
ZTE COMMUNICATIONS
September 2022 Vol. 20 No. 3

ZHANG Qixun, HAN Jing, CHENG Li, ZHANG Baisheng, GONG Zican

Approach to Anomaly Detection in Microservice System with Multi-Source Data Streams Research Paper

Approach to Anomaly Detection inApproach to Anomaly Detection in
Microservice System with MultiMicroservice System with Multi--
Source Data StreamsSource Data Streams

ZHANG Qixun1, HAN Jing2, CHENG Li2,

ZHANG Baisheng2, GONG Zican2

(1. Peking University, Beijing 100091, China；
2. ZTE Corporation, Shenzhen 518057, China)

DOI: 10.12142/ZTECOM.202203011

https://kns.cnki.net/kcms/detail/34.1294.TN.20220728.1549.002.html,
published online July 28, 2022

Manuscript received: 2022-01-24

Abstract: Microservices have become popular in enterprises because of their excellent scalability and timely update capabilities. However,
while fine-grained modularity and service-orientation decrease the complexity of system development, the complexity of system operation and
maintenance has been greatly increased, on the contrary. Multiple types of system failures occur frequently, and it is hard to detect and diag⁃
nose failures in time. Furthermore, microservices are updated frequently. Existing anomaly detection models depend on offline training and
cannot adapt to the frequent updates of microservices. This paper proposes an anomaly detection approach for microservice systems with
multi-source data streams. This approach realizes online model construction and online anomaly detection, and is capable of self-updating
and self-adapting. Experimental results show that this approach can correctly identify 78.85% of faults of different types.
Keywords: anomaly detection; data stream; microservice; monitored indicator; system log

Citation (IEEE Format) : Q. X. Zhang, J. Han, L. Cheng, et al.,“Approach to anomaly detection in microservice system with multi-source data
streams,”ZTE Communications, vol. 20, no. 3, pp. 85–92, Sept. 2022. doi: 10.12142/ZTECOM.202203011.

1 Introduction

In recent years, the microservice architecture has been
widely used in enterprises. Its core ideas are fine-grained
module division, service-oriented interface encapsula⁃
tion, and lightweight communication interaction. The ar⁃

chitecture splits a tightly coupled application into several in⁃
dependent services that have their own functions and run in
independent development and deployment processes. The ser⁃
vices coordinate and cooperate with each other based on a
lightweight communication mechanism. Compared with tradi⁃
tional software systems, microservice systems are character⁃
ized by finer granularity towards the division of service, more
flexible expansion, more frequent program update iterations,
etc. At the same time, in order to improve resource utiliza⁃
tion, services are often deployed in a lightweight container⁃
ized manner. In the microservice system, besides the defects
in an application itself, system failures may often be caused
by configuration errors and resource contention problems.
When a failure inside or outside the system is activated, it
may cause errors and failures, which will further spread be⁃
tween services to produce a chain reaction, affecting the ser⁃

vice performance or even making it impossible to run the ser⁃
vice normally.
Existing microservice anomaly detection approaches often

acquire the behavior features of the system through analyzing
system runtime data such as monitored system indicator data
or log data, identifying the abnormal behavior of the system,
diagnosing the type of system failure, and locating the root
cause of the failure. Some methods have key limitations and
shortcomings. Firstly, these methods often use offline training
and online detection methods, which are not efficient and
cannot adapt to system updates or data changes, resulting in
poor anomaly detection results. Secondly, the data are often
output as a stream when the system is running. The existing
methods usually apply batch processing for data analysis,
which cannot adapt to the real-time characteristics of stream⁃
ing data, leading to a high degree of lag in anomaly detec⁃
tion. Therefore, how to process and analyze these data
streams and how to construct an online anomaly detection
model have become important issues. This paper will focus
on how to use both log data and monitored system indicator
data for anomaly detection and simultaneously to improve the
model’s capabilities of self-updating and self-adapting for
streaming data.
1) An anomaly detection method with multiple data streamsThis work was supported by ZTE Industry-University-Institute Coopera⁃

tion Funds under Grant No. HF-CN-202008200001.

85

ZTE COMMUNICATIONS
September 2022 Vol. 20 No. 3

ZHANG Qixun, HAN Jing, CHENG Li, ZHANG Baisheng, GONG Zican

Research Paper Approach to Anomaly Detection in Microservice System with Multi-Source Data Streams

is proposed. Based on the data flow of the runtime system, the
microservice anomaly features in the data stream are mined,
and online model construction and online anomaly detection
are realized with the capability of self-updating and self-
adapting.
2) A rule-based fault identification method is proposed,

which can synthesize abnormal information online, filter noise
and identify faults.
Experiments are conducted in Sock-Shop, an open source

microservice application system, to verify the effectiveness of
the method in this paper through fault injection. The experi⁃
mental results show that the proposed method can identify dif⁃
ferent types of faults with a correctness of over 81%.
2 Related Work
Formerly, anomaly detection is mostly achieved by monitor⁃

ing indicator data or learning the features of system behavior.
The related work can be classified as anomaly detection ap⁃
proaches based on monitored indicators or based on system
log analysis. The anomaly detection based on monitored indi⁃
cators include approaches based on rules, statistical methods,
or machine learning. Rule-based approaches usually define
rules by analyzing historical data and expert experience,
which helps to accurately detect anomalies that meet the
rules. However, limited to the fixed rules, it requires the in-
time updating of rules. Otherwise, an anomaly belonging to
the new cluster would not be able to be detected. Statistical
methods-based approaches assume the data obeys a certain
distribution, and then use statistical data to estimate, which
heavily relies on the assumption. The approaches based on
machine learning are usually classified by supervised learning
or unsupervised learning. Supervised learning uses plenty of
sample data with labels to train a classifier. Unsupervised
learning detects the anomaly using mathematical approaches
such as distance, density and clustering. To detect anomalies
on multiple dimension with causality, an indicator depen⁃
dency graph can be depicted to discover the abnormal indica⁃
tor. The graph-based approach generally consists of two steps,
graph representation and abnormal indicator detection. Based
on observed performance indicators, CloudRanger[1] uses the
PC algorithm to construct an influence diagram, then uses
Pearson Correlation Function to calculate the correlation be⁃
tween services, and finally uses Customized Second-Order
Random Walk Heuristic Survey Algorithm in the influence
diagram to detect anomalies. Through causal analysis, MS-
Rank[2] extracts the impact diagram between services from
various indicators, and then uses Customized Random Walk
Algorithm in the impact diagram based on the confidence of
service indicators to obtain the abnormal service level to
achieve the result.
Log-based anomaly detection includes anomaly detection

based on graph models, probability distributions, and machine
learning[3]. A graph-based anomaly detection technique con⁃

structs a model for log sequence relationship, association rela⁃
tionship, and log text content. The anomaly detection based on
the probability distribution calculates the correlation probabil⁃
ity between the log and the anomaly. The approach based on
machine learning is to extract the features of the log, and use
machine learning algorithms such as clustering for feature cor⁃
relation. CHUAH et al.[4] proposed a log diagnosis tool, which
extracts log information through a structured template and cal⁃
culates the similarity of the log to detect the anomaly log.
CHEN et al. [5] proposed a log analysis approach that analyzes
the trace log of a large-scale system. It aims to calculate and
analyze the frequency of the log template in each time win⁃
dow. The time window in which the frequency suddenly
changes is a fault window and the corresponding log is an
anomaly log. ZHOU et al.[6] proposed an anomaly detection ap⁃
proach for microservice applications called Microservice Error
Prediction and Fault Localization (MEPFL), which trains the
model through supervised learning, uses the features and in⁃
jected faults on the tracking log in the system as the training
set, and then uses the model in the production environment to
capture potential anomalies.
3 Anomaly Detection Based on Multi-
Source Data Streams
This section provides a detailed description of the approach

proposed in this paper. As mentioned earlier, this approach
performs real-time analysis on the multi-source data streams
to find anomalies and diagnose the root cause of indicators
that characterize anomalies. This approach includes three key
steps: the anomaly detection based on monitored indicators,
anomaly detection based on system logs, and real-time fault
identification (Fig. 1). Anomaly detection based on monitored
indicators, which integrates multiple time series models, is re⁃
sponsible for analyzing monitored data streams. The model
captures a variety of different features of the monitored indica⁃
tors, finds abnormal points in the indicator data in an all-
direction way, and outputs the abnormal indicator data stream.
Log-based anomaly detection is responsible for analyzing the
system log stream, constructing a real-time time-weighted con⁃
trol flow, finding different types of anomalies in the log, and
outputting the abnormal log data stream. Online fault identifi⁃
cation is responsible for integrating the abnormal indicator
data stream and the abnormal log data stream, filtering the ab⁃
normal noise, and finally identifying the fault and providing
feedback on the fault information in real time.
3.1 Anomaly Detection Based on Monitored Indicator

Data Stream
Monitored indicators can be formalized as time series

streams in the form of {xt}, where x is a specific indicator typeand t is the corresponding time for collecting. With the most
recent T indicator values (that is, selecting a sliding time win⁃
dow with length T), the anomaly detection problem of moni⁃

86

ZTE COMMUNICATIONS
September 2022 Vol. 20 No. 3

ZHANG Qixun, HAN Jing, CHENG Li, ZHANG Baisheng, GONG Zican

Approach to Anomaly Detection in Microservice System with Multi-Source Data Streams Research Paper

tored indicators can be regarded as a historical time series
{xt-T, xt-T+1, ⋯, xt-1} with length T to determine whether thecurrent indicator value xt is abnormal or not.This paper proposes an anomaly diagnosis approach based
on monitored indicators. Specifically, the kernel density esti⁃
mation and weighted moving average approaches are selected,
and the anomaly detection results obtained are quantified and
normalized. The final anomaly score is obtained by integration
and used for subsequent root cause diagnosis.
Kernel density estimation[7] is a non-parametric test ap⁃

proach, mainly used to estimate the unknown probability dis⁃
tribution of a sample. The probability density function based
on the sample frequency is smoothed by the kernel density es⁃
timation to obtain the derivable density function. A major ad⁃
vantage of the kernel density estimation is that there is no
need to make any assumptions about the distribution of the
sample data. In the scenario of monitored indicator anomaly
detection, we aim to establish the distribution function model
of each indicator through the kernel density estimation of his⁃
torical data. When a new monitored data point is received, the
quantified degree of abnormality can be measured by using
the idea of hypothesis testing and verifying the probability that
the new data point conforms to the existing distribution func⁃
tion. Specifically, we can estimate a probability distribution
fX(x) from the historical data.
fX(x) = 1

T - 1 ∑i = t - T
t - 1

G ()x ; xi . ()1
Based on this distribution, we can use hypothesis testing to

calculate the degree of anomaly parameter p quantified by the
latest indicator value xt. This value will be used to calculatethe overall degree of anomaly of the data point.
Another effective lightweight unsupervised time series pre⁃

dicting approach is the weighted moving average[8]. The main
idea is to assign higher weights to the nodes that are closer to
the current moment and perform a weighted average, thereby
obtaining the predictive value of the current indicator.
xt = αxt - 1 + α (1 - α) xt - 2 + α (1 - α) 2xt - 3 + ⋯. ()2
We use the difference between the predicted value and the

real value at the current moment as an evaluation of the de⁃
gree of the indicator’s anomaly.

The overall degree of the indi⁃
cator’s anomaly (denoted as A) is
the weighted integration of the
above two statistical values. Be⁃
fore weighting, the above statisti⁃
cal values must be normalized in
advance (mapped to the interval of
0–1). Then, statistical values are
assigned with different weights to
obtain the overall anomaly score.

A = ω1 pvalue + ω2| xt - xt | . ()3
Indicators with an overall anomaly score higher than the

threshold are considered anomaly indicators. These indicators
will be performed with subsequent fault identification.
3.2 Anomaly Detection Based on Log Data Stream
This approach converts the log stream into a log template

stream, uses a network inference algorithm to construct and
update the control flow graph model in real time, and finally
detects anomalies in real time based on the control flow
graph model.
3.2.1 Time-Weighted Control Flow Graph
The time-weighted control flow graph (TCFG) is a directed

graph composed of edges, nodes and time weights. The nodes
represent log templates, the edges represent the transfer rela⁃
tionship between log templates, and the time-weight records
the transfer time between log templates. The time-weight is
calculated by the difference between the timestamps of two ad⁃
jacent logs of the log sequence belonging to the same request.
The formalized definition of TCFG is as follows:
TCFG = (V, E,W) , (4)

where V={v1, v2, ⋯, vn} represents the nodes (log templates) inthe graph model, and the total number is n. E= {eij|1≤i, j≤n}represents the edge from vi to vj in the graph model. W=(wij |eij∈
E) represents the time weight of each edge in the graph model.
The TCFG model describes the request execution logic of

the healthy system and is the basis for fault diagnosis. When
the system fails, the requested log sequence will show a differ⁃
ence from the TCFG model. For example, a request outputs an
ERROR-level log that is not recorded in the TCFG model,
which indicates the system has a fault and this fault-sensitive
log is accurately located. Furthermore, a TCFG model can di⁃
agnose system request latency exceptions at a fine-grained
level. When a request latency exception occurs in the system,
the execution time between adjacent logs in the same request
log sequence increases. By comparing with the time weight in
the TCFG model, we can accurately locate the log with high la⁃
tency where the request latency exception occurs, and even
the program fragment.

▲Figure 1. Overview of the proposed approach

87

ZTE COMMUNICATIONS
September 2022 Vol. 20 No. 3

ZHANG Qixun, HAN Jing, CHENG Li, ZHANG Baisheng, GONG Zican

Research Paper Approach to Anomaly Detection in Microservice System with Multi-Source Data Streams

3.2.2 Anomaly Detection Model Construction
In this paper, the log template mining algorithm, Drain[9], is

used to convert the log stream into a log template stream p.
The core idea is to use a transition probability function param⁃
eter αj, i to model the transition probability-time distributionfrom template j to template i. The transition probability func⁃
tion is formalized as f (ti|tj, αj, i), representing the probabilities
of log template j to log template i appearing at the time tj and tirespectively. Through the analysis of the real log data in this
paper, a power law distribution is used to fit the function,
which is

f (ti|tj,αj,i) =
ì

í

î

ïïïï

ïïïï

αj,i
δ ()ti - tj

δ

-1 - αj,i
if tj + δ < ti

0 otherwise, (5)
where δ represents the minimum transition time from template
j to template i. Based on this function, the occurrence prob⁃
ability of the entire log template stream is calculated. By ad⁃
justing the parameters to maximize the occurrence probability
of the real log template stream, the log stream is fitted.
In the log template stream p, the occurrence probability of

any log template i at time ti is the sum of the transition prob⁃abilities of all previous log templates at time
(t1,…, tN| tk ≤ ti). For any log template transfer j → i, the
probability that the transfer does not occur is S (ti |tk, αk,i)
(non-transfer probability).
S (ti|tk,αk,i) = 1 - F (ti|tk,αk,i) , ()6

where F (ti|tk,αk,i) = ∫
tj

ti
f (t|tk,αk,i)dt. The transfer probability

of the log template transfer j → i is multiplied by the transfer
probability of j → i and non-transfer probability towards other
log templates k → i, where k ∈ {1,…, N},k ≠ j, tk < ti and A ={ αi,i|i, j = 1,…, N, i ≠ j }.
f (ti|tj,Α) = f (ti|tj, αj,i) × ∏

k:k ≠ j,tk < ti
S ()ti|tk, αk,i . ()7

The occurrence probability of the entire log template stream
p is
f (t≤ T,Α) = ∏

ti ≤ T
f ()ti|t1,…,tN\ti,Α ,

()8
which is

f (t≤ T,Α) = ∏
ti ≤ T(∏tk < ti S ()ti|tk,αk,i × ∑

j:tj < ti

f ()ti|tj,αj,i
S ()ti|tj,αj,i) . ()9

More specific simplification steps can be found in Ref. [10].
Finally, the TCFG model construction is transformed into

inferring the most likely graph structure so that the graph
structure can fit the log template flow p with the greatest prob⁃
ability. Given a TCFG, the matrix composed of transition prob⁃
ability function parameters between any two log templates in
the graph is Α. The problem can be formalized as
maximizeΑ log f ()t,Α
subject to αj, i ≥ 0, i, j = 1,…, N, i ≠ j , ()10

where Α = {αj, i|I, j = 1,…, N, i ≠ j}.
This approach uses the random gradient descending for

training. In each iteration during the training process, Α is up⁃
dated. The updating calculation is as follows.
αkj, i(t) = (αk - 1j,i (t) - γ∇αj,i Lc(Αk - 1(t)))+, ()11

where k is the number of iterations and ∇αj,i Lc(∙) is the gradi⁃
ent of Lc(∙). In each iteration, only the TCFG subgraph relatedto the log template that appears in the current time period is
updated. Finally, if the transition probability of the two log
templates is high enough, a corresponding edge is added to
TCFG.
3.2.3 Anomaly Detection Based on TCFG
The anomaly detection based on the control flow graph iden⁃

tifies the difference between the control flow graph and the log
sequence. There are three types of anomalies that serve as the
basis for fault diagnosis, including sequence anomalies, redun⁃
dancy anomalies, and latency anomalies. The sequence
anomaly refers to any child node of the log template T that
does not appear in the log template sequence in the expected
time window t after T. The redundancy anomaly is defined as
a new log template that has never appeared in the expected
time window after T. The latency anomaly means that the time
interval between T and the most recent child node in the log
template sequence is greater than that recorded in TCFG.
3.2.4 Real-Time Fault Identification
Our anomaly detection approach, which is based on metrics

data and log data, outputs anomaly information in real time.
However, due to data noise and the inference accuracy of the
algorithm, not all anomalies are system failures. Therefore, a
rule-based fault identification approach that combines charac⁃
teristics including anomaly density and anomaly duration is
proposed to determine system failures. The calculation func⁃
tion is expressed as follows
f (density, time) = { 10, (12)

88

ZTE COMMUNICATIONS
September 2022 Vol. 20 No. 3

ZHANG Qixun, HAN Jing, CHENG Li, ZHANG Baisheng, GONG Zican

Approach to Anomaly Detection in Microservice System with Multi-Source Data Streams Research Paper

where 1 signifies a fault has occurred and 0 signifies no fault
has occurred. The anomaly density refers to the number of
anomalies output in real time based on monitored data and
log data over a period of time. It has been verified in Ref. [11]
that anomalies with a higher frequency are more likely to
characterize a failure. Therefore, higher anomaly density
leads to a greater possibility of system failure. The duration of
an anomaly is an important factor in determining system
faults. Generally, if there is no intervention from external fac⁃
tors, such as manual processing, critical faults will hardly be⁃
come weaker or disappear over time. On the contrary, some
system states often fluctuate instantaneously and these instan⁃
taneous fluctuations will produce anomalies that are not sys⁃
tem failures.
For these characteristics, two parameter thresholds { γ, ε }

are set for fault determination. For anomaly density, the num⁃
ber of anomalies per minute is used as the determination pa⁃
rameter. When the parameter value exceeds the threshold, it
is determined as a fault. The anomaly distribution is evalu⁃
ated by the standard deviation of the number of anomalies per
minute for each service. If the number of anomalies in the du⁃
ration exceeds the threshold, it will be determined as a fault:
f (density, distribution, time) = ì

í
î

1, desity > γ ∨ time > ε
0, otherwise .

(13)

3.2.5 Experiment Environment
In order to verify the effectiveness of the proposed ap⁃

proach, we built a microservice system based on Kuber⁃
netes as an experimental environment. The hardware plat⁃
form used in the experiment is 2 Dell R740 Server, config⁃
ured with 2 Intel Xeon Gold 5220R processors (2.2 GHz,
48 core, and 96 threads), 128 G physical memory, a 4 TB
SSD hard disk, and a Gigabit Ethernet card. For each
sever，we installed the Ubuntu LTS operating system, cre⁃
ated a virtual machine through Kernel-Based Virtual Ma⁃
chine (KVM), and then built the Kubernetes cluster on the
virtual machine. The cluster contains 2 master nodes and 3
worker nodes, with the Istio Service Grid System installed.
We also deployed supportive software for analysis such as
Jaeger, Kiali, Node-exporter, Filebeat, ELK (Elasticsearch,
Logstash, and Kibana), Zabbix, and Prometheus for log and
monitoring data collection in the Kubernetes cluster. The
resource configuration information of the virtual machine
used in the experimental environment is shown in Table 1.
We selected the open source microservice application sys⁃

tem Sock-Shop as the experimental object. Sock-Shop is an
electronic business system that simulates selling socks. The
development environment includes Java, Golang and NodeJS.
The system is divided into eight application services, includ⁃
ing Front-end (user interaction interface), Users (user registra⁃

tion and login), Catalogue (product classification), Carts (shop⁃
ping cart), Orders (submitting orders), Queue Master (process⁃
ing order queue), Payment (payment), and Shipping (deliv⁃
ery), besides the database service MongoDB and message
middleware service RabbitMQ. Each service mainly commu⁃
nicates and interacts using the HTTP protocol. Thus, the cou⁃
pling between services is low and the development and de⁃
ployment are convenient. Sock-Shop has been widely used in
Refs. [12–13] as a typical representation.
The resource configuration of each application container in

the microservice application system Sock-Shop deployed in
the cluster is set according to the official reference. The spe⁃
cific configuration information is listed in Table 2.
3.2.6 Fault Injection
In an actual production environment, the failure probability

of a running system is extremely low, and the failures are often
uncertain. A common approach is to inject specified types of
faults into the system to verify its ability of the microservice
system to handle failures and observe the operating status of
the system. We used a series of tools (Stress-ng, traffic control,
etc.) to inject faults into the Sock-Shop system and a load test⁃
ing tool (Locust) to simulate multiple users sending a series of
requests to the system at the same time, real user login, query,
order and other operations, and collected logs, metrics and ser⁃
vice KPI data generated during the running period.
By investigating the faults that often occur in the microser⁃

vice system, two representative faults are identified: applica⁃
tion faults and system resource faults. The fault description is
shown in Table 3.
▼Table 1. Virtual machine resource configuration
Virtual Machine

Number
1

2

3

4

5

6

7

Virtual Machine
Function
Master 1

Master 2

Worker 1

Worker 2

Worker 3

ELK

Others

Resource Configuration
8 Core CPU, 16 G Memory,

200 G Disk Space
8 Core CPU, 32 G Memory,

200 G Disk Space
8 Core CPU, 32 G Memory,

200 G Disk Space
8 Core CPU, 16 G Memory,

200 G Disk Space
4 Core CPU, 16 G Memory,

200 G Disk Space
8 Core CPU, 32 G Memory,

1 T Disk Space
4 Core CPU, 8 G Memory,

200 G Disk Space

Virtual Machine
Location
Server_1

Server_2

Server_1

Server_1

Server_2

Server_2

Server_2
ELK: Elasticsearch, Logstash, and Kibana
▼Table 2. Container resource configuration

CPU/m
Memory/Mi

Front-
End
300
1000

User
300
200

Catalogue
200
200

Carts
300
500

Orders
500
500

Queue-
Master
300
500

Payment
200
200

Shipping
300
500

89

ZTE COMMUNICATIONS
September 2022 Vol. 20 No. 3

ZHANG Qixun, HAN Jing, CHENG Li, ZHANG Baisheng, GONG Zican

Research Paper Approach to Anomaly Detection in Microservice System with Multi-Source Data Streams

3.2.7 Application Faults
Application faults mainly refer to software bugs intro⁃

duced during the software development process by develop⁃
ers, such as the direct use of uninitialized objects in the
code and the incorrect boundary of a conditional statement.
When the bugs within the application are activated during
the system running, exceptions or even service failures
might appear. For application faults, we directly modify the
application source code, inject faults into the source code,
and trigger them by sending a request to the microservice
system. The application faults involve the null value, unex⁃
pected value, short-circuit in the exception statement, condi⁃
tion reversed, switch statement lacking a default value, ex⁃
ception uncaught, requested memory unreleased, and middle⁃
ware upgrade.
• Null value: When the program encounters an uninitial⁃

ized object during the running period, the error log will be
printed if there is a null value judgment statement block; an
exception error will be thrown if there is no null value judg⁃
ment. Therefore, abnormal characteristics will appear in the
application log. The corresponding service outputs a failing
request.
• Unexpected value: The variable value in the process of a

program is of the wrong type. If there is a corresponding type
judgment statement block, the error log will be printed; other⁃
wise, an abnormal error will be thrown. Therefore, the abnor⁃
mal characteristics will be shown in the application log. The
corresponding service outputs a failing request.
• Short-circuit in the exception statement: The exception

statement in the program is directly triggered and the corre⁃
sponding exception is thrown. If it is not caught, there will be
an error output in the log. If the exception is caught, the pro⁃
gram logic will change. The service outputs a request failure
or an incorrectly return result.
• Condition reversal: The judgment condition of the condi⁃

tional judgment statement used in the program running pro⁃
cess is reversed. In some cases, it will cause the wrong vari⁃
able value or even an exception thrown directly. The service
outputs a request failure.
• Switch statement lacking a default value: The switch

statement used in the running program lacks the default
branch and the existing branch cannot cover the current situ⁃
ation. In some cases, it will cause variable value initializa⁃
tion errors, null value errors, etc. The service outputs a re⁃
quest failure.
• Exception uncaught: An undeclared exception is thrown

when the program is running, and there is no corresponding
capturing and processing statement block in the code. The ser⁃
vice outputs a request failure.
• Requested memory unreleased: When the requested

memory resources fail to release in the program code, a
memory leak occurs. When the memory occupation reaches its
upper limit, the process will be killed and the pod restarted.
The service will output time-outs or request failures.
• Middleware upgrade: The upgrade of middleware which

the application is relied on causes compatibility issues. This
further causes system failures or request failures.
3.2.8 System Resource Faults
System resource faults refer to system faults in the actual

production environment due to resource contention or incor⁃
rect configurations. When this type of fault appears, service re⁃
sponse time becomes longer, leading to service instability or
unavailability. We use third-party tools to simulate service re⁃
source faults in the experiment. To simulate CPU, memory
and disk I/O exceptions, we use the open-source tool stress-ng
under the Linux operating system to seize the system’s CPU,
memory, and disk I/O resources. For network anomalies, we
use the traffic control command in the Linux system to control
network traffic to simulate network delays and network packet
loss. The system resource faults include the high node CPU
load, high container CPU load, insufficient node memory, in⁃
sufficient container memory, node disk I/O obstructed, and
network delay in the node/packet loss.
• High node CPU load: As other pods on the node seize

CPU resources, resource competition is caused, and the re⁃
sponse time of some services is affected. Faults can be found
through the memory resource monitored data on the node.
• High container CPU load: If the deployment is configured

improperly, the container memory is insufficient and the ser⁃
vice cannot run. As the dynamic expansion strategy is not set,
CPU resource load is too high under high concurrent requests.
The service request response is therefore abnormal or the ser⁃
vice request fails.
• Insufficient node memory: Due to insufficient node

memory, the node fails and all services on the node are un⁃
available.
• Insufficient container memory: Pod start-up failure or con⁃

tinuous restart of pod under high load occurs due to insuffi⁃
cient memory resource allocation. The service will be unavail⁃
able or unstable.
• Node disk I/O obstructed: Due to a large number of disk

I/O requests from other pods on the node, disk read and
write competition occurs, which leads to a prolonged service
request time.
• Network delay in the node/package loss: Packet loss or

network latency occurs on the network due to switch failure or
server network card failure, which affects the request time of
the service on the node.

▼Table 3. Two representative fault types in microservice system
Fault Type

Application fault

System resource
fault

Fault Description
Caused by null value errors in the code, short-circuit of exception
statements, condition reversal, default values missing in switch
statements, etc.
Caused by high node CPU utilization, insufficient memory, network
delay or packet loss, disk I/O blocking, etc.

90

ZTE COMMUNICATIONS
September 2022 Vol. 20 No. 3

ZHANG Qixun, HAN Jing, CHENG Li, ZHANG Baisheng, GONG Zican

Approach to Anomaly Detection in Microservice System with Multi-Source Data Streams Research Paper

3.3 Analysis of Anomaly Detection Results
We conducted a large number of random fault injection ex⁃

periments on the system. The injected applications include
the front-end (user interaction interface), users (user registra⁃
tion and login), catalogue (product classification), carts (shop⁃
ping carts), orders (order submit), payment (payment) and
shipping (delivery). At least 20 successful activation cases
were randomly selected for each failure, and indicator data,
log data and service KPI data were collected to serve as the ex⁃
perimental data set. Recall was used to evaluate the fault diag⁃
nosis results of injected faults. The calculation of recall is
shown in Eq. (14), where TP is the number of correctly identi⁃
fied faults and FN is the number of unrecognized faults.
Recall = TP

TP + FN . (14)
The anomaly detection approach based on monitored indica⁃

tors and the anomaly detection approach based on logs pro⁃
posed in this paper were individually performed on the experi⁃
mental data set to detect the anomalies and identify the faults.
The results are shown in Table 4.

According to the experimental results in Table 4, the
method proposed in this paper can correctly identify about
78.85% of the fault types. Although the proposed method can
accurately detect and locate most anomalies, there are still
some faults that cannot be detected effectively. Through
manual analysis, the key reasons include:
1) The sampling time interval of indicator monitoring data

is too long and some instantaneous peak data cannot be col⁃
lected, thus some faults do not output abnormal values and

cannot be detected by the algorithm.
2) Some detected anomalies are false alarms, because

noises are hidden in system running data.
3) There are many kinds of application logic faults. These

faults only output abnormal values of calculation results, how⁃
ever, the degree of anomaly in the running data is not obvious.
Therefore, the algorithm proposed in this paper cannot solve
these problems.
4 Conclusions
This paper proposes an anomaly detection method based on

streaming runtime data for microservices. First, an anomaly
detection method based on monitored indicators is used to ana⁃
lyze the streaming system running data monitored. By analyz⁃
ing a variety of different features of the monitored indicators,
the abnormal points in the indicator data are found. Then the
log-based anomaly detection method is used to analyze the sys⁃
tem log stream, and the time-weighted control flow graph is
built online to detect anomalies in log data. Finally, the re⁃
sults of the previous two anomaly detection methods are inte⁃
grated and a filtering method is applied to these results to out⁃
put the final anomalies.
We simulated a microservice system based on Kubernetes

as our lab environment. Fault injection is utilized to simulate
multiple faults including system changes, applications faults
and system resources faults. Logs, monitored indicators, and
service PKI data are collected as datasets for evaluation. The
experimental results show that the proposed method can iden⁃
tify different types of faults with over 78% accuracy. In the fu⁃
ture, we consider to design more sophisticated models to cap⁃
ture features of multi-source data such as logs, monitoring
data, KPI and tracing data.

References
[1] WANG P, XU J M, MA M, et al. CloudRanger: root cause identification for
cloud native systems [C]//18th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID). IEEE, 2018: 492–502. DOI: 10.1109/
CCGRID.2018.00076

[2] MA M, LIN W L, PAN D S, et al. MS-rank: multi-metric and self-adaptive root
cause diagnosis for microservice applications [C]//IEEE International Confer⁃
ence on Web Services. IEEE, 2019: 60–67. DOI: 10.1109/ICWS.2019.00022

[3] JIA T, LI Y, WU Z H. Survey of state-of-the-art log-based failure diagnosis (in
Chinese) [J]. Journal of software, 2020, 31(7): 1997– 2018. DOI: 10.13328/j.
cnki.jos.006045

[4] CHUAH E, KUO S H, HIEW P, et al. Diagnosing the root-causes of failures
from cluster log files [C]//International Conference on High Performance Com⁃
puting. IEEE, 2010: 1–10. DOI: 10.1109/HIPC.2010.5713159

[5] CHEN C, SINGH N, YAJNIK S. Log analytics for dependable enterprise tele⁃
phony [C]//Ninth European Dependable Computing Conference. IEEE, 2012:
94–101. DOI: 10.1109/EDCC.2012.14

[6] ZHOU X, PENG X, XIE T, et al. Latent error prediction and fault localization

▼Table 4. Recall rate of anomaly detection and fault recognition (recall)

Null value
Unexpected value

Short circuit of the ex⁃
ception statement
Condition reversed

Switch statement lacking
a default value

Exception uncaught
Requested memory unre⁃

leased
High node CPU load

High container CPU load
Insufficient node memory
Insufficient container

memory
Node disk I/O obstructed
Network delay in the
node/package loss

Indicator-Based
Anomaly Detec⁃

tion
1.00
1.00
0.35
0.10
0.15
1.00
1.00
1.00
1.00
1.00
1.00
0.65
0.90

Log-Based
Anomaly Detec⁃

tion
1.00
1.00
0.45
0.55
0.75
1.00
1.00
0.00
0.00
1.00
1.00
0.00
0.00

Fault Identifica⁃
tion
1.00
1.00
0.45
0.55
0.45
1.00
1.00
0.70
0.75
1.00
1.00
0.65
0.70

91

ZTE COMMUNICATIONS
September 2022 Vol. 20 No. 3

ZHANG Qixun, HAN Jing, CHENG Li, ZHANG Baisheng, GONG Zican

Research Paper Approach to Anomaly Detection in Microservice System with Multi-Source Data Streams

for microservice applications by learning from system trace logs [C]//27th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. ACM, 2019: 683–694

[7] SILVERMAN B. Density estimation for statistics and data analysis [M]. London,
UK: Routledge, 2018

[8] PARZEN E, BROWN R G. Smoothing, forecasting and prediction of discrete
time series [J]. Journal of the American statistical association, 1964, 59(307):
973. DOI: 10.2307/2283122

[9] HE P J, ZHU J M, ZHENG Z B, et al. Drain: an online log parsing approach
with fixed depth tree [C]//IEEE International Conference on Web Services.
IEEE, 2017: 33–40. DOI: 10.1109/ICWS.2017.13

[10] JIA T, WU Y F, HOU C J, et al. LogFlash: real-time streaming anomaly detec⁃
tion and diagnosis from system logs for large-scale software systems [C]//IEEE
32nd International Symposium on Software Reliability Engineering. IEEE,
2021: 80–90. DOI: 10.1109/ISSRE52982.2021.00021

[11] ZHAO N W, CHEN J J, WANG Z, et al. Real-time incident prediction for on⁃
line service systems [C]//28th ACM Joint Meeting on European Software Engi⁃
neering Conference and Symposium on the Foundations of Software Engineer⁃
ing.ACM,2020:315–326.DOI:10.1145/3368089.3409672

[12] WU L, TORDSSON J, BOGATINOVSKI J, et al. MicroDiag: fine-grained per⁃
formance diagnosis for microservice systems [C]//IEEE/ACM International
Workshop on Cloud Intelligence (CloudIntelligence). IEEE, 2021: 31– 36.
DOI: 10.1109/CloudIntelligence52565.2021.00015

[13] YANG Y, LI Y, WU Z H. Survey of state-of-the-art distributed tracing technol⁃
ogy (in Chinese) [J]. Journal of software, 2020, 31(7): 2019–2039

Biographies

ZHANGQixun is currently an assistant professor in School of Software and Mi⁃
croelectronics in Peking University, China. He received his PhD in 2022. His
research interests include distributed systems, AIOps, etc.

HAN Jing (han.jing28@zte.com.cn) joined ZTE Corporation in 2000. She is an
expert in AIOps. She has been putting effort into natural language process for
over 10 years and has published several papers.

CHENG Li joined ZTE Corporation in 2006. He is an expert in AIOps and
wireless communications. He has much experience in analyzing variety of types
of data. He has a lot of experience in problem-solving and methodology.

ZHANG Baisheng joined ZTE Corporation in 2011. His work has been devoted
to cell-phone terminal techniques for over 10 years. Besides, he is interested in
the research of auto-driving technology.

GONGZican joined ZTE Corporation in 2020. He received his master’s degree
in computing from Australian National University, Australia in 2019. His re⁃
search interests include AIOps and natural language processing.

92

