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Abstract: Complicated radio resource management, e.g., handover condition, will trouble
the user in non-terrestrial networks due to the impact of high mobility and hierarchical
layouts which co-exist with terrestrial networks or various platforms at different altitudes.
It is necessary to optimize the handover strategy to reduce the signaling overhead and im⁃
prove the service continuity. In this paper, a new handover strategy is proposed based on
the convolutional neural network. Firstly, the handover process is modeled as a directed
graph. Suppose a user knows its future signal strength, then he/she can search for the best
handover strategy based on the graph. Secondly, a convolutional neural network is used to
extract the underlying regularity of the best handover strategies of different users, based
on which any user can make near-optimal handover decisions according to its historical
signal strength. Numerical simulation shows that the proposed handover strategy can effi⁃
ciently reduce the handover number while ensuring the signal strength.
Keywords: convolutional neural network; directed graph; handover; low earth orbit; non-
terrestrial network
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1 Introduction

The non-terrestrial network (NTN) has been regarded as
a supplement to the 5G terrestrial mobile network
since it provid global coverage and service continu⁃
ity[1]. Compared with terrestrial networks, the hando⁃

ver in NTN is more frequent and complex. In this paper, a
handover optimization method is proposed and applied to a
typical NTN scenario, i. e. , a low earth orbit (LEO) satellite
network. A LEO is an orbit around the earth with an altitude
between 500 km and 2 000 km[1]. Compared with geostation⁃
ary earth orbit satellites, the LEO satellites have much lower
path-loss and propagation delay. Therefore, the third genera⁃
tion partnership project (3GPP) NTN study item has regarded
the LEO satellites as the key to providing global broadband In⁃
ternet access. Suppose the orbit is circular, the satellite will
move around the earth at a constant velocity which is inverse⁃
ly proportional to the square root of the orbit altitude. Be⁃

cause of the low altitude, the LEO satellites have a high speed
with respect to the earth, and terrestrial user equipment (UE)
needs to frequently switch to new beams to keep connectivity.
In order to ensure the quality of the Internet service, the opti⁃
mization for NTN handover strategy needs to be carefully in⁃
vestigated.
Previous studies generally make handover decisions based

on one or more predefined criteria. The most commonly used
criteria include the elevation angle[2], remaining service time[3]
and the number of free channels[4], which correspond to the
signal strength, handover number and satellite burden, respec⁃
tively. But these methods cannot get an overall optimization.
In Ref. [5], an overall optimization method is proposed by
modeling the handover process by a directed graph. Each sat⁃
ellite is denoted by a node, then the best handover strategy is
obtained by searching the shortest path. However, in Ref. [5]
each satellite node is invariable during the handover process.
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UE needs to perform handover as soon as entering the cover⁃
age of another beam and cannot choose an appropriate time.
Besides, the UE needs to predict its coverage condition in a fu⁃
ture time to construct the graph, which may bring unexpected
error and is beyond the capability of standard 5G UE.
In recent years, some artificial intelligence (AI) tech⁃

niques have been applied to search for overall optimization
on handover. The most often used technique is Q-learn⁃
ing[6–8], which is typical model-free reinforcement learning
(RL). In Q-learning, some properties of UE are defined as its
state, and the handover operation is defined as its action. Nu⁃
merical simulation is used to iteratively train the Q-table (the
reward of each action for each state) until its convergence.
Then the UE can decide whether to perform handover accord⁃
ing to its state. Furthermore, the Q-table can be replaced by
a neural network for an infinite number of states. In Ref. [8],
the handover in a LEO scenario is optimized by Q-learning.
The state of UE is composed by its position, accessible satel⁃
lites and whether handover is processed in this time slot. In
each time slot, the UE is required to know its state and will
choose a satellite for handover, which is a really strong re⁃
quirement for ordinary UE. Besides RL, a recursive neural
network (RNN) can also be used for handover optimization.
Refs. [9] and [10] apply RNN for handover optimization in
terrestrial millimeter wave mobile systems and vehicular net⁃
works, respectively. However, in a LEO scenario, the beam
switch is fast, and the signal series of one beam may be too
short for the RNN to make decisions.
In practical terms, a handover strategy with a low require⁃

ment for UE capability is desired to reduce the handover num⁃
ber while ensuring the reference signal received power (RSRP).
In this paper, a convolutional neural network (CNN) based han⁃
dover strategy optimization is proposed. Firstly, an amount of
UE is randomly generated within the coverage of a satellite. The
RSRP series of UE is generated based on the channel model in
Ref. [1] and the simulation assumption in Ref. [11]. Secondly,
the graph-based method in Ref. [5] is improved by setting each
satellite in different time slots as different nodes. The improved
method is used to find the best handover strategies for each
piece of UE. Thirdly, the internal relation between the histori⁃
cal RSRP series and the best handover decision is extracted by
a customized CNN. Since standard 5G UE needs to periodically
measure the RSRP of the serving cell and adjacent cells, the
UE can perform a sub-optimal handover strategy based on the
historical measurements. The main contributions of this paper
are summarized as follows.
• This paper proposes a novel directed graph model for the

handover process. In this model, each beam in different time
slots is viewed as different nodes, and the weight of an edge is
determined by the RSRP and the beam identities of the two
corresponding nodes. Suppose the beam coverage and the
RSRP of UE are predictable, the best handover strategy for
the UE can be found based on the model.

• A CNN is constructed based on the classical LeNet-5[12]
for handover optimization. The results of the directed graph
model are used to train the parameters of the CNN. Using the
trained CNN, any UE in the LEO network can perform subop⁃
timal handover based on its historical RSRP.
The rest of this paper is organized as follows. Section 2 de⁃

scribes the LEO network model and the motivation of hando⁃
ver optimization. In Section 3, a novel directed graph-based
model is proposed for the handover process. A CNN structure
is constructed and the results of the directed graph model are
used to train the CNN. The effectiveness of the CNN is numer⁃
ically evaluated in Section 4. Finally, Section 5 concludes this
paper.

2 Background

2.1 System Model
A typical LEO satellite network consists of several circular

orbits, and each orbit contains several evenly spaced satel⁃
lites. This paper considers the scenario in Fig. 1 where each
hexagon denotes the coverage of a satellite. Referred to the as⁃
sumptions[11–13] used in 3GPP NTN study item, each satellite
is assumed to have 37 beams that form the hexagon coverage.
The UE is assumed to locate within a hexagon in the initial
time, and the satellites in the three adjacent orbits are consid⁃
ered to evaluate the RSRPs on the UE. During the flight of the
satellites, a piece of UE needs to periodically measure the
RSRPs of different beams and make handover decisions.
The beam layout in Fig. 1 decides the center of the 37

beams[13]. Suppose the satellite is above a plane, then the di⁃
ameter of the nadir beam on the plane can be computed based
on the 3 dB angle. It is easy to compute the other 36 beam cen⁃
ters on the plane according to Fig. 1. Then the bore-sight di⁃
rections of the 37 beams can be determined. The angles be⁃
tween co-orbital satellites and adjacent orbits are also calcu⁃

▲Figure 1. Illustration of system model
UE: user equipment
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lated to fulfill the coverage shown in Fig. 1.
2.2 Motivation
In 3GPP simulation assumption Set-1[11], a satellite with an

altitude of 600 km has a beam diameter of 50 km and a veloci⁃
ty of 7.56 km/s. Therefore, a piece of UE can only connect to
one beam in 6.6 s at most. Because of the noise and the over⁃
lapping of different beams, the handover will happen more of⁃
ten. In addition, because of the long propagation time, each
handover procedure needs a longer time and will consume
more time-frequency resources. Therefore in a LEO network,
the handover has a time lag and causes a large signaling over⁃
head. To reduce the overhead and improve service continuity,
the handover strategy needs to be optimized for the following
targets.
• Predict the handover decision to compensate the time lag.
• Reduce the handover caused by noises, including shadow

fading, multipath fading, and white Gaussian noise.
• Identify and suppress the handover in this situation. As

shown in Fig. 2, a piece of UE near the beam edge may have a
short serving time for some beams.
In this paper, an overall handover optimization is obtained

in the directed graph model for each piece of UE. The com⁃
mon features of the optimized strategies for different UE are
extracted using CNN to fulfill the targets without strong re⁃
quirements for UE capability.

3 Handover Strategy Optimization Based on
CNN
In a LEO satellite network, the satellites fly along predeter⁃

mined circular orbits, so the change of the RSRP has strong
regularity. The regularity can be used to improve the handover
decision. Specifically, in each time slot, the previous NRSRP
values of UE form a series, and some kinds of RSRP series im⁃
ply that the UE should start handover. In this section, those
kinds of RSRP series are found in two steps. First, the RSRP

of each UE during a long period is measured and recorded. A
directed graph model is proposed to search for the best hando⁃
ver decision in every time slot. Then the handover decision is
regarded as the label for the previous N RSRP values of that
time slot to be trained by the CNN. The proposed CNN can ef⁃
ficiently extract the common regularity of handover decisions
for different UE.
3.1 A Novel Directed Graph Based Model
The directed graph based model in Ref. [5] is designed to

search the optimal handover strategy. However, the UE needs
to start handover as soon as entering the coverage of the next
satellite, which means it cannot choose a more appropriate
handover time. This section proposes an improved directed
graph based model to solve the problem.
3.1.1 Referenced Model in Ref. [5]
In Ref. [5], every satellite is modeled as a node. If the begin⁃

ning or end of the coverage of one satellite is between another
satellite’s coverage period, then there exists a directed edge be⁃
tween the two satellites, which means that a piece of UE can
perform a handover between the two satellites. The weight of
the edge is determined by the chosen criteria in the two satel⁃
lites. For example, suppose only the criterion“handover num⁃
ber”is considered, then the weight of every edge should be set
to 1. If other criteria such as“number of free channel”and“el⁃
evation angle”are considered, the weight can be set according
to the two criteria of the target satellite. The Dijkstra’s shortest
path algorithm can be used to search the path with the smallest
or largest weight. By choosing appropriate criteria, the resulting
path becomes the overall optimal handover strategy.
An example of satellite coverage time and the corresponding

directed graph in the referenced model are shown in Fig. 3.
Node 0 denotes the initial time and other nodes denote four sat⁃
ellites. In this model, the node and the edge weight are invari⁃
able during the handover process. The weights of the edges
cannot reflect the change process of the elevation angles or
other criteria of the satellites. The UE can only assume that
the handover happens as soon as it enters the coverage of an⁃
other satellite.
3.1.2 Proposed Model
By considering the variation of satellites during the hando⁃

ver process, a novel model can be constructed to generate

▲Figure 2. An example of UE near beam edge

UE: user equipment
▲Figure 3. Directed graph in referenced model
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more reasonable optimization for handover. The basic idea is
to regard a beam in different time slots as different nodes. As
shown in Fig. 4, we assume that in each time slot the serving
beam of UE is one of the K strongest beams. The beamTK de⁃notes the K-th strongest beam in the T-th time slot. Every two
nodes in adjacent time slots are connected by an edge, which
means that the handover between them is possible.
Similar to Ref. [5], the weights of the edges can be set ac⁃

cording to different criteria for overall optimization. For the
sake of simplicity, this paper only considers the RSRP
strength and handover number. Then the weight of the edge
from beamT1K1 to beamT2K2 can be defined as
w1×RSRPT1K1 −w2×handoverFlag, (1)

where RSRPT1K1 denote the RSRP value of beamT1K1, and han⁃doverFlag = 1 if beamT1K1 and beamT2K2 are two different beams.When the signal-to-noise ratio is small, the channel capacity
is proportional to the signal strength.
Therefore w1×RSRPT1K1 in Eq. (1) denotes the benefit of con⁃necting beamT1K1 in T1-th time slot, where w1 is a predeter⁃mined parameter. Similarly, the parameter w2 is chosen accord⁃ing to the degree of the negative impact of one handover. By

using the Dijkstra’s shortest path algorithm, we can find the
longest path from the first time slot to the last time slot, which
is actually the optimal handover strategy for this UE.
3.2 CNN Based Optimization for Handover
RSRP is defined as the linear average over the power of the

resource elements that carry some predefined reference sig⁃
nals. Assume UE can predict the RSRP of different beams for
a long period, then the method in Section 3.1.2 can be used to
find the optimal handover strategy. However, in most cases,
UE only knows its historical RSRP. Standard 5G UE needs to
measure the RSRPs of detectable cells and handover to the
strongest cell if its RSRP minus a predetermined threshold is
larger than the serving RSRP. In this way, the information hid⁃

den in the historical RSRP is ignored. Actually, at least in the
LEO scenario, the historical RSRP can help UE to make sub⁃
optimal handover decisions. The series of historical RSRPs of
the strongest K beams in each time slot forms a two-dimension⁃
al matrix. A customized CNN is used to optimize the handover
decision based on the matrix in this section.
CNN is an effective tool to elicit information from two-di⁃

mensional data. It has been widely used to extract features
from images. A classical CNN consists of one or more convolu⁃
tional layers, pooling layers, and fully-connected layers. The
features of the input data are extracted layer by layer, and are
summarized in the last fully-connected layer to generate the fi⁃
nal output. Compared with the fully-connected layer, the con⁃
volutional layer takes advantage of the strong local spatial cor⁃
relation in natural images and only has a few parameters to be
trained. It is worth mentioning that the matrix of RSRP also
has the“local spatial correlation”, i.e., the cooperation of the
RSRP values in adjacent time slots and the RSRP values of
the nearest 3 or 4 beams are more likely to contain informa⁃
tion for handover decisions. Therefore it is suitable to apply
CNN to the problem of handover.
Intuitively, the RSRP series in the LEO network has strong

regularity, so a relatively simple neural network structure
should be chosen to reduce the training time and prevent over⁃
fitting. The LeNet-5[12] is firstly designed for character recogni⁃
tion and is a relatively simple modern CNN structure. The de⁃
fault input of LeNet-5 is a matrix of the size of 32×32. Howev⁃
er, in the LEO network model presented in Section 2.1, the
number of detectable beams for one piece of UE is generally
smaller than 32. Therefore the size of the input data needs to
be reduced. Actually, in the simulation, the number of consid⁃
ered beams in each time slot is set to be 10. The length of a
time slot is set to be 0.5 s and the RSRP values in the previous
10-time slots are used to form the input. Then the input of the
CNN is a matrix of the size of 10×10. In LeNet-5, two convolu⁃
tional layers are used. The two convolution kernels both have
the size of 5×5. Besides, two pooling layers are used to reduce
the number of trained parameters. Because of the reduced in⁃
put size, some layers in LeNet-5 need to be customized. First,
one convolution kernel is reduced to the size of 3×3. Then the
pooling layers are deleted since the number of parameters is
not large. The structure of the resulting CNN is presented in
Fig. 5. The output of size 10 corresponds to the 10 kinds of
handover decisions, i. e., one of the 10 strongest beams is
which the UE will connect in the next time slot.
The data preprocessing and the training procedure consist

of four steps as follows.
1) For every piece of UE, generate the RSRP values of differ⁃

ent satellites in every time slot. If one satellite is invisible or its
signal is too weak to detect, the RSRP values are regarded as 0.
2) Compute the best handover strategy for every UE based

on the proposed directed graph-based method in Section 3.1.2.
3) For every UE in every time slot, the previous 10RSRP▲Figure 4. Directed graph in the proposed model

Time

Beam11 Beam21

Beam12 Beam22

Beam1K Beam2K

BeamT1

BeamT2

BeamTK

…

… … …

101



ZTE COMMUNICATIONS
December 2021 Vol. 19 No. 4

Research Paper AI-Based Optimization of Handover Strategy in Non-Terrestrial Networks

ZHANG Chenchen, ZHANG Nan, CAO Wei, TIAN Kaibo, YANG Zhen

values of the 10 strongest beams are used to form 10×10 input
data. The best handover decision generated in the previous
step is regarded as the corresponding label.
4) The input data and the corresponding labels from differ⁃

ent UE are used to train the CNN in Fig. 5. After some ep⁃
ochs, the testing accuracy will converge.
The trained CNN can be used to make suboptimal handover

decisions for new UE. In each time slot, the UE extracts the
historical RSRP values of the 10 strongest beams as the input
of the trained CNN. The output contains 10 values and the in⁃
dex of the largest value is regarded as the serving beam in the
next time slot. It is worth noting that the handover decision is
actually a prediction for the next time slot, so the time lag in
the handover procedure can be compensated.

4 Simulation
The proposed methods are numerically evaluated in this

section. The simulation parameters are mainly referred to as
the parameter Set-1 in Ref. [11]. Some important parameters
are shown in Table 1.
As described in Section 2.1, the LEO network in simulation

consists of three orbits. Each satellite has 37 beams which
form a hexagon. Some points are randomly generated within
one hexagon in the UV plane. The projection of the points on
the earth is calculated as the positions of the UE.
4.1 Optimal Handover Strategy Based on Directed

Graph Model
With the constructed LEO network, the RSRP values for

each UE are calculated in each time slot. The length of a one-

time slot is set to be 0.5 s, and about 140-
time slots are considered in the whole simu⁃
lation. The optimal handover strategy for
each UE is generated by using the directed
graph-based model in Section 3.1.2.
In the graph-based model, the two param⁃

eters w1 and w2 form a trade-off between
RSRP strength and handover number and
need to be predetermined. In this section,
w1 is fixed and different w2 is evaluated toshow the change of handover number and
average RSRP strength. Because of the
large path loss, the received power of the

strongest beam in one resource element is near 10−17W. There⁃
fore, the w1 in Eq. (1) is set to be 1017, which means that thebenefit of accessing the strongest beam in one-time slot is
around 1. Meanwhile, the value of w2 is set to be 0, 0.5, 1, 2,and 5. When w2 =0, the UE will always connect to the stron⁃gest beam. As shown in Figs. 6 and 7, with the increase of w2,

▼Table 1. Simulation parameters
Parameter

Orbit altitude
Simulation scenario
Carrier frequency
Antenna type

Antenna aperture
EIRP

Value

600 km
Rural
2 GHz

Bessel antenna
2 m

34 dBW/MHz
EIRP: effective isotropic radiated power

▲Figure 5. CNN structure for handover optimization
CNN: convolutional neural network

▲Figure 6. Cumulative distribution function of handover number for
different w2

CDF: cumulative distribution function

RSRP: reference signal received power
▲Figure 7. Average RSRP during simulation for different w2
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the handover number and average RSRP will both decrease.
4.2 Performance of CNN in Handover Optimization
Three methods for handover optimization are compared in

this section. The first method assumes the UE can predict its
RSRP and make handover decisions based on the directed
graph model. The second method means that the UE uses the
trained CNN to make handover decisions. The CNN is trained
by the results of the directed graph model with w2 =1. In thethird method, the UE is always served by the strongest beam.
Compared with the“strongest beam”method, the CNN can

largely reduce the number of handovers without a requirement
for UE capability. Figs. 8 and 9 show that the handover num⁃
ber of more than 70% of the UE is reduced by more than 1/4,
while the average RSRP is only reduced by 3%.

5 Conclusions
This paper proposes a CNN-based handover optimization

method for the LEO satellite network. The CNN structure is
customized based on LeNet-5 and is used to extract the hid⁃
den information in the historical RSRP. In order to produce
the training data for CNN, a novel directed graph-based model
is proposed to find the optimal handover strategy when the UE
knows its future RSRP. After the training, the CNN can be
used to find a suboptimal handover decision based on its his⁃
torical RSRP. In the simulation, the CNN is verified to be ef⁃
fective in handover optimization. The number of handovers is
significantly reduced while the average RSRP is only reduced
by 3%.
The optimization of handover in satellite communication is

relatively simple because of the strong regulation of the move⁃
ment of satellites. But the deep learning-based method can al⁃
so be used in more complex scenarios. In order to extract the
hidden regulation, a more advanced neural network structure
may be needed, such as the attention-based neural network.
The deep Q-learning is also worth investigating for a dynami⁃
cally changing environment.
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