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Abstract: A reconfigurable intelligent surface (RIS) aided massive multiple-input multiple-output (MIMO) system is considered, where the
base station employs a large antenna array with low-cost and low-power 1-bit analog-to-digital converters (ADCs). To compensate for the per⁃
formance loss caused by the coarse quantization, oversampling is applied at the receiver. The main challenge for the acquisition of cascaded
channel state information in such a system is to handle the distortion caused by the 1-bit quantization and the sample correlation caused by
oversampling. In this work, Bussgang decomposition is applied to deal with the coarse quantization, and a Markov chain is developed to char⁃
acterize the banded structure of the oversampling filter. An approximate message-passing based algorithm is proposed for the estimation of the
cascaded channels. Simulation results demonstrate that our proposed 1-bit systems with oversampling can approach the 2-bit systems in terms
of the mean square error performance while the former consumes much less power at the receiver.
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1 Introduction

Massive multiple-input multiple-output (MIMO) has
been identified as a key technology for future com⁃
munication systems[1]. In fact, large spatial degrees
of freedoms (DoFs) can increase spectral efficiency

without requiring extra spectral resources. Recently, recon⁃
figurable intelligent surfaces (RISs) have been proposed as a
cost-effective technology for tuning the wireless propagation
channel among transceivers[2]. A RIS consists of a large num⁃
ber of meta-atoms that can be controlled by the software to
modify their phase shifts, so that incident electromagnetic
waves can be mostly reflected to the desired receiver, which
makes the wireless transmission more energy-efficient. The
combination of RIS and massive MIMO is treated as one of the
promising technologies for the sixth-generation wireless com⁃
munication systems[3].
The channel estimation method for RIS aided massive

MIMO systems is a serious challenge, since there exist two
cascaded channels, namely, the channel between the users
and the RIS and the channel between the RIS and the base
station (BS), to be estimated. The acquisition of channel state
information (CSI) has been recently studied in Refs. [4–7].
TAHA et al. [4] considered a RIS architecture which is a mix⁃
ture of active and passive elements. This method facilities
the channel estimation but increases the hardware cost and

energy consumption. In Ref. [5], a non-iterative two-stage
channel estimation framework for passive RIS aided
millimeter-wave MIMO systems was proposed, where every
stage is formulated as a multi-dimensional direction-of-
arrival estimation problem. Similarly, the authors in Ref. [6]
have proposed a two-stage channel estimation algorithm,
namely, sparse matrix factorization and matrix completion, to
exploit the rank-deficient structure of the channel. In Ref.
[7], the cascade channel estimation is converted into a sparse
signal recovery problem by utilizing the properties of Katri-
Rao and Kronecker products.
The receiver design in massive MIMO systems, however,

becomes more challenging since the power consumption in⁃
creases rapidly as the number of antennas grows. Among all
the components in the radio frequency (RF) chain, a large
portion of the total power consumption lies in the analog-to-
digital converters (ADCs), whose power consumption grows
exponentially with the number of quantization bits[9]. The
deployment of current high-resolution (8–12 bits) ADCs is
a critical bottleneck for the practical use of large-scale
MIMO. To alleviate this issue, the use of low-resolution
ADCs (1–4 bits) can largely reduce the power consumption
and is more suitable for the deployment of large-scale
MIMO systems.
In this paper, we consider the extreme case of 1-bit resolu⁃
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tion, where the in-phase and quadrature components of the re⁃
ceived samples are separately quantized to 1 bit. This solution
is particularly attractive to massive MIMO systems, since each
of the RF chains only contains simple limiting amplifiers
(LAs) without the automatic gain control (AGC). This hard⁃
ware change can largely reduce both the power consumption
and the hardware cost at the BS. Prior works on 1-bit massive
MIMO have analyzed the sum rate[10], channel estimation[11],
and signal detection[12]. Moreover, oversampling is applied to
further compensate for the performance loss caused by the
coarse quantization[13–14]. Furthermore, the distortion caused
by 1-bit quantization and the sample correlation caused by
oversampling make the cascaded channel estimation problem
even more challenging.
In this paper, we develop an approximate message passing

(AMP) based algorithm to solve the considered cascaded chan⁃
nel estimation problem, where the received signal is sampled
at a rate beyond Nyquist sampling and quantized to 1-bit.
Bussgang decomposition is applied to deal with the coarse
quantization and a Markov chain is developed to characterize
the correlation of adjacent oversampled samples. The corre⁃
sponding factor graph is presented and the AMP algorithm is
derived. Unlike prior works on AMP-based cascaded channel
estimation[7–8], this work considers the statistical characteris⁃
tic of 1-bit quantization and uses the oversampling technique
to increase the estimation accuracy. Simulations show that our
proposed algorithm outperforms the method in Refs. [7– 8]
and can even approach the 2-bit Nyquist-sampled systems in
terms of the normalized mean square error (NMSE) while the
former consumes less power at the receiver.
2 System Model and Problem Statement
In this work, a single-cell uplink RIS aided multi-user 1-bit

massive MIMO system with N t single-antenna users, a RISwith L passive reflecting elements, and a BS with Nr receiveantennas are considered, where Nr ≫ N t. The system model isdepicted in Fig. 11, where p (t) is the pulse shaping filter for

transmission and m (t) is the matched filter for detection. The
received data signal at the nr-th receive antenna ydnr (t) is
ydnr (t) = m (t)*∑l = 1

L hnr,l (t)*( )sl ( t ) ( )gl,nt ( )t *p ( )t *xnt ( )t , (1)
where xnt (t) is the transmitted signal from the n t-th user; sl ( t )
represents the l-th reflecting element at the RIS; gl,nt (t) and
hnr,l (t) are the channel impulse responses from the user n t to
the l-th reflecting element and from the l-th reflecting element
to the nr-th receive antenna, respectively; * denotes the opera⁃tion of convolution.
Flat fading channels are considered in this work, i. e.,

gnt,l (t) and hnr,l (t) can be written as
gl,nt (t) = gl,nt δ (t) and hnr,l (t) = hnr,l δ (t), (2)

where gnt,l and hnr,l are the corresponding channel gains and
δ (t) is the Dirac delta function. Consider a transmission block
with length N:
xnt (t) =∑

i = 0

N - 1
xnt,i δ ( t - iTs ) and s l ( t ) =∑

i = 0

N - 1
sl,i e

jθl,i δt,iTs, (3)
where Ts is the symbol duration; xnt,i is the transmitted symbol
at the time instant iTs; sl,i ∈ { 0,1 } is the on/off state2 and
θl,i ∈ (0,2π ] is the phase shift of the l-th reflecting element ofRIS at the time instant iTs; δt,t' is the Kronecker delta function,where δt,t' = 1 for t = t' and δt,t' = 0 otherwise. Eq. (1) can besimplified as:
ydnr (t) =∑l = 1

L hnr,l gl,nt z (t)*( )sl ( t ) xnt ( )t , (4)
where z (t) = p (t)*m (t). In oversampled systems, Eq. (4) can
be discretized as:

1. Note that the channel matrix in the direct link can be estimated by turning off the RIS[13]. Therefore, the direct-link channel estimation is omitted throughout the paper.
2. In this paper, we assume that the change of the reflection coefficients is synchronized with the transmitted signal. Moreover, the response time of the PIN diode at each reflecting ele⁃
ment is assumed to be small enough, so that the duration of each reflection coefficient is the same as the symbol duration. With the above ideal assumptions, no extra harmonics are gener⁃
ated from the surface. The non-ideal case that extra harmonics are generated is beyond the scope of this paper.

▲Figure 1. System model of RIS aided multi-user 1-bit massive MIMO system with oversampling at the receiver
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whereM is the oversampling factor. Since there are no data
symbols at time instants i

M
Ts (i ≠ 0,M, 2M,...), each pair of

transmitted data symbols at adjacent time instants are interpo⁃
lated with M - 1 zeros. Let xnt ≜ é

ëxnt,0,...,xnt,N - 1ùû
T ∈ CN × 1,

s l ≜ [ sl,0ejθl,0,..., sl,N - 1ejθl,N - 1 ]T ∈ CN × 1 and yd
nr, iM
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ù
û
ú
i
M
,

and we rewrite Eq. (5) in a matrix form as:
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T

=
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L hnr,l gl,ntZ (IN ⊗ u)diag (s l) xnt , (6)

where Z ∈ RMN × MN is the Toeplitz matrix with the form as
Z=
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In Eq. (6), u = [ 0,...,0,1 ]T ∈ RM × 1 is the zero-inserting vec⁃
tor and IN denotes the N × N identity matrix. Furthermore, ⊗represents the Kronecker product and diag (a) is a diagonal
matrix with the diagonal specified by a. In particular, M = 1
refers to the case of Nyquist sampling rate.
Similar to Eq. (6), the received oversampled noise samples

at the nr-th receive antenna ynnr ∈ CMN × 1 is
y nnr = F (IN ⊗ u)wnr , (8)

where F ∈ RMN × MN is the Toeplitz matrix constituted by
m é
ë
ê
k
M
ù
û
ú with the form similar to Eq. (7), and

wnr ∼ CN (0N × 1,σ2 IN) represents the complex Gaussian ran⁃
dom variables with zero mean and variance σ2.
Combining Eqs. (6) and (8), the received oversampled

samples at the nr-th receive antenna ynr ∈ CMN × 1 are
ynr = y dnr + y nnr =
Z (IN ⊗ u)∑

l = 1

L

hnr,l gl,nt diag (s l) xnt + F (IN ⊗ u)wnr . (9)

Defining Z″ ≜ Z (IN ⊗ u), F″ ≜ F (IN ⊗ u), and stacking
the nr-th received oversampled samples on top of the previousreceive antenna, Eq. (9) is extended to
y = éëy1 T,…,yNr Tùû

T = Z'vec{AT} + F'vec{W T}, (10)
where Z' ≜ INr ⊗ Z″, F' ≜ INr ⊗ F″ and W =
é
ëw

T1 ; ... ; wTNrùû ∈ CNr × N. Consider all the users
A ≜ H (S⊙(GX)) ∈ CNr × N, where G ∈ CL × N t and H ∈ CNr × L

are the channel matrices from the users to the RIS and from
the RIS to the BS, respectively; X = éëxT1 ; ... ; xTN tùû ∈ CN t × N

and S = [ sT1 ; ... ; sTL ] ∈ CL × N. vec { A } denotes the operation
of vectorization by stacking the columns of A sequentially on
top of one another.
Let Q ( ⋅ ) represent the 1-bit quantization function. The re⁃

sulting quantized signal yQ is given by
yQ = Q (y) = 1

2 (sign (y
ℜ) + jsign (yℑ)), (11)

where sign ( ⋅ ) is the signum function, and j = -1. ( ⋅ ) ℜ
and ( ⋅ )ℑ denote the real and imaginary parts, respectively.
The problem to be solved is estimating the channel param⁃

eters in G and H. The minimum mean square error (MMSE) es⁃
timators of the channel matrices are given by
min

Ĝ
E{| | G - Ĝ | |2F} and min

Ĥ
E{| |H - Ĥ | |2

F}. (12)
Based on the Bayes’rule, the closed-form solutions of Eq.

(12) are given by E {G|yQ} and E { H|yQ}. For avoiding the high
computational complexity of calculating p (G|yQ) and p (H|yQ)
in the marginalization of p (G,H|yQ), a practical message-
passing based algorithm is presented in the next section.
3 Markovian Cascaded Channel Estimation

3.1 Markov Chain for Oversampling
Due to the banded structure of the matrix Z in Eq. (7), we

develop a Markov chain, where every two adjacent columns in
A are combined together for defining one state bn as
b1 = vec{éë0Nr × 1,a1ùû T},..., bN = vec { [ aN - 1,aN ]T} , (13)

and each state is with the mean and covariance:
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b̂n = vec{[ ân - 1,ân ]T} and
V b
n = diag (vec{[ va n - 1,van ]T}) , (14)

with an ∈ CNr × 1 being the n-th column of A. The transition
function from the current state to the next is
bn + 1 = Tbn + vec{éë0Nr × 1,an + 1ùû T}, (15)

where T = INr ⊗ [ 0,1 ; 0,0 ] and the conditional probability is
given by
p (bn + 1|bn,an + 1) =
CN (bn + 1 ; Tb̂n + vec{éë0Nr × 1,ân + 1ùû T} ,
diag (vec{éë0Nr × 1,van + 1ùû T}) ). (16)
The system model of Eq. (11) can be decomposed by using

the Bussgang theorem[15]:
yQ = KZ'vec{AT} + w' with K = 2

π
diag (Cy)

- 12, (17)
where w' ≜ KF'vec {W } + nq is the equivalent noise con⁃taining the filtered noise and the quantization noise, as⁃
sumed to follow the Gaussian distribution with zero mean
and covariance Vw' = σ2nKFFHKH + Cnq. And diag(Cy) is
the diagonal matrix with the diagonal specified by the di⁃
agonal of Cy. The received quantized signal yQn

at the state
bn is then calculated as
yQn

= Dvec{[ an - 1,an ]T} + w″n = Dbn + w″n , (18)
where D ≜ (INr ⊗ [ 0M × M IM ])KnZ'n; Kn ∈ C2NrM × 2NrM,
Z'n ∈ C2NrM × 2Nr and w″n ∈ C2NrM × 1 represent the correspond⁃
ing submatrices of K, Z' and w', respectively. The prior prob⁃
ability p (yQn

|bn) is given by
p (yQn

|bn) = CN (yQn
; Db̂n,V w″

n ), (19)
where V w″

n is the covariance of w″n in Eq. (18).
3.2 Factor Graph Representation
With Eqs. (16) and (19), the posterior probability p (b,A|yQ)

is calculated as

p (b,A|yQ) = 1
p ( )yQ

∏
n = 1

N

p (yQn
|bn) p (bn|bn - 1,an). (20)

Defining C ≜ (S⊙GX) ∈ CL × N in Eq. (10), the joint poste⁃
rior probability can be further factored as
p (b,A,G,H,C|yQ) =
1

p ( )yQ
p (yQ|b) p (b|A) p (A|H,C) p (C|G) p (H) p (G) =

1
p ( )yQ

(∏
n = 1

N

p (yQn
|bn) p (bn|bn - 1,an)) (∏

nr = 1

Nr ∏
n = 1

N

p (anr,n|hnr ,cn))
(∏
l = 1

L ∏
n = 1

N

p (cl,n|g l)) (∏
nr = 1

Nr ∏
l = 1

L

p (hnr,l)) (∏
l = 1

L ∏
nt = 1

Nt

p (gl,nt)), (21)
where the first bracket is from the Markov chain and the rests
belong to the bilinear structure described in Ref. [13]. Some
involved probabilities are
p (anr,n|hnr,cn) = δ (anr,n - hTnrcn) and
p (cl,n|g l) = δ (cl,n - sl,ng Tl xn), (22)

where hnr ∈ CL × 1 and g l ∈ CN t × 1 are the nr-th and l-th row of
H and G, respectively; cn ∈ CL × 1 is the n-th column of C. The
second formula in Eq. (22) comes from the definition of C,
where cl,n and sl,n are the (l, n)-th element of C and S, respec⁃tively, and xn is the n-th column of X. The factor graph repre⁃
sentation of Eq. (21) is shown in Fig. 2, where the hollow
circles and the solid squares represent the variable nodes and
the factor nodes, respectively. The message passing in the first
part will be described in the next subsection, while the illus⁃
tration of the second part can be found in Ref. [8].
3.3 Message Passing in Markov Chain
In the following, the approximate message passing in the

Markov chain is derived according to the sum-product rule.
The linear operator K described in Eq. (17) involves the cova⁃
riance of unquantized signal y in Eq. (10), calculated as
Cy = Z'diag (vec{VA T})Z'H + σ2F'F 'H. (23)
During the message updates, the covariance of A at the i-th

iteration is VA (i), and Eq. (23) can be rewritten as
Cy (i) = Z'diag (vec{VA T (i)})Z'H + σ2F'F 'H. (24)
The covariance of the quantization noise at the i⁃ th it⁃

eration is
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Cnq
(i) = CQ (i) - K (i)Cy (i)K (i)H, (25)

where CQ (i) is calculated from Ref. [16] as
CQ (i) = 2π (arcsin (K (i)Cℜ

y (i)K (i)H) + jarcsin (K (i)Cℑ
y (i)K (i)H). (26)

3.3.1 Downward AMP
With Eq. (19), the message m

bn → p ( )bn + 1|bn,an + 1
at the i-th it⁃

eration can be approximated as Gaussian distribution with the
following mean and variance:
b̂Downn (i) = b' Downn (i) + V'Downn (i)DHR (yQn - Db'Downn (i)), (27)

V Down
n (i) = V'Downn (i) - V'Downn (i)DHRDV'Downn (i), (28)

where R ≜ (V w″
n + DV'Downn (i)DH) -1. Moreover, with Eq. (15),

the message from the factor node p (bn + 1|bn,an + 1) to the vari⁃
able node bn + 1 at the i-th iteration is given by
m
p ( )bn + 1|bn,an + 1 → bn + 1

= CN ( )bn + 1 ; b'Downn + 1 ( )i ,V'Downn + 1 ( )i , (29)


b'

Down
n + 1 (i) = Tb̂Downn (i) + vec{éë0Nr × 1,ân + 1 (i)ùû T}, (30)

V'Downn + 1 ( )i = TV Down
n ( )i T H + diag ( )vec{ }é

ë
ù
û0Nr × 1,van + 1 ( )i
T

. (31)
Especially, when n = 1, Eqs. (30) and (31) are reduced to

b'

Down
1 (i) = b̂1 (i) and V'Down1 (i) = V b1 (i). (32)

3.3.2 Upward AMP
Similar to Eqs. (27) and (28), the message m

bn → p ( )bn|bn - 1,an
at

the i-th iteration is approximated as Gaussian distribution
with the following mean and variance
b̂Upn (i) = b' Upn (i) + V'Upn (i)DHR (yQn - Db'Upn (i)), (33)

V Up
n (i) = V'Upn (i) - V'Upn (i)DHRDV'Upn (i), (34)

where R ≜ (V w″
n + DV'Upn (i)DH) -1. Moreover, with the inverse

of Eq. (15), the message from the factor node p (bn|bn - 1,an) to
the variable node bn - 1 at the i-th iteration is given by

▲Figure 2. Factor graph representation of Eq. (21) for an example with M = Nr = N t = L = 2 and N = 3
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m
p ( )bn|bn - 1,an → bn - 1

= CN ( )bn - 1 ; b'Upn - 1 ( )i ,V'Upn - 1 ( )i , (35)
where

b'

Up
n - 1 (i) = T † b̂Upn (i) + vec{éëân - 2 (i) ,0Nr × 1ùû T}, (36)

V'Upn - 1 ( )i = T †V Up
n ( )i ( )T H † + diag ( )vec{ }é

ë
ù
ûvan - 2 ( )i ,0Nr × 1
T

, (37)
where ( ⋅ ) † denotes the operation of pseudo-inverse. Espe⁃
cially, when n = N, Eqs. (36) and (37) are reduced to

b'

Up
N (i) = b̂N (i) and V'UpN (i) = V b

N (i). (38)

3.3.3 Backward AMP
Combining with m

bn - 1 → p ( )bn|bn - 1,an
and m

bn → p ( )bn|bn - 1,an
, the

message from the factor node p (bn|bn - 1,an) back to the vari⁃
able node an is
m
p ( )bn|bn - 1,an → an

=
∫an - 1CN ( )bn ; Tb̂Downn ( )i ,TV Down

n ( )i T H CN ( )bn ; b̂Upn ( )i ,V Up
n ( )i ，(39)

where the multiplication of two Gaussian functions is another
Gaussian function3.

4 Further Discussions
The overall Markovian cascaded channel estimation algo⁃

rithm is presented in Algorithm 1. In lines 3–6, the estimates
of the each mean and variance in the matrix product A = HC
are calculated. The message passing in the Markov chain is il⁃
lustrated in lines 7– 9. Subsequently, the residual qnr,n and
the inverse residual variance unr,n are calculated in lines 10–
11. In lines 12–13, these residual terms are used to compute
v'hnr,l and ĥ'nr,l, which can be interpreted as an observation of
ĥnr,l under an AWGN channel with zero mean and a variance
of v'hnr,l. The posterior means and variances of each elements in
H are estimated in lines 14 and 15. Similarly, the posterior
means and variances of each elements in the auxiliary matrix
C are estimated in lines 16–21; the same is performed for G
in lines 22–27.
In this paper, a damping method is applied to improve the

robustness of the proposed algorithm. Specifically, in each it⁃
eration the posterior means and variances of H (lines 14–15),

C (lines 20–21) and G (lines 26–27) are updated by using a
linear combination of the current and previous updates. For
example, the updates of the posterior mean ĥnr,l and variance
vhnr,l in lines 14–15 of Algorithm 1 are replaced by
ĥnr,l (i + 1) = (1 - β) ĥnr,l (i) + βĥnr,l (i + 1), (40)

vhnr,l (i + 1) = (1 - β) vhnr,l (i) + βvhnr,l (i + 1), (41)
where β ∈ [ 0,1 ] is the damping factor. In our work, β is cho⁃
sen within [ 0.2,0.4 ].
We now give a brief discussion on the computational com⁃

plexity of the proposed algorithm. Note that the total algo⁃
rithm is separated into two parts, the Markov chain and the
bilinear structure. We thus sketch the respective complexity
as follows. First, the complexity of the Markov chain is domi⁃
nated by basic matrix multiplications in Eqs. (27), (28), (33),
(34) and (39), requiring O ((MNr)

3) flops per iteration. Sec⁃
ond, the complexity of the bilinear structure is dominated by
the calculations in Lines 3–5, 10–11, 12–13, 16–17 and
22– 25, requiring O ((Nr + N t) LN) flops per iteration. Fi⁃
nally, the complexity of the proposed algorithm is
ImaxO ((MNr) 3 + (Nr + N t) LN), where Imax is the maximum
number of the iterations.
Algorithm 1. Markovian cascaded channel estimation
Input: yQ, x, S, σ2, prior distributions p (G ), p (H )
Output: Ĝ, Ĥ
1: Initialization: ∀nr,l,n: ĥnr,l (1), vcl,n (1), vhnr,l (1), ĉl,n (1),
ηl,n (0) = 0, unr,n (0) = 0;

2: for i=1,..., Imax do
3: ∀nr,n: v'pnr,n (i) =∑

l
| ĥnr,l (i) |

2
vcl,n (i) + vhnr,l (i ) | ĉl,n (i) |

2

4: ∀nr,n: p̂'nr,n (i) =∑
l

ĥnr,l ( )i ĉl,n (i)

5: ∀nr,n: vpnr,n (i) = v'pnr,n (i) +∑
l

vhnr,l (i ) vcl,n (i)
6: ∀nr,n: p̂nr,n (i) = p̂'nr,n (i) - unr,n (i - 1) v'pnr,n (i)
7: Calculate the adaptive linear operator and quantiza⁃

tion noise via Eqs. (24) and (25) using vpnr,n (i) and
p̂nr,n (i)

8: Calculate the downward and upward messages at
teach check node in the Markov chain via Eqs. (27),
(28), (33), and (34)

9: Calculate the backward messages via Eq. (39) and ob⁃

3. CN (x ; m1,V1)CN (x ; m2,V2) ∝ CN (x ; m,V), where V = (V -11 + V -12 ) -1 and m = V (V -11 m1 + V -12 m2).
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tain vanr,n (i) and ânr,n (i)
10: ∀nr,n: qnr,n (i) = (1 -

vanr,n ( )i

vpnr,n ( )i
) /vpnr,n (i)

11: ∀nr,n: unr,n (i) = ( ânr,n (i) - p̂nr,n (i) ) /vpnr,n (i)
Update H:

12: ∀nr,l: v'hnr,l (i) = 1/ (∑
n

qnr,n (i)| ĉl,n (i) |
2 )

13: ∀nr,l: ĥ'nr,l (i) = ĥnr,l (i) (1 -
v'hnr,l (i)∑

n

qnr,n (i) v
c
l,n ( )i ) + v'hnr,l (i)∑

n

unr,n (i) ĉ
*
l,n ( )i

14: ∀nr,l: ĥnr,l (i + 1) = E { hnr,l|ĥ'nr,l (i) ,v'hnr,l (i) }
15: ∀nr,l: vhnr,l (i + 1) = Var { hnr,l|ĥ'nr,l (i) ,v'hnr,l (i) }

Update C:
16: ∀l,n: v'cl,n (i) = sl,n / (∑

nr
qnr,n (i)| ĥnr,l (i) |

2 )
17: ∀l,n: ĉ' l,n (i) = sl,n ( ĉl,n (i) (1 -

v'cl,n (i)∑
nr
qnr,n (i) v

h
nr,l ( )i ) + v'cl,n (i)∑

nr
unr,n (i) ĥ

*
nr,l ( )i )

18: ∀l,n: v''cl,n (i) =∑
nt
vgl,nt (i)| xnt,n |

2

19: ∀l,n: ĉ'' l,n (i) =∑
nt
ĝl,nt (i) xnt,n - ηl,n ( i - 1)∑

nt
vgl,nt ( )i

|
|

|
| xnt,n

2

20: ∀l,n: ĉ l,n (i) = E { cl,n|ĉ' l,n (i) ,v'cl,n (i) ,ĉ'' l,n (i) ,v''cl,n (i) }
21: ∀l,n: vcl,n (i) = Var { cl,n|ĉ' l,n (i) ,v'cl,n (i) ,ĉ'' l,n (i) ,v''cl,n (i) }

Update G:
22: ∀l,n: ηl,n (i ) = sl,n ( ĉl,n (i) - ĉ'' l,n (i) ) /v''cl,n (i)
23: ∀l,n: vηl,n (i ) = sl,n (1 - vcl,n (i ) /v'' cl,n (i) ) /v''cl,n (i)
24: ∀l,nt: v'gl,nt (i) = 1/ (∑

n

vηl,n (i)| xnt,n |
2 )

25: ∀l,nt: ĝ' l,nt (i) = ĝl,nt (i) + v'gl,nt (i)∑
n

ηl,n (i ) x*nt,n
26: ∀l,nt: ĝl,nt (i + 1) = E { gl,nt|ĝ' l,nt (i) ,v'gl,nt (i) }
27: ∀l,nt: vgl,nt (i + 1) = Var { gl,nt|ĝ' l,nt (i) ,v'gl,nt (i) }
28: if stopping criterion is met then
29: break
30: end if
31: end for

5 Numerical Results
In this section, the uplink of a RIS aided 1-bit massive

MIMO system with Nr = 64, N t = 8 and L = 128 is consid⁃ered. The m (t) and p (t) are normalized root-raised-cosine

(RRC) filters with a roll-off factor of 0.8. The channel is as⁃
sumed to experience Rayleigh block fading. The simulation re⁃
sults presented here are obtained by averaging over 100 inde⁃
pendent realizations of the channel matrices, noise and pilots.
The signal-to-noise ratio (SNR) is defined as 10log ( ρLN tσ2 ),
where ρ is the sparsity level of S4 and is set as 0.3. The pilot
length is 200. For the correlated channel, the channel matri⁃
ces are modeled as

H = R 1
2rrH'R

1
2r and G = G'R 1

2rl , (42)
where the elements of H' and G' are independent and identi⁃
cally distributed (i. i. d.) complex Gaussian random variables
with zero mean and unit variance. The matrix Rr denotes thereceive correlation matrix with the following form:

Rr =

é

ë

ê

ê

ê

ê

ê

ê
êê
ê

ê

ù

û

ú

ú

ú

ú

ú

ú
úú
ú

ú

1 ρ … ρ( )Nr - 1

ρ* 1 … ρ( )Nr - 2

⋮ ⋮ ⋱ ⋮
ρ
*( )Nr - 1 ρ

*( )Nr - 2 … 1 , (43)
where ρ is the correlation index of neighboring antennas at
the BS and set as 0.4 + 0.3j. ( | ρ | = 0 represents an uncorre⁃
lated scenario and | ρ | = 1 implies a fully correlated sce⁃
nario.) The matrices Rrr and Rrl have the same form as Eq.(43), where ρ is set as 0.2 + 0.5j and 0.1 + 0.2j at the RIS, re⁃
spectively.
Figs. 3 and 4 show the NMSEs of G and H under uncorre⁃

lated and correlated channels, respectively. For the multi-bit
systems sampling at the Nyquist rate, the calculation of the
posterior probability p (A|yq) is referred to as Eqs. (23) and
(24) in Ref. [17]. From the figures, it can be seen that our
proposed 1-bit multi-fold oversampled systems outperform 1-
bit systems sampling at the Nyquist rate, and can even ap⁃
proach the performance of 2-bit systems sampling at the Ny⁃
quist rate. Another observation is that after 2-fold oversam⁃
pling, the performance of 1-bit systems goes into the satura⁃
tion field, and no further gain can be achieved. This reveals
the performance limit of the proposed method. Furthermore,
we have also compared the performance of Refs. [7] and [8]
as references, where the resolutions of the ADCs are changed
to 1-bit. From the results, the performance of the references
is worse than that of our proposed method, since they do not
consider the impact of 1-bit quantization and the advantages
of oversampling.
The advantage of 1-bit ADCs is that they do not require au⁃

4. In simulations, the phases of the RIS are set to zeros, and the matrix S is generated as a 0–1 random matrix.
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tomatic gain control (AGC), and can be replaced by simple
LAs. Fig. 5 shows the simplified5 receiver power consumption
as a function of the quantization bits and the oversampling fac⁃
tor M, which is calculated as
Psimplified = 2N r (cPAGC + (1 - c)PLA + FOM × MfNyquist2q), (44)

where PAGC and PLA denote the power consumption of AGCand LA, respectively; q is the quantization bits and fNyquist isthe Nyquist-sampling rate; c is chosen as 0 for 1-bit system
and 1 for systems with multi-bit. Numerical parameters[18]
are PAGC = 2 mW, PLA = 0.8 mW, fNyquist = 2.5 GHz and
figures-of-merit (FOM) = 15 fJ. From the results, it can be
seen that 1-bit systems consume much less power than
multi-bit systems with either the Nyquist rate or the overs⁃
ampling rate.

6 Conclusions
In this work, we propose RIS aided 1-bit massive MIMO

systems with oversampling at the receiver. The aim of
oversampling is to compensate for the performance loss
due to the coarse quantization. A Markovian cascaded
channel estimation algorithm is developed for such sys⁃
tems. Simulation results have shown good performance
gains of the proposed oversampled system, which can
achieve the same performance of the corresponding 2-bit
system sampling at the Nyquist rate while consuming less
power at the receiver.
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