 508 users.

To demonstrate the advantages of the UKV framework, we 
compare it with the most advanced key-value data collection 
mechanism PCKV.

Evaluation metrics: We evaluate the frequency and mean 
estimations by comparing the averaged mean square error 
(MSE) among non-sensitive keys:

MSEfreq = 1
|| ΚN
∑k ∈ ΚN

( f ̂k - fk ) 2

,

MSEmean = 1
|| ΚN
∑k ∈ ΚN

(m̂k - mk ) 2

, (3)
where ΚN is the domain of non-sensitive keys, f ̂k and m̂k are 
the frequency and mean estimations of the key-value data, and 
fk and mk are the actual frequency and mean values of the key-
value data.

We use the ten most frequent keys as non-sensitive keys, 
because the frequency of non-sensitive keys is usually higher 
in practice.

Figs. 3 and 4 show the MSE of non-sensitive keys in two real-
world datasets, from which the effect of privacy budget on data 
utility can be observed. We double the privacy budgets in our 
experiments. The larger the privacy budget, the lower the mean 
square error and the higher the data utility. The MSE of the Cl 
dataset does not change much compared with the results of the 
Ec dataset because all algorithms benefit from the number of 
users, which makes up for the effect of the large key domain. As 

shown in Figs. 3(a) and 4(a), our UKV-UE mechanism performs 
the best as it does not decrease the privacy budget of frequency 
estimation while discriminating the key sensitivity in UKV. The 
theory of dividing the sensitivity to decrease the frequency esti⁃
mation errors is detailed in Ref. [12].

Similarly, in Figs. 3(b) and 4(b), the UKV-UE mechanism 
performs well for any privacy budget about the mean estima⁃
tion. In the case of a small privacy budget, only the UKV-UE 
achieves higher accuracy.
6 Future Directions

This work, key-value data collection with LDP for mo⁃
bile devices, still needs further research to advance its de⁃
velopment. In this section, we envision some possible fu⁃
ture directions.

1) Statistical analysis of key-value data for mobile devices. 
To the best of our knowledge, the current work is limited to fre⁃
quency estimation and mean estimation of key-value data. In 

▲Figure. 3. MSE of Cl dataset
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contrast, other applications of key-value data are less explored 
(e.g., maximum-minimum estimation of key-value data). There⁃
fore, other aggregation statistics of key-value data for mobile 
devices are a direction worthy of attention.

2) Machine learning on mobile devices. In a distributed ma⁃
chine learning system on mobile devices, the mobile devices 
collect data and send it to the server. Then, the server divides 
the subsets of data items according to certain rules and finally 
distributes the subsets to each device for training. Currently, 
only a few mobile machine learning frameworks support key-
value data formats to submit training data, like searching Eng⁃
lish words in dictionaries (the dictionary data structure is in 
key-value format, where the key is the alphabet and the value 
is their sequence number). Therefore, exploring more training 
frameworks that support key-value data formats and adding 
LDP protection to them is quite worthwhile.

3) High-dimensional key-value data in mobile devices. 

Most of the current major differential privacy protection frame⁃
works are for two-dimensional data sets. However, there are a 
lot of complex high-dimensional data in mobile devices, and it 
is necessary to protect them using local differential privacy 
techniques. Moreover, shifting data protection from two dimen⁃
sions to multiple dimensions will inevitably bring more chal⁃
lenges, like dimensional disasters. In short, designing a differ⁃
ential privacy protection framework for mobile devices that 
can be extended to multi-dimensional data protection is an im⁃
portant challenge for data analysis work.

4) Mobile real-time data release. With the need for some par⁃
ticular scenarios (such as a health code and a nucleic acid test), 
people have an increasing demand for real-time query response 
and data updates. Real-time data release has high requirements 
for the stability of data transmission. However, the data trans⁃
mission stability of mobile devices is doubtful, which may 
cause frequent dropouts for users. In addition, problems such as 
repeated data release and dynamic data update significantly in⁃
crease the risk of privacy leakage in the real-time data release. 
Therefore, the privacy protection for real-time data release of 
mobile devices deserves much attention.

5) Preventing poisoning attacks by mobile devices. Poison⁃
ing attacks against key-value data aim to reduce data availabil⁃
ity by sending carefully crafted data from some fake users to 
the server while changing the frequency and mean value of the 
target key chosen by the attacker[23]. For example, an attacker 
successfully changed a road segment in Google Maps from 
"clear" to "congested" using 99 mobile phones. Existing de⁃
fense methods are effective in some cases but ineffective in 
others. Therefore, researching methods to defend against poi⁃
soning attacks from mobile devices is a worthwhile endeavor.
7 Conclusions

We researched the utility improvement of key-value data 
collection for mobile devices and proposed a novel framework, 
UKV, which has improved the data utility by providing LDP 
privacy protection for sensitive key-value data only. We also 
introduced the main challenges that hindered key-value data 
collections from maximizing their benefits. Then, we intro⁃
duced an initial implementation of the UKV framework and 
validated the excellent utility of our mechanism on two real da⁃
tasets. Finally, we envisioned some possible future directions 
to attract more research in this area.
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