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Abstract: Traffic identification becomes more important, yet more challenging as related
encryption techniques are rapidly developing nowadays. Unlike recent deep learning
methods that apply image processing to solve such encrypted traffic problems, in this pa⁃
per, we propose a method named Payload Encoding Representation from Transformer
(PERT) to perform automatic traffic feature extraction using a state-of-the-art dynamic
word embedding technique. By implementing traffic classification experiments on a pub⁃
lic encrypted traffic data set and our captured Android HTTPS traffic, we prove the pro⁃
posed method can achieve an obvious better effectiveness than other compared baselines.
To the best of our knowledge, this is the first time the encrypted traffic classification with
the dynamic word embedding has been addressed.
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1 Introduction

Traffic classification, a task to identify certain catego⁃ries of network traffic, is crucial for Internet services
providers (ISP) to track the source of network traffic
and to further ensure their quality of service (QoS).

Also, traffic classification is widely applied in some specific
missions, like malware traffic identification and network at⁃
tack detection. However, this is a challenge since network
traffic nowadays is more likely to be hidden with several en⁃
cryption techniques, making detection hard with a traditional
approach.
Typically, there are the following widely applied traffic clas⁃

sification methods: 1) The port-based method, which simply
identifies traffic data using specific port numbers, is suscepti⁃
ble to the port number changing and port disguise. 2) Deep
packet inspection (DPI), a method which aims to locate pat⁃
terns and keywords from traffic packets, is not suitable for
identifying encrypted traffic because it heavily relies on unen⁃
crypted information. 3) The machine learning (ML) -based
method focuses on using manually designed traffic statistical
features to fit a machine learning model for categorization[1]. 4)
The deep learning (DL) -based method is an extension of the

ML-based approach where neural networks are applied for au⁃
tomatic traffic feature extraction.
Although encrypted traffic packets are hard to identify, an

encrypted traffic flow (a flow is a consecutive sequence of
packets with the same source IP, source port, destination IP,
destination port and protocol) is still analyzable because the
first few packets of a flow may contain visible information like
handshake details[2]. In this way, the ML-based and DL-based
methods are considered ideal for encrypted traffic classifica⁃
tion since they both extract common features from the traffic
data. In fact, the ML-based and DL-based methods share the
same concept that traffic flows could be vectorized for super⁃
vised training according to their feature extraction strategy.
Rather than extracting hand-designed features from the traf⁃

fic as the ML-based method does, the DL-based method uses a
neural network to perform representation learning (RL) for the
traffic bytes which allow it to avoid complex feature engineer⁃
ing. It provides an end-to-end solution for encrypted traffic
classification where the direct relationship between raw traffic
data and its categories is learned. The classification effect of a
DL-based method is highly related to its capacity of represen⁃
tation learning.
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In this paper, we propose a new DL-based solution named
Payload Encoding Representations from Transformers
(PERT) in which a dynamic word embedding technique
called the Bidirectional Encoder Representations from Trans⁃
formers (BERT)[3] is applied during the traffic representation
learning phrase. Our work is inspired from the great improve⁃
ments in the natural language processing (NLP) domain that
dynamic word embedding brings. We believe that computer
communication protocols and natural language have some
common characteristics. According to this point, we shall
prove that such a strong embedding technique can also be ap⁃
plied to encode traffic payload bytes and provide substantial
enhancement while addressing the encrypted traffic classifi⁃
cation task.

2 Related Work
We shall introduce some related traffic identification works

that involve the DL domain, and further categorize them into
two major groups.
1) For feature-engineering: Basically, these methods still

use hand-designed features but utilize the DL as a measure of
feature processing. For example, JAVAID et al. proposed an
approach using the deep belief network (DBN) to make a fea⁃
ture selection before the ML classification[4]. HOCHST et al.
introduced the auto-encoder network to perform dimension re⁃
duction for the manually extracted flow features[5]. REZAEI et
al. applied a similar pre-training strategy as we do[6]. What is
different is that this work introduced neural networks to recon⁃
struct time series features. Its pre-training plays a role of re-
processing the hand-designed features. Ours instead, is to per⁃
form a representation learning for the raw traffic.
2) For representation learning: These works apply DL to

learn the encoding representation from raw traffic bytes with⁃
out manual feature-engineering. These works are also consid⁃
ered as end-to-end implements of traffic classification. WANG
et al. proposed this encrypted traffic classification framework
for the first time[7]. They transformed payload data to grayscale
images and applied convolutional neural networks (CNN) to
perform image processing. Afterward, the emergence of a se⁃
ries of CNN-based works, such as Ref. [8], proved the validity
of such an end-to-end classification. LOPEZ-MARTIN et al.
further discussed a possible combination for traffic identifica⁃
tion where the CNN was still used for representation learning,
but a long short-term memory (LSTM) network was introduced
to learn the flow behaviors[9]. It inspired the hierarchical spa⁃
tial-temporal features-based (HAST) models which obtained a
state-of-the-art result in the intrusion detection domain[10].
Nevertheless, for end-to-end encrypted traffic classification

nowadays, CNN is still the mainstream whereas the NLP-relat⁃
ed network only works as an supplement to do jobs such as
capturing flow information. We can hardly find a full-NLP
scheme similar to ours, let alone one which applies current dy⁃

namic word embedding techniques.

3 Model Architecture

3.1 Payload Tokenization
According to Ref. [2], the payload bytes of a packet are like⁃

ly to expose some visible information, especially for the first
few packets of a traffic flow. Thus, most DL-based methods
use this byte data to construct traffic images as the inputs of a
CNN model. This is because the byte data is ideal for generat⁃
ing pixel images as its value ranges from 0 to 255, which is
just fit for a grayscale image. Rather than applying such an im⁃
age processing strategy, we treat the payload bytes of a packet
as a language-like string for introducing NLP processing.
However, the range of byte value is rather small considering

the size of a common NLP vocabulary. To extend the vocab
size of traffic bytes, we introduce a tokenization which takes
pairs of bytes (with a value range of 0 to 65 535) as basic char⁃
acter units to generate bigram strings (Fig. 1). Afterward, the
NLP related encoding methods can be directly applied to the
tokenized traffic bytes. Thus, the encrypted traffic identifica⁃
tion is transformed to an NLP classification task.
3.2 Representation Learning
While performing representation learning in an NLP task,

the word embedding is widely utilized. Recently, a break⁃
through was made in this research area as the dynamic word
embedding technique overcame the drawback that the tradi⁃
tional word embedding methods such as the Word2Vec[11] are
only capable of mapping words to unchangeable vectors. By
contrast, vectors trained by dynamic word embedding can be
adjusted according to its context inputs, making it more power⁃
ful to learn detailed contextual information. This is just what
we need for extracting complex contextual features from the

▲Figure 1. Comparison of raw payload processing between CNN-based
methods and PERT

CNN: convolutional neural networkNLP: natural language processingPERT: Payload Encoding Representations from Transformers

Image transforming(CNN-based)

Bigram tokenization(PERT)
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encrypted traffic data.
Current popular dynamic word embedding methods such as

BERT could be considered as a stack of a certain type of en⁃
coding layers. Each encoder takes the outputs of its former lay⁃
er as inputs and further learns a more abstract representation.
In another word, word embedding will be dynamically adjust⁃
ed while passing through its next encoding layer.
In our work, we take the tokenized payload string [w1,

w2, ..., wk] as our original inputs. The first group of word em⁃bedding vectors [x1, x2, ..., xk] at the bottom of the network israndomly initialized. After N times of dynamic encoding, we
obtain the final word embedding outputs [hN1, hN2, ..., hNk] thatimply extremely abstract contextual information of the original
payload.
The illustration of our representation learning is shown in Fig. 2.
Earlier dynamic word embedding called the Embeddings

from Language Models (Elmo) [12] uses the bidirectional LSTM
as its encoder unit, which is not suitable for large-scale train⁃
ing since the LSTM has a bad support for parallel calcula⁃
tions. To solve this problem, the LSTM was replaced with a
self-attention encoder that was firstly applied in the transform⁃
er model[13], and this embedding model was named BERT.
This is what we also use for encoding the encrypted payload as
shown in Fig. 3. Taking our first embedding vectors [x1, x2, ...,
xk] as examples, there are several steps of the transformer en⁃coding as follows.
1) Linear projections: Each embedding vector xi will be pro⁃jected to three vectors using linear transformations:

Ki = WKxi
Qi = WQxi
Vi = WVxi , (1)

where WK, WQ and WV are the three groups of linear parameters.
2) Self-attention and optional masking: The purpose of linear

projections is to generate the inputs for the self-attention mecha⁃
nism. Generally speaking, self-attention is to figure the compati⁃
bility between each input xi and all the other inputs x1–xk via asimilarity function, and further to calculate a weighted sum for
xi which implies its overall contextual information. In detail, ourself-attention is calculated as follows:

atti =∑j = 1
k

QiK
T
j

dk
Z

× Vj. (2)
The similarity between xi and xj is figured by a scaled dot-product operator, where dk is the dimension of Kj, and Z is thenormalization factor. It should be noticed that not every input

vector is needed for self-attention calculation. An optional
masking strategy that randomly ignores a few inputs while gen⁃
erating attention vectors is allowed to avoid the over-fitting.
3) Multi-head attention: In order to grant encoders the abili⁃

ty of reaching more contextual information, the transformer en⁃
coding applies a multi-head attention mechanism. Specifical⁃
ly, linear projections will be done for M times for each xi togenerate multiple attention vectors [atti,1, atti,2, ..., atti,M]. Af⁃terward, a concatenation operator is utilized to obtain the final
attention vector:▲Figure 2. Representation learning network for payload data using the

dynamic word embedding architecture

FNN: feedforward neural network
▲Figure 3. Detail of the encoding layer
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atti = atti,1⊕atti,2⊕…⊕atti,M . (3)
4) Feed-forward network (FFN): A fully-connected network

is used to provide the output of current encoder. For xi, it is asfollows:
hi = max (0,W1atti + b1) + b2, (4)

where W1, b1, W2 and b2 are the full-connection parameters andmax(0, x) is a Rectified Linear Unit (ReLU) activation function.
Finally, we get the dynamic embedding hi which is encodedfrom xi. It can be further encoded by the next encoding layeror be directly used in downward tasks. Similar to the naming

of BERT, we name our encoding network as the PERT consid⁃
ering the application of a transformer encoder.
3.3 Packet-Level Pre-Training
A key factor that makes BERT and its extensive models

continuously achieve state-of-the-art results among a wide
range of NLP tasks is their“pre-training + fine-tuning”strate⁃
gy. To the best of our knowledge, our work is the first to intro⁃
duce such a strategy to an end-to-end encrypted traffic classifi⁃
cation architecture. To perform pre-training is to initialize the
encoding network and to give it the ability of contextual infor⁃
mation extraction before it is applied to downward tasks. The
unsupervised language model (LM) is widely used for word em⁃
bedding pre-training[14]. BERT, specifically, proposes a
masked LM which hides several words from the original string
with a unique symbol‘unk’, and uses the rest of the words to
predict those hidden ones.
To demonstrate the procedure of the masked LM, we give a

masked traffic bigram string as w = [w1, ...,‘unk’, ...,‘unk’, ...,
wk] and a list msk = [i1, i2, ..., im] which indicates the positionof bigram units that are masked. After the encoding, for each
embedding vector hi that is encoded from the i-th position ofthe original input, a full connection is followed:
oi = W'tanh ( )Whi + b + b', (5)

where tanh is an activation function like the Relu. The size of
the output vector oi = [oi,1, ..., oi,|V|] is the vocab size |V|. Itstores all the likelihoods about what the corresponding traffic
bigram is at the i-th position.
In the end, the masked LM uses partial outputs {oi, iϵmsk} toperform a large softmax classification with the class number of

vocab size. The objective is to maximize the predicted probabili⁃
ties of all the masked bigrams, which can be simply written as:
argmaxθ∑i

i ∈ mskP (wi|oi, θ ), (6)
where θ represents the parameters of the entire network.
The LM is considered as a powerful initialization approach

for the encoding network using large-scale unlabeled data, yet

it is very time-consuming. Even if we want to perform a flow-
level classification for encrypted traffic, we argue that the pre-
training should be packet-level considering the possible calcu⁃
lation costs. Particularly, we collect raw traffic packets from
the Internet despite their sources and extract their payload
bytes to generate an unsupervised data set. Then, the extract⁃
ed payload bytes are tokenized as bigram strings and are uti⁃
lized to perform a PERT pre-training. After the training con⁃
verges, we save the adjusted encoding network.
3.4 Flow-Level Classification
While implementing a certain task like classification, the

pre-trained encoding network will be totally reused and be fur⁃
ther adjusted to learn the real relationship between the inputs
and a specific task objective. This is the concept of“fine-tun⁃
ing”, where a network is trained based on a proper initializa⁃
tion to achieve a boosted effect in downward tasks.
Fig. 4 shows our encrypted traffic classification framework.

Below are the detailed descriptions:
1) Packets extraction: While classifying an encrypted traffic

flow, only the first M packets (3 for example in Fig. 4) need to
be used. The bigram tokenization is performed for payload
bytes in each packet to generate a list of tokenized payload
strings [str1, str2, ..., strM].2) Encoding for packets: Before classification, the encoding
network of the classifier with the pre-trained counterpart is ini⁃
tialized. As the encoding network is packet-level, each to⁃
kenized string will be individually transported to the encoders.
According to Ref. [3], while carrying out a classification with
BERT, a unique token‘cls’should be added at the beginning
of the input as the classification mark. For the i-th packet, its
tokenized string will be modified as stri’’= [cls, wi,1, wi,2, ...,
wi,k]. After encoding, a series of embedding vectors [hNi,CLS,
hNi,1, ..., hNi,k] is outputted, yet only the hNi,CLS will be picked asthe further classification input. We simply represent hNi,CLS as
embi. In order to make use of all of the information extractedfrom the first M packets, we apply a concatenation to merge
the encoded packets:
emb = emb1⊕emb2⊕...⊕embM. (7)
3) Final classification: In the end, a softmax classification

layer is used to learn the probability distribution of the input
flows among possible traffic classes. The objective of the flow-
level classification can be written as:
argmaxθ∑f

f ∈ RflowP ( yf|emb ( f ),θ ), (8)
where Rflow represents the flow-level training set. Given a flow
sample f, yf represents its true label (class) and emb(f) indicatesits concatenated embedding. P is the conditional probability
that the softmax layer provides. In a manner of speaking, the ob⁃
jective is to maximize the probability that each encoded flow
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sample is predicted as its corresponding category. The flow-lev⁃
el information is involved in the final softmax classifier, and
thus will be used to fine-tune the packet-level encoding net⁃
work during the back propagation. The main point of such a
fine-tuning strategy is to separate the learning of the packets re⁃
lationship from the time-consuming pre-training procedures.

4 Experiments

4.1 Experiment Settings

4.1.1 Data Sets
1) Unlabeled traffic data set: The data set is utilized for the

pre-training of our PERT encoding network. To generate this
data set, we capture a large amount of raw traffic data from dif⁃
ferent sources using different devices through a network sniff⁃
er. Typically, there is no special requirement for the unlabeled
traffic data except you should make sure your collected sam⁃
ples can cover the mainstream protocols, as many as possible.
2) Information Security Centre of Excellence (ISCX) data

set: We chose ISCX2016 VPN-nonVPN1, a popular encrypted

traffic data set, to make our classification
evaluations more persuasive. However, this
data set only marks where its encrypted traf⁃
fic data is captured from and whether the
capturing is through a VPN session or not,
which means a further labeling should be
performed. The ISCX data set is utilized in
several works yet the results are rather differ⁃
ent even when the same model is ap⁃
plied[7–8]. This is mainly due to how the raw
data is processed and labeled. Because
WANG et al. [7] have provided their pre-pro⁃
cessing and labeling procedures in their
github2, we follow this open source project to
process the raw ISCX data set and label it
with 12 classes.
3) Android application data set: We find

the ISCX data set is not entirely encrypted
as it also contains data of some unencrypted
protocols like Domain Name System (DNS).
To make a better evaluation, in this work, we
manually capture traffic samples from 100
Android applications via the Android devic⁃
es and network sniffer tool-kit. All the cap⁃
tured data belong to the top activated appli⁃
cations of the Chinese Android app markets.
Afterward, we exclusively pick the HTTPS

flows to ensure only the encrypted data remain.
4.1.2 Parameters
1) Pre-training: First of all, to perform the packet-level

PERT pre-training for our unlabeled traffic data, we introduce
public Python library transfomers3 which provide implements
of the original BERT model and several recently published
modified models. In practice, we chose the optimized BERT
implement named A Lite BERT (ALBERT) [15], which is more
efficient and less resource-consuming. However, even to be
properly optimized, current BERT pre-training is very costly
when we use 4 Nvidia Tesla P100 GPU cards.
Table 1 shows the settings of our pre-training and the corre⁃

sponding description of each parameter. Such settings refer to
what common NLP works with BERT encoding use. After suffi⁃
cient training, the encoding network is saved as a Pytorch4 for⁃
mat which can be reused in our classification networks. Also,

1 https://www.unb.ca/cic/datasets/vpn.htm
2 https://github.com/echowei/DeepTraffic
3 https://huggingface.co/transformers/
4 https://pytorch.org

▲Figure 4. Flow-level encrypted traffic classification initialized with a packet-level pre-training

▼Table 1. Pre-training parameter settings
Parameter

hidden_size
num_hidden_layers
num_attention_heads
intermediate_size
input_length

Value

768
12
12
3 072
128

Description

Vector size of the encoding outputs (embedding vectors)
Number of encoders used in the encoding network
Number of attention heads used in the multi-head at⁃

tention mechanism
Size of the hidden vectors in FNN networks

Amount of tokenized bigrams used in a single packet

Pre-training network

Masked languagemodel

Embedding*

Encoder N

Encoder 2
Encoder 1

Encoding network

…

Payload string*

Packet*

Softmax classifier
Embedding concatenation

Embedding1 Embedding2 Embedding3

Encoder N

Encoder 2
Encoder 1

Encoding network

…

Payload string1 Payload string2 Payload string3

Unlabeled training set(packet-level) Classification training set(flow-level)

Packet1 Packet2 Packet3 …Flow*

Classification network

Initialize
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all of our other networks are implemented using the Pytorch.
2) Classification: The encoding network used at the classifi⁃

cation stage strictly shares the same structure with the pre-
trained one. Other settings of the classification layers are
shown in Table 2. As fine-tuning the encoding network in a
classification task is relatively inexpensive[3], a single GPU
card will be just enough.
4.1.3 Baselines
Below are the baseline classification methods we use for

comparison:
1) ML-based: We refer to Ref. [16] to implement our ML-

based method using the decision tree classifier (named ML-1).
However, it only contains basic flow-statistical features that
we consider as not the most optimized ML-based method.
Thus, based on ML-1, we further add some time series fea⁃
tures as the source ports, destination ports, directions, packet
lengths and arrival time intervals of the first 10 packets in a
flow to generate the ML-2 model.
2) CNN: The two types of CNN models are the 1D-CNN and

the 2D-CNN, provided by Ref. [7]. They both use the first 784
bytes of a traffic flow to perform the classification.
3) HAST: The two HAST models proposed by Ref. [10] are the

state-of-art end-to-end methods for intrusion detection. HAST-I
uses the first 784 bytes of a flow for direct representation learn⁃
ing. HAST-II, however, only performs packet-level encoding. It
further introduces an LSTM to merge the encoded packets.
During the evaluation, we randomly chose 90% of samples

from the data set as the training set, and the remaining 10%
for validation. Then, three widely used classification metrics
are applied:
Precision (P) = TP

TP + FP ,
Recall (R) = TP

TP + FN ,
F1 - score (F1) = 2 × P × R

P + R . (9)
Take a class yi as an example, the TPi is the number of sam⁃ples correctly classified as yi, FPi is the number of samplesmistakenly classified as yi, FNi is the number of samples mis⁃takenly classified as nor-yi. As for the overall evaluation for allclasses, we use the average values of those metrics.

4.2 Overall Analysis
1) Results on ISCX Data Set

This group of experiments are used to discuss the classifica⁃
tion based on the consistent data settings of Ref. [7]. As we
can see in Table 3, our flow-level PERT classification
achieves the best classification results where the precision
reaches 93.27% and the recall reaches 93.22%. It proves
PERT is a power representation learning method for encrypted
traffic classification.
As for other models, using the same manner of data prepro⁃

cessing, the CNN classification results are pretty close to what
is provided by Ref. [7]. The CNN methods obviously obtain
higher precision and recall than the ML-1 that is implemented
based on Ref. [15]. However, the ML-1 can still be improved.
When the time series features are added, the precision of the
ML-2 classification can exceed 89% which is much better
than what the basic CNN methods get. In other words, the ba⁃
sic CNN methods actually have no absolute advantage while
classifying the ISCX data set.
HAST-I achieves better results than typical CNN models

yet HAST-II with an LSTM works relatively worse. In fact, we
think using the first few bytes of a flow to perform a direct
deep learning (like HAST-I and CNN-1D) is considered better
than merging the packet-level encoded vectors, since the rep⁃
resentation learning can directly capture flow-level informa⁃
tion. However, the encoding costs on a long string are not af⁃
fordable for complex dynamic word embedding. At the current
stage, the“packet-level encoding + flow-level merging”is the
best option for our PERT classification.
2) Results on Android Data Set
These experiments are based on full HTTPS traffic to evalu⁃

ate the actual encrypted traffic classification ability of each
method. As all the data here are HTTPS flows, in comparison
with the ISCX data set whose data cover several traffic proto⁃
cols, it is harder to distinctly locate different flow behaviors
among the chosen applications. Consequently, the ML-based
methods that strongly rely on flow statistics features work ex⁃
tremely weakly. Even when enhanced by time series features,
the ML-2 still obtains a worse result than basic DL methods.
As for the original ML-1, we find it is entirely not capable of
addressing this 100-class HTTPS classification that we ignore
▼Table 3. Classification results (ISCX data set)

Model

ML-1[16]
ML-2
CNN-1D[7]
CNN-2D[7]
HAST-I[10]
HAST-II[10]
PERT

Precision

0.819 4
0.890 1
0.861 6
0.842 5
0.875 7
0.850 2
0.932 7

Recall

0.813 6
0.889 6
0.860 5
0.842 0
0.872 9
0.842 7
0.932 2

F1

0.816 4
0.889 8
0.861 0
0.842 2
0.874 2
0.840 9
0.932 3

CNN: convolutional neural networkHAST: hierarchical spatial-temporal features-based modelISCX: Information Security Centre of ExcellenceML: machine learningPERT: Payload Encoding Representation from Transformer

▼Table 2. Classification parameter settings
Parameter

packet_num
softmax_hidden

dropout

Value

alternative
(5 by default)

768
0.5

Description

The number of the first packets in a selected flow
Size of the hidden vectors in the softmax layer

The dropout rate of the softmax layer
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its result in Table 4.
The results on the Android data set demonstrate that the

DL-based methods are more suitable for processing full en⁃
crypted traffic data. More importantly, PERT again shows its
superiority as it introduces a more powerful representation
learning strategy. Its F1-score on the 100-class encrypted traf⁃
fic classification exceeds 90% whereas the HAST can only
achieve a result of 81.67%.
4.3 Discussion: Selection of the Packet Number
In a flow-level classification model, the increase in the use

of packets will cause significant costs. This is particularly true
when the representation learning is applied to traffic packets.
We perform PERT classification multiple times on the two

data sets with different settings of the“packet_num”and the
results are shown in Fig. 5. As we can see, at the beginning,
the classification result on each data set is greatly improved
with more packets used. However such increase is slight after
the continuous adding of packets. For example, the F1-score
is shown to reach 91.35% while classifying the Android data
set with 20 packets. However, this result is merely boosted by
1.28% in comparison with using five packets, so it is not rec⁃
ommended considering the costs of PERT encoding for so
many packets and such minor further improvements.
We point out that using 5–10 packets for our PERT classi⁃

fication will be sufficient. Similar conclusions can be also
found in other flow-level classification research works such as
Refs. [9] and [10].
4.4 Discussion: Merging of Encoded Packets
A major difference between our PERT classification and the

most flow-level DL-based methods such as HAST-II is how the
encoded packets are merged. HAST-II constructs a 2-layer
LSTM after encoding the packet data whereas we simply apply
a concatenation. To make a comparison between these two ap⁃
proaches, we modify our PERT model and the HAST-II model.
Firstly, we refer to HAST-II and construct the PERT_lstm

model by using a 2-layer LSTM to follow our PERT encoded
packets. Then, we remove the LSTM layer from HAST-II and
further generate the HAST_con by concatenating the HAST

encoded packets to fit an ordinary softmax classifier, just as
our original PERT model does. For all the compared methods,
we consistently select 5 packets for classification based on our
former discussion.
We perform validation every training epoch for each classi⁃

fication experiment and record corresponding F1-scores for
evaluation. As illustrated in Fig. 6, we cannot actually tell
which merging approach is better for classification accuracy.
Whether using the concatenation or the LSTM approach for
merging, it does not have a major influence on the final classi⁃
fication results.
However, using different merging approaches will have an

obvious impact on the converging speed of the classification
training. In Fig. 6, it always takes less training rounds before
the model converges while introducing the concatenation
merging. We believe the LSTM is not a satisfactory option for
merging the encoded packets as applying a simple concatena⁃
tion can reach a very close classification result, yet it is much
faster.

5 Conclusions
After a thorough analysis of the possibility of applying the

full-NLP scheme for encrypted traffic classification, we point
out that the byte data of raw traffic packets can be transformed
to character strings by proper tokenization. Based on this, we
propose a new method named PERT to encode the encrypted
traffic data and to serve as an automatic traffic feature extrac⁃
tor. In addition, we discuss the pre-training strategy of dynam⁃
ic word embedding in a condition of the flow-level encrypted
traffic classification. In accordance with a series of experi⁃
ments on the public ISCX data set and Android HTTPS traffic,
our proposed classification framework can provide significant⁃
ly better results than current DL-based methods and tradition⁃
al ML-based methods.

▼Table 4. Classification results (Android data set)
Model

ML-1[16]
ML-2

CNN-1D[7]
CNN-2D[7]
HAST-I[10]
HAST-II[10]
PERT

Precision

/
0.735 1
0.770 9
0.768 4
0.820 1
0.792 4
0.904 2

Recall

/
0.733 5
0.768 3
0.765 9
0.818 5
0.781 3
0.900 3

F1

/
0.732 1
0.766 8
0.764 3
0.816 7
0.782 6
0.900 7

CNN: convolutional neural networkHAST: hierarchical spatial-temporal features-based modelML: machine learningPERT: Payload Encoding Representation from Transformer

ISCX: Information Security Centre of ExcellencePERT: Payload Encoding Representation from Transformer
▲Figure 5. Selection of the packet number for PERT classification
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▲Figure 6. F1-score converging speed comparison
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