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Abstract: A distributed information network with complex network structure always has a challenge of locating fault root causes. In this pa⁃
per, we propose a novel root cause analysis (RCA) method by random walk on the weighted fault propagation graph. Different from other RCA
methods, it mines effective features information related to root causes from offline alarms. Combined with the information, online alarms and
graph relationship of network structure are used to construct a weighted graph. Thus, this approach does not require operational experience
and can be widely applied in different distributed networks. The proposed method can be used in multiple fault location cases. The experi⁃
ment results show the proposed approach achieves much better performance with 6% higher precision at least for root fault location, compared
with three baseline methods. Besides, we explain how the optimal parameter’s value in the random walk algorithm influences RCA results.
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1 Introduction

Distributed information networks have been widely
used in the Internet, government, military and other
important fields because of its reliability, scalability,
resource sharing and high performance. However, due

to its large-scale system configuration, complex graph struc⁃
ture and operation logic, the frequent occurrences of faults
and fault propagation increase the difficulties for locating
faults’root causes and troubleshooting the distributed infor⁃
mation network.
In recent years, many root cause analysis (RCA) methods

have been proposed, which can be divided into two types:
knowledge-based and data-driven methods.
1) Knowledge-based: The fault diagnosis methods based on

the rules of knowledge generally use the expert experiences to
guide the fault diagnosis. ZENG et al. [1] constructed fault rea⁃
soning rules with the empirical knowledge of IT operation and
maintenance, and then built fault trees to deduce fault root
causes. The authors in Ref. [2] proposed an RCA tool inspired
by the pattern matching technology. This tool uses the au⁃

tomata built online and the space-time causal relationship be⁃
tween the symbols observed in the log is stored. Its construc⁃
tion does not need annotation and has some interpretability.
However, it cannot be used directly and flexibly because of a
complex structure.
2) Data-driven: These methods are implemented by mul⁃

tiple technologies including machine learning, causality graph
and real graph.
• Machine learning: Bayesian networks (BN) are often used

for fault root cause analysis because they contain causal infor⁃
mation. LIU et al. [3] proposed a BN construction algorithm
based on the alarm seriality, which could reduce the alarm
preprocessing time while considering the effectiveness. How⁃
ever, training the network needs a large amount of labeled
data to improve the performance generalization of the model.
ZHANG et al.[4] trained an attention based autoencoder to pre⁃
dict fault signals. In the case of no labeled samples, this
method considered the time dependence, but it is difficult to
explain the fault mechanism to some extent.
• Causality graph: A causality graph is a graph based on

event co-occurrence or conditional independence test with
each event as a node. It locates the root causes by random
walk in a causality graph. KALANDER et al. [5] proposed an
embedding algorithm based on a causal propagation graph toThis work was supported by ZTE Industry-University-Institute Coopera⁃

tion Funds under Grant No. HC-CN-20201120009.
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infer the weight of the edge, and applied the impact maximiza⁃
tion algorithm to determine the root cause alarm. Although it
explains the fault mechanism between alarms, the trimming of
opposite edges in causal graphs usually requires some expert
experience and does not adapt well in a variety of scenarios.
• Real graph: It is more intuitive for random walk in a real

relationship graph that is not like the causality graph. ZHAO
et al. [6] used performance indicators such as key performance
indicators (KPIs) to calculate the similarity of the edges in an
anomaly propagation graph, formed the transition probability
matrix, and located the fault root by random walk. This
method requires such a large amount of performance indica⁃
tor data for calculation and analysis that the RCA takes a
long time.
Compared with the traditional methods based on empirical

knowledge, the data-driven methods can better realize real-
time analysis with more accuracy and do not need to be
greatly adjusted due to the updates of environment configura⁃
tion. However, the existing data-driven methods often need a
large amount of labeled data for supervised training[7]. Tra⁃
ceRCA[8] mined the suspicious nodes by KPIs, which could re⁃
duce the locating noise. It inspired us to propose the idea of lo⁃
cating the root causes by alarms. Because common alarms can⁃
not be used to mine more fault root cause information.
ZHANG et al. [9] proposed the anomaly propagation graph us⁃
ing system data and used two optional algorithms to locate root
causes. This inspires us to construct the fault propagation with
alarms to explain the mechanism of fault propagation. Those
methods without graphs cannot intuitively explain the mecha⁃
nism of fault propagation. One the other hand, the other meth⁃
ods of using constructed fault propagation graphs are almost
based on KPIs[10–12] or other metrics collected from the data⁃
base. However, these methods have to use acquisition tools
and set the collection locations to acquire various kinds of
data, which may cost too much labor. A causal graph in alarms
also needs expert experience, which cannot adapt well in dis⁃
tributed environments with frequent updates.
For the above deficiencies, we propose an alarm-based

method for root cause analysis of distributed information net⁃
works based on a weighted fault propagation topology (WFPT-
RCA). It is inspired by the previous work, mainly Refs. [8–
9]. It trains the classifier using a few historical labeled alarms
to mine the effective information of root causes. When a fault
occurs, based on the character of alarms, the WFPT-RCA im⁃
mediately extracts a subgraph from the real graph of the dis⁃
tribute network. Then combined with the information of root
causes and alarms’ features, our method calculates the
weights of nodes and edges in the subgraph. Based on the ran⁃
dom walk in the weighted subgraph, it not only explains the
behaviors of fault propagation, but also outputs the nodes’list
about root causes’scores to help operators to repair the fault.
We evaluate WFPT-RCA in two datasets in different scenarios
(an e-commerce platform and a transport network). The results

show that WFPT-RCA achieves a good performance result,
with 90% in precision and 92.7% in mean average precision.
It outperforms several other state-of-the-art methods.
In summary, the contributions of this paper are threefold:
1) We propose a two-stage RCA approach. In the offline

phase, a few labeled alarms are used to train the classifier for
digging more information associated with root causes in order
to guide the fault location in the online phase.
2) We provide a method based on alarms to calculate the

nodes’weights as the scores of root causes and edges’weights
as the probabilities of the fault propagation in the real graph
which adapts well in distribute information network.
3) We evaluate WFPT-RCA in two datasets. The results

demonstrate that WFPT-RCA localizes root causes correctly
and has a better generalization ability. Our method pays more
attention to features related to root causes and does not rely on
the experience knowledge of operators.
The remaining of this paper is organized as follows. The

framework and details of WFPT-RCA are mainly introduced
in Section 2. In Section 3, we show the related experiments’
results and conclusion analysis to prove the efficiency of our
approach. Finally, Section 4 concludes the paper.
2 Framework of WFPT-RCA
Static topological relationships in a distributed information

network are often complex and hierarchical (Fig. 1）. An e-
commerce platform is often composed of multiple system
nodes to achieve efficient work. And there are more host
nodes that belong to the system nodes to offer different ser⁃
vices. The real lines in nodes represent the calling relation⁃
ships between the nodes, while the dashed lines represent the
owning relationships between system nodes and host nodes.
Similarly, Fig. 1 can also be regarded as a graph of the trans⁃
port network where the host nodes can be represented as the
network element (NE) and the links and pseudo-wires are ex⁃
pressed as real edges. Moreover, the transport network in⁃
cludes the core layer, convergence layer and access layer.
There are various NEs to transmit data through multiple links
in each layer to represent the hierarchy of graph. In real sce⁃
narios, such complex and hierarchical relationships often lead
to faults due to resource usage and response timeout of a
system node. If we directly locate faults based on performance

▲Figure 1. Graph of an e-commerce platform
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indicators in the original graph, noise interference may occur,
resulting in low accuracy. Meanwhile, alarms usually reflect
node status. Using alarms to identify abnormal nodes in the
graph and extract abnormal subgraphs, noise interference can
be reduced and fault location accuracy can be improved.
The framework of WFPT-RCA is shown in Fig. 2, which is

mainly divided into offline analysis and online diagnosis. We
make full use of the collected and labeled historical alarms of
each fault event. Taking the occurrence location as the re⁃
search object, feature extraction is carried out for the alarms
in each location. The root location is identified by the binary
classifier training model, and the key features are determined
by feature importance analysis. In the online phase, alarms
and network graph configuration data are firstly collected if
the fault occurs after the fault work order is obtained from the
operators. After the features of the nodes where alarms have
occurred in the offline phase are extracted from the alarms, an
abnormal subgraph (ASG) based on the location of the alarm
and an original network graph are extracted and the weights of
nodes and edges based on the alarm features of nodes are then
calculated to generate a weighted abnormal subgraph called
Weighted Fault Propagation Graph. Then, a random walk is
carried out in ASG. After iteration convergence, the node with
the highest score is output and regarded as the root node ac⁃
cording to the ranking of root cause score of each abnormal
node.
2.1 Data Collection
The collected data are mainly from the alarms and graph

generated in the distributed information network. After a sys⁃
tem fault occurs, a surge in the number of alarms occurs
within a few minutes, namely alarm storms[13]. In the online
phase, we collect statistics on the number, type and severity of
alarms generated in the distributed system every minute. Ac⁃
cording to the occurrence time sequence, WFPT-RCA consti⁃
tutes the corresponding time series, respectively adopting S-H-
ESD anomaly detection [14] to find outlier points and integrat⁃
ing the occurrence time corresponding to detected outlier
points, so as to determine the occurrence time range of faults.
The graph is usually extracted from system configuration data
when a fault occurs. It analyzes
the owning and association rela⁃
tionships of each location based
on the location where an alarm
occurs.
2.2 Feature Analysis
Feature analysis is to mine

and analyze the alarm informa⁃
tion at the offline stage and
find the features related to the
root cause. It is mainly divided
into four steps: data cleaning,

feature extraction, classifier training and feature importance
analysis.
1) Data cleaning. WFPT-RCA first collect the alarms based

on the operators’fault repair experience and fault work in or⁃
der to obtain the labeled alarm dataset. The content of the
alarms is mainly consisted of the timestamp, location and rich
concrete content. Alarm pretreatment is a usual practice to en⁃
able the alarm content to become a standard template, such as
removal of the IP address and request ID. This approach can
reduce the alarm type space and noise, and facilitate subse⁃
quent cutting word analysis. The content of the warning words
is cut to get rid of some stop words such as“for”and“is”, and
then text information will be extracted more accurately.
2) Feature extraction. Main features include text, frequency

and time.
• Text: After cutting alarm words, we analyze the alarm in⁃

formation based on words to find important words related to
faults. Inverse Document Frequency (IDF) [15] is a key feature
used to measure the importance of words in text mining, reduc⁃
ing the weight of frequent words and increasing the weight of
unfamiliar words; IDF (w) = log [ ]N (Nw + 1) , where N is the
total number of words in all alarms and Nw is the number ofalarms containing the word w. After the IDF for the words con⁃
tained in each alarm is calculated, the information entropy of
each alarm will be calculated as∑m

IDF (w ) m, where m is
the total number of words in each alarm.
• Frequency: This feature is extracted based on the statis⁃

tics for the number of alarms, the total number of species, the
number of alarms per minute on average from every node, the
number of serious alarms and so on. More serious faults and
richer node types are to determine a more serious alarm type,
such as failure and downtime.
• Time: The occurrence of faults often has a certain time

rule. Therefore, the statistics on relative occurrence time (the
time difference between the earliest alarm of a node and the
earliest alarm of a fault event) and on alarm duration of each
node is collected.
3) Classifier training. Based on the occurrence location,

WFPT-RCA inputs the extracted alarm features with the la⁃

▲Figure 2. Framework of the proposed WFPT-RCA
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bels 0 (not root cause) and 1 (root cause) into XGBoost[16] for
training until the model has the optimal effect to classify the
root cause samples.
4) Feature importance analysis. When we train the binary

XGBoost model, the importance of features can be analyzed in
the meantime. It is implemented by employing the F score to
evaluate the influence of each feature in the dataset on classi⁃
fication decision. The F score is used to measure the discrimi⁃
nation ability of the features to model classification. The
higher the F score is, the stronger the distinguishing ability of
the feature is. Moreover, the results of feature importance will
play a great role in the subsequent root location.
2.3 ASG Generation
As shown in Fig. 3, ASG is constructed based on the actual

graph of the distributed information network. Due to the na⁃
ture of alarms, we select the set of candidate abnormal nodes
Va = { va1, va2,…, van }, where n is the number of abnormalnodes and va1 is one of the anomaly nodes. The filter rules arebased on whether alarms are generated at each location in the
graph during the fault occurrence. The ASG is expressed as
ASG (Va, E ), where E is the set of eij that shows the directedreal edge where vai points to vaj. Va and E have different physi⁃cal meanings in different distributed information networks,
which can assign different meanings to them based on the
graph and alarm location. The ASG corresponding to each
fault event varies according to the locations of the alarms. The
weights of the nodes and edges of the extracted ASG must be
defined to provide physical significance in the scenario of root
cause locating and more explanatory for root cause diagnosis.
The following is the definitions:
1) Node weight wv: It calculates nodes’weights based onthe alarms of nodes. It can be regarded as the initial root

cause score of node failure. The weight of vai is calculated asfollows:
wvi = θ1·fi (1)+θ2·fi (2)+…+θl·fi ( l ) , (1)

where l is the number of features, k is the k-th feature of the
feature set, k∈[1, l], and θk and fk are respectively the normal⁃ized feature importance score and the value of k. Finally, all
calculated node weights are normalized again. The larger the
weight value is, the higher the empirical root score or prob⁃
ability value of the node is con⁃
sidered.
2) Edge weight wij : It is theweight of the edge between vai and

vaj . The calculation formula is:
wij = max |

|
|
| corr ( )fi( )k , fj( )k ,

(2)
where corr(·) is Pearson correla⁃

tion calculation; wij∈ [0, 1] and its physical meaning is theprobability of fault propagation, which is the maximum similar⁃
ity degree of each feature between nodes. That is, if there are
edges between a node and multiple nodes, by calculating the
weights of all adjacent edges connected, it can be considered
that the edge with a larger weight is more likely to have fault
propagation. The edge weights are calculated in order to con⁃
struct the transition probability matrix in the random walk. By
calculating the weights of nodes and edges, we obtain the
weighted ASG. The specific process is shown in Algorithm 1.
Algorithm 1 :Weighted ASG
Input: anomalous subgraph ASG，anomalous edge set E，
anomalous node set Va，alarm feature vector f, and weight pa⁃rameters of feature importance obtained by offline training θ
Output: weighted ASG
1: for node vaj in Va do2: Assign θ1·fi (1)+θ2·fi (2)+…+θl·fi( l) to wvi ;3: for eij in E of vaj do4: for k in l do
5: Assign |

|
|
| corr ( )fi( )k , fj( )k to wij (k );

6: end
7: Assign max(wij (k ) ) to wij;8: end
9: end
10: return weighted SG
2.4 Root Cause Localization
Root cause localization refers to locating the root node by

random walk on the weighted ASG. We define the vector v[17]
in PageRank as the root score of each node of Va. Before cal⁃culating the root scores, we define the matrix of transition
probability P among the nodes of Va. For instance, vai pointsto vaj, and the transfer probability between vai and vaj is calcu⁃lated as follows:
Pij = wij

Σj wij . (3)
If there is no edge between vai and vaj, Pij = 0. Σj wij is thesum of the weights of all the out-edges from vai. The formula ofPageRank is shown in Eq. (4).

▲Figure 3. Procedure of ASG generation
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vm = 1 - qn + q·P·vm - 1, (4)
where P is the transition probability matrix made up of Pij, nis the number of nodes, q is the damping factor that means
that the node jumps back to a random node with the probabil⁃
ity of q in each step and continues to advance along the di⁃
rected edge in the graph with the probability of 1-q, and vm isthe vector composed of root score from each node obtained by
iterating m times. Finally, the abnormal nodes are sorted ac⁃
cording to the root score to obtain the list. Operators can
check and repair alarms reported by the abnormal nodes and
their locations in sequence, which improves the locating effi⁃
ciency and reduces labor costs.
3 Experimental Evaluation
In this section, we mainly introduce the experimental setup,

show experimental results, compare the results with other state-
of-the-art methods, and analyze the advantages of our method.
3.1 Experimental Setup
In order to verify the effectiveness of the proposed WFPT-

RCA, we totally choose two different types of datasets in two
distribute scenarios.
The former called Dataset A is adopted in the experiment of

an e-commerce platform to release the actual production in a
scenario of the real dataset1 that contains the topological rela⁃
tionship and the alarms of 50 failure events. The topological re⁃
lationship refers to the invocation relationship data between sys⁃
tems, between systems and hosts, and between hosts. Table 1
lists the format of alarms. Alarms of each fault event are sorted
by timestamp and stored in a csv file, in which root cause
alarms (system/host/alarm content) are labeled and only one
root cause exists.

The latter called Dataset B is from a transport network in
the telecommunication system provided by ZTE Corporation.
It also has the system configurations to describe the topology
relationship and alarms. Unlike the former dataset, its graph
includes the NEs, links, tunnels and pseudo-wires, and pres⁃
ents the data transmission in L2/L3VPN. The difference of the
two datasets also reflects in the content of alarms: Dataset B
has alarm codes and types instead of content as shown in
Table 2. In Dataset B, there are 38 fault events and the root
cause location (NE) labeled by the operators who have rich ex⁃
perience.
We compare WFPT-RCA with three baseline methods as

follows.
1) MicroRCA: It is a way to locate root causes in microser⁃

vices and uses the metrics to construct the weighted graph for
random walk. Different from our method, it uses the anomaly
detection confidence to calculate weights of edges in the graph.
2) Microscope[18]: It is another graph-based approach to

identify faults in microservice environment. To implement it,
we construct the causality graph with alarms and then use
cause inference to find the root causes.
3) Association Rules[19]: It is a traditional method to mine

the rules between alarms for assisting the operators to locate
root causes.
To implement the proposed WFPT-RCA method, we adapt

the frequent item mining to outputing the association rules for
potential alarms.
3.2 Evaluation Metrics
In order to evaluate the effectiveness of the RCA methods,

the following indicators are adopted in the fault event set A:
1) Precision at the top k: The precision is denoted as PR@k

which means the real root is in the the top k output results.
When k is small, the bigger the value is, the higher the accu⁃

1. http://www.cnsoftbei.com/plus/view.php?aid=479.

▼Table 1. Examples of alarms generated during a fault in Dataset A
Timestamp

2019/6/14 1:14
2019/6/14 1:14
2019/6/14 1:14
2019/6/14 1:14
2019/6/14 1:14
2019/6/14 1:14
2019/6/14 1:14
2019/6/14 1:14
2019/6/14 1:14
2019/6/14 1:14
2019/6/14 1:14
2019/6/14 1:14

System

SYS_5
SYS_4
SYS_9
SYS_9
SYS_5
SYS_5
SYS_4
SYS_9
SYS_9
SYS_5
SYS_5
SYS_4

Host

Host_14
Host _9
Host _92
Host _75
Host _60
Host _76
Host _23
Host _75
Host _60
Host _97
Host _32
Host _3

Alarm content

I/O wait load exceeds 10% for 15 minutes
The log generates ERROR information

On CPU Steal Time lasts 5 minutes over 10%
Free swap space is less than 50%

The communication on port 80 is abnormal
The upper I/O wait load is greater than 50%

Ping packet loss rate is 100%, and the server breaks down
The Slot00 status of the hard disk is failed

Number of FullGC: 32 (greater than threshold: 10)
Average heap memory usage: 94.61% (greater than threshold: 90%)
Average FullGC time: 2 118 ms (greater than threshold: 1 000 ms)

Nic traffic unknown

Is_root

0
0
0
0
1
0
0
0
0
0
0
0
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racy of location becomes. The detail is shown in Eq. (5).
PR@k = 1

|A| Σa ∈ A
Σi < k (R [ i ] ∈ vc )(min (k,|vc|) ) , (5)

where R [ i ] is the results of the top k obtained by root score
sorting in each fault event and vc is a set of real causes in faultevents.
2) Mean average precision (MAP): It measures the average

location performance of the algorithm and the equation is
shown in Eq. (6):
MAP = 1

|A| Σa ∈ AΣ1 ≤ k ≤ NPR@k. (6)

3.3 Experimental Results

3.3.1 Feature Importance
The details of the offline analysis in Dataset A are repre⁃

sented to show how our method extracts the information of root
causes. The alarm features of nodes are extracted from each
fault event, and the detailed features and meanings are shown
in Table 3.

These features labeled by the root cause of alarms are input
into the classifier for training, so as to obtain the analysis re⁃
sults of the feature importance (Fig. 4).

It shows that the IDF and the number of serious alarms
mined from the alarm information are most related to root
causes. The information entropy describes the richness of
alarm content on each node. A higher value states the more in⁃
formation about root causes in the nodes. Serious alarms usu⁃
ally indicate the severity of faults and the root causes may
have more serious alarms. The F score of each feature is nor⁃
malized and used as the feature weight parameter θ. The pa⁃
rameter not only completes the subsequent node weight calcu⁃
lation that can be seen in Algorithm 1, but also helps us un⁃
derstand the root causes reflected on alarms without the opera⁃
tional experience.
3.3.2 RCA Results
Table 4 shows the performance of the compared methods.

WFPT-RCA (no ASG) directly locates root causes without ex⁃
tracting abnormal subgraphs. The compared results prove that
the ASG can effectively reduce the noise of fault location and
improve the accuracy and efficiency. The results of WFPT-
RCA (no feature analysis) illustrate the importance and effec⁃
tiveness of the offline analysis to obtain the feature weight pa⁃
rameter θ. It also shows that the analysis of feature samples of
historical alarms in the offline phase can affect the initial root
scores of nodes, thus determining the accuracy of location. Mi⁃
croRCA is also based on random walk. Different from our
method, the prior knowledge is added in the calculation of
node edge weights. However, the prior knowledge often does
▼Table 4. Performance in Datasets A and B

Metrics
WFPT-RCA
WFPT-RCA
(no ASG)
WFPT-RCA

(no feature analysis)
MicroRCA
Microscope

Association rules

Dataset A
PR@1
0.90

0.64

0.28
0.84
0.82
0.36

PR@3
0.92

0.70

0.54
0.92
0.88
0.56

PR@5
0.96

0.84

0.90
0.94
0.90
0.78

MAP
0.927

0.727

0.573
0.900
0.867
0.567

Dataset B
PR@1
0.89

0.53

—

0.79
0.74
0.47

PR@3
0.95

0.63

—

0.84
0.79
0.58

PR@5
1.00

0.74

—

0.89
0.84
0.63

MAP
0.947

0.633

—

0.840
0.790
0.560

ASG: anomaly subgragh MAP: mean average precision RCA: root cause analysis
PR: precision WFPT: weighted fault propagation topology

▼Table 2. Examples of alarms generated during a fault in Dataset B

Timestamp

2020/2/27 10:01
2020/2/27 10:01
2020/2/27 10:01
2020/2/27 10:01
2020/2/27 10:01
2020/2/27 10:01
2020/2/27 10:01
2020/2/27 10:01

NE

4 167
4 715
4 167
4 167
4 166
4 595
5 496
5 497

Duration

1 000
12 000
15 000
11 000
5 000
10 000
6 000
5 000

System
Type

4 198
4 590
4 197
4 590
4 590
4 198
4 590
4 197

Code

964
18 956
43

18 956
18 956
964
18 956
43

Severity

1
2
4
4
3
1
3
4

Alarm
Type

0
3
0
3
3
0
1
4

Root

0
0
1
0
0
0
0
0

NE: network element

▼Table 3. Features used for feature importance analysis in Dataset A
Feature

information entropy
max_number/min
node_num
alert_count

alert_type_num
start_time

time_duration
serious_num

Meaning

Average IDF of the system node
Maximum number of alarms per minute
Number of nodes in same systems

Total number of alarms
Number of alarm types
Relative start time
Time span (minutes)

Number of serious type alarms

▲Figure 4. Results of feature importance analysis
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not have good generalization and the effect may vary greatly in
different scenarios. This shows the operational experience
may not adapt well in different distribute information net⁃
works. Microscope uses the causal graph to explore the rela⁃
tionship between alarms, so as to locate the root causes. The
reason for its unsatisfactory effect is that the nodes down⁃
stream of the root cause is often located in the random walk of
the causal graph rather than real adjacent nodes. The method
lacks of the certain interpretability compared with the fault
propagation in a real graph. The performance of the associa⁃
tion rules based on frequent item mining mainly lies in the
fact that different faults present different behaviors, and the
rules are difficult to be used in multiple scenarios. Unless
they are updated with the change for environments. Through
the comparison in two datasets, it can be found that our
method has great advantages in the RCA. Because the fea⁃
tures are extracted and analyzed offline, the offline feature
analysis effectively reduces the impact of environmental
changes on locating accuracy in different scenarios. The
method of locating faults based on the real graph as fault
propagation is able to help operators understand the propaga⁃
tion way of faults. In a word, WFPT-RCA has wider usage,
higher precision, efficient computation and some comprehensi⁃
bility.
3.3.3 Experimental Results of Parameter Adjustment
Because the damping factor q in PageRank has its unique

physical meaning, its value also straightly impacts the metrics
of RCA. Therefore, we analyze and evaluate the influence of
the value of q on the WFPT-RCA final results in Dataset A.
As can be seen from Fig. 5, the trends of PR@3 and PR@5

are similar, which shows the change in q does not make much
difference to them. PR@1 decreases gradually with the in⁃
crease of the q value until the results of each index reach the
optimal level when q = 0.1. We can see that PR@1 decreases
obviously at q∈ [0.1, 0.2, 0.3, 0.4], which indicates that the
transition probability of random jump back to a node has a
great influence on fault location. If the q value is too large, it
directly interferes with the random walk on the ASG. As a re⁃
sult, the constraints of the real graph on the location result are

reduced and the random transfer between nodes plays a lead⁃
ing role in the location. Therefore, we generally keep the q
value in the range of 0.1– 0.15 to ensure that our method
achieve better performance.
3.4 Discussion
Here we discuss the significance of the proposed approach.
1) Generalization performance: The weighted fault propaga⁃

tion graph is constructed without the operational experience.
As system configuration is updated, it does not need to ad⁃
just the method completely. In addition, the experimental re⁃
sults in two different datasets also present better adaption.
The characteristic reduces the operators’pressure of work
and improves the availability of distributed information net⁃
works.
2) Intelligibility: Unlike the other compared methods,

WPFT-RCA mines the features of root causes from alarms.
The alarms directly filter the nodes from the real graph to con⁃
struct a weighted fault propagation graph, which can decrease
the complexity of fault location. Therefore, operators can ana⁃
lyze the behaviors of fault propagation caused by the root
cause with the weighted graph. For example, the higher the
root score is, the more related the root cause fault is. The
larger the edge weight is, the more likely fault propagation will
occur. Based on the above rules, it shows that WPFT-RCA has
better intelligibility in the cases of fault propagation.
4 Conclusions
In this paper, we propose an alarm-based method for root

cause analysis of distributed information networks based on a
weighted fault propagation topology, which is constructed in
real graph relationship and calculates weights of nodes and
edges in the ASG by the features using historical offline analy⁃
sis. The experimental results on public datasets in real sce⁃
narios show that our method can achieve 90% precision and
92.7% mean average precision. Our method is based on the
analysis of historical alarms and real graphs, which can effec⁃
tively reduce the impact of environmental configuration
changes on fault location results. In addition, the location
based on real graph helps operators understand the mecha⁃
nism of fault propagation. Verification in various kinds of
large, dynamic environments are our main future work.
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