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Abstract: Orthogonal time frequency space (OTFS) modulation is a novel two-dimensional
modulation scheme for high-Doppler fading scenarios, which is implemented in the delay-
Doppler (DD) domain. In time and frequency selective channels, OTFS modulation is more
robust than the popular orthogonal frequency division multiplexing (OFDM) modulation
technique. To further improve transmission reliability, some channel coding schemes are
used in the OTFS modulation system. In this paper, the coded OTFS modulation system is
considered and introduced in detail. Furthermore, the performance of the uncoded/coded
OTFS system and OFDM system is analyzed with different relative speeds, modulation
schemes, and iterations. Simulation results show that the OTFS system has the potential of
full diversity gain and better robustness under high mobility scenarios.
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1 Introduction

The 5G network has achieved the peak rate of 10–20
Gbit/s, which is more than ten times that of 4G Long
Term Evolution (LTE) cellular networks. Some new
scenarios with high mobility have emerged in 5G/B5G,

such as V2X (vehicle-to-vehicle—V2V and vehicle-to-infra⁃
structure—V2I) with the terminal speed up to 300 km/h, high
speed train (HST) with the maximum speed up to 500 km/h
and unmanned aerial vehicle (UAV). In these cases, the high⁃
er Doppler spread will be induced. In addition, a higher data
rate is required, which is considered to be solved by using a
higher frequency band, such as a millimeter wave band or
even a terahertz band. Both high mobility and high frequency

will lead to large Doppler shifts, yielding the large frequency
dispersion. Although orthogonal frequency division multiplex⁃
ing (OFDM) modulation is used in 4G and 5G, it has good ro⁃
bustness only in time-invariant channels and is very sensitive
to carrier frequency offsets. However, the channel is time-
varying in high Doppler scenarios. The orthogonality of sub-
carriers in an OFDM symbol is seriously damaged so that the
channel estimation is no longer accurate, which will lead to se⁃
vere inter-carrier interference (ICI) and the disappearance of
the near-capacity advantage.
To deal with communication scenarios with high Doppler

shifts, a novel two-dimensional (2D) modulation scheme
called orthogonal time frequency space (OTFS) modulation
was proposed by R. HADANI et al. in 2017, whose pioneering
works[1–4] introduced the principle of OTFS modulation and
demonstrated its significant performance on OFDM modula⁃
tion in channels with high Doppler or at high frequencies.
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Compared with the OFDM modulation, OTFS modulation has
the potential of full diversity gain and better robustness, which
can effectively deal with the impact of high Doppler shifts. One
more advantage of OTFS is that it can be implemented as pre-
and post-processing blocks applied to a time-frequency signal⁃
ing scheme, such as OFDM[5]. Furthermore, an implementation
scheme of OTFS modulation based on the OFDM has been pro⁃
posed in Ref. [6], which greatly reduces the complexity of im⁃
plementation. In Ref. [7], the vector form of concise and elegant
input-output relationship of the OFDM-based OTFS system has
also been derived by utilizing the properties of the Kronecker
product in matrices and vectors, which is also suitable for gen⁃
eral time-varying channels with arbitrary Doppler and window⁃
ing functions. It is worth mentioning that this representation is
very popular in subsequent research work.
As for the significant advantage of achieving the full diversi⁃

ty, the detailed formal analysis on the diversity order of OTFS
in doubly-dispersive channels has been presented in Ref. [8],
which points out that the full diversity in the delay-Doppler
(DD) domain can be extracted by using the phase rotation meth⁃
od. In addition, when the OTFS frame is long enough, even the
uncoded OTFS modulation system can obtain almost full diver⁃
sity in the case of path number P = 2[9]. In order to make full
use of full diversity, effective equalization is needed, which de⁃
pends on the accurate channel estimation. A well-known chan⁃
nel estimation scheme for OTFS has been proposed in Ref. [10],
in which pilots, protection symbols, and data symbols are clev⁃
erly arranged on the delay Doppler grid plane to effectively
avoid the interference between pilots and data symbols at the re⁃
ceiver and enable the channel estimation and data detection to
be performed in the same OTFS frame with the minimum over⁃
head. However, the performance of such algorithms[10–11] is very
sensitive to the availability of protection space. In fact, more ad⁃
vanced channel estimation methods based on compressed sens⁃
ing[12], orthogonal matching pursuit (OMP)[13–14] or sparse Bayes⁃
ian learning[15] algorithms have been proposed, which take ad⁃
vantage of the channel sparsity in the DD domain. However, the
channel in the DD domain may not always be sparse, especially
in the case of fractional Doppler[5]. An effective solution is to en⁃
hance channel sparsity by applying time-frequency (TF) domain
windows, such as Dolph-Chebyshev (DC) window[16]. In addi⁃
tion, advanced detection algorithms are also an important part
of OTFS to achieve potential full diversity gain[17]. A message
passing algorithm (MPA) based on the maximum a posteriori
probability (MAP) detection criterion has been introduced in
Ref. [5], which processes the interference from other informa⁃
tion symbols as Gaussian variables to reduce the detection com⁃
plexity. However, due to the short period of the probabilistic
graphical model, the proposed MPA may not converge, result⁃
ing in performance degradation. In order to solve this problem,
a convergence protection receiver based on variable Bayes (VB)
framework has been presented in Ref. [18], which utilizes the
relative entropy to approximate the optimal detection of the cor⁃

responding a posteriori distribution to realize the MPA on a sim⁃
ple graphical model. In addition, a hybrid detection scheme has
been demonstrated in Ref. [19], which takes the MAP and the
parallel interference cancellation (PIC) into account and
achieves a good trade-off between the error performance and de⁃
tection complexity.
Channel coding is also one of the effective methods to ensure

diversity gain and achieve reliable communications. However,
most of the research work analyzes the performance of the un⁃
coded OTFS modulation system. In Ref. [20], the BER perfor⁃
mance of the coded OTFS system has been analyzed in detail.
The derivation of pairwise-error probability (PEP) and its upper
bounds have demonstrated a very interesting trade-off between
the coding gain and diversity gain of the coded OTFS system.
Moreover, a channel coding design criterion is derived, that is,
maximizing the minimum Euclidean distance between all code⁃
word pairs. This criterion is very similar to the channel coding
design in the additive white Gaussian noise (AWGN) channel.
However, the OTFS modulation experiences a time-varying
channel with both time dispersion and frequency dispersion.
Thus, both the inter-symbol interference (ISI) and ICI will be
generated, which depend on the delay τ, Doppler ν of the chan⁃
nel and the cross-ambiguity function of pulses at the transmitter
and receiver. The assumed ideal pulse-shaping waveforms[1, 3]
that satisfy the bi-orthogonality condition in both time and fre⁃
quency do not exist in practical applications. Therefore, ISI and
ICI are inevitable in the actual OTFS system. Obviously, it is
necessary to consider the properties of OTFS and characteris⁃
tics of the DD domain channel to design the channel code suit⁃
able for the OTFS system.
In this paper, we consider the coded OTFS modulation and

describe it in detail. Then, recent work about the coded OT⁃
FS system analysis is summarized. On this basis, the upper
bound on the unconditional PEP of the coded OTFS system
is further supplemented. In addition, the joint iterative strate⁃
gy of detection and decoding is also considered to improve
the system performance. According to the considered itera⁃
tive system, the coding design scheme of the OTFS system is
discussed. Finally, we analyze the performance of the coded/
uncoded OTFS and OFDM systems with different relative
speeds, modulation schemes and iterations. Simulation re⁃
sults show that OTFS systems have significant robustness
compared with OFDM.

2 Principle and System Model

2.1 Relationship Between Time-Frequency Domain and
Delay-Doppler Domain
In Ref. [4], the authors proposed that the OTFS modulation

can be viewed as a time-frequency spreading scheme, which
was based on the Fourier duality relation between the time-fre⁃
quency plane and the delay-Doppler plane, resulting in a sim⁃
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ple pre-processing step over an arbitrary multicarrier modula⁃
tion (such as OFDM). In view of the importance of the trans⁃
form between the DD domain and the TF domain, we will re⁃
view this relationship in this subsection.
The grid in the TF domain and the corresponding reciprocal

grid in the DD domain are shown in Fig. 1, with the size of
M × N. According to Fig. 1, the TF grid can be represented as:
Λ = {(nT,mΔf) , n = 0,...,N - 1,m = 0,...,M - 1} , (1)

where T is the sampling interval along the time axis, Δf is the
sampling interval along the frequency axis, and N and M are
the corresponding numbers of sampling points on the TF
plane. According to the principle of the time-frequency modu⁃
lation explicated in Ref. [1], the transmitted packet can be re⁃
garded as a burst one with a total duration of NT seconds and
a total bandwidth of MΔf Hz. Then, the modulated sym⁃
bols XTF [m,n ], m = 0,1,...,M - 1, n = 0,1,...,N - 1 are trans⁃
mitted over the burst packet in the TF domain.
The reciprocal delay-Doppler grid is represented as:

Λ⊥ = {( kNT , l
MΔf ) , k = 0,...,N - 1, l = 0,...,M - 1} , (2)

where 1
NT

and 1
MΔf represent the sampling intervals along the

Doppler axis and the delay axis, respectively.
The mapping between signals in the TF domain and DD do⁃

main depends on two-dimensional symplectic finite Fourier
transform (2D SFFT) pairs, which can be exemplified as:
h (τ,ν) = ∬H (t,f) e- j2π ( )νt - fτ dtdf , (3)

H (t,f) = ∬h (τ,ν) ej2π ( )νt - fτ dτdν , (4)
where h (τ,ν) and H (t,f) are the responses of linear time-vary⁃
ing (LTV) wireless channels in the DD domain and TF domain,

respectively. Without loss of generality, the DD domain repre⁃
sentation of an LTV wireless channel can be expressed as:
h (τ,ν) =∑

i = 1

P

hi δ (τ - τi) δ ( )ν - νi , (5)
where δ ( ⋅ ) denotes the Dirac delta function, P is the number
of resolvable paths, and hi, τi and νi are the channel coeffi⁃cient, delay and Doppler shift of the i-th path respectively.
Here, τi and νi are defined as:
τi = li

MΔf , νi =
ki + κi
NT . (6)

In Eq. (6), li represents the index of the delay with integer val⁃ues, ki represents the index of the Doppler shift with integervalues, and κi ∈ (-0.5, 0.5 ] is the real number, indicating thefractional shift from the nearest Doppler index ki, which is al⁃so called fractional Doppler[5].
Specifically, the 2D SFFT pairs can be realized by simple

discrete Fourier transform (DFT) pairs or fast Fourier trans⁃
form (FFT) pairs. For example, in view of the DFT, the inverse
symplectic finite Fourier transform (ISFFT) can be regarded
as the M-point DFT along the delay axis and the N-point in⁃
verse DFT (IDFT) along the Doppler axis for the two-dimen⁃
sional signal with the size of M × N in the DD domain, result⁃
ing in the corresponding TF domain signal.
2.2 Coded OTFS System Model
Fig. 2 shows the proposed coded OTFS system model in this

paper. Suppose that the information bit sequence u of length K
is encoded using a forward error correction (FEC) code, result⁃
ing in the codeword c of length Nc. After interleaving, the in⁃terleaved sequence v is then mapped to an M-ary signal con⁃
stellation A, such as M-ary phase shift keying (MPSK) or M-
ary quadrature amplitude modulation (MQAM), and the modu⁃
lated symbol vector xDD of length MN is arranged as a two-di⁃mensional signal matrix xDD ∈ AM × N in the DD domain, where
M is the number of the sub-carriers, and N is the number of
time slots for each OTFS symbol. The element x[ l,k ] of the
xDD represents the modulated signals in the l-th Delay and k-

ISFFT: inverse symplectic finite Fourier transformSFFT: symplectic finite Fourier transform
▲Figure 1. Grids in time frequency (TF) plane and delay-Doppler (DD)
plane
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th Doppler grid, for l ∈ {0,1,...,M - 1} and k ∈ {0,1,...,N - 1}.
Then the symbol X [m,n ] in the m-th frequency and n-th time
grid is obtained by the ISFFT, which is given as:
X [m,n ] = ISFFT (x[ l,k ]) = 1

NM
∑
l = 0

M - 1∑
k = 0

N - 1
x[ ]l,k ej2π ( )nk

N
- ml
M , (7)

for m = 0,1,...,M - 1, n = 0,1,...,N - 1. The two-dimensional
signal matrix in the TF domain is denoted by XTF ∈ CM × N.
The early literature[1–3] explained that the composition of the
ISFFT and the windowing function in the TF domain are re⁃
ferred to as the OTFS transform. The window operations of the
transmitter and receiver affect the cross-symbol interference
of the effective impulse response[1]. The window design has the
potential to increase the effective channel sparsity in the DD
domain, which is conducive to the channel estimation, as de⁃
scribed in Refs. [6] and [7]. Furthermore, the influence of the
design of the TF domain window on improving the perfor⁃
mance of the channel estimation and data detection is dis⁃
cussed in Ref. [16]. Here, the rectangular window is consid⁃
ered.
The transmitted signal in the time domain is obtained from

the TF domain symbols X [m,n ] using the Heisenberg trans⁃
form parameterized by the pulse shaping filter gtx (t), which
can be written as:
s (t) =∑

m = 0

M - 1∑
n = 0

N - 1
X [ ]m,n gtx (t - nT) ej2πmΔf ( )t - nT . (8)

This can be regarded as a general form of the OFDM modula⁃
tion[3]. Moreover, OTFS modulation can be implemented as a
cascade of a pre-coder (ISFFT) and a traditional OFDM modu⁃
lator[6], as shown in Fig. 2.
Assume that the channel is the LTV channel described in

Eq. (5), the received signal can be expressed as:
r (t) = ∬h (τ,ν) s (t - τ) ej2πν ( )t - τ dτdν + w (t) , (9)

where w (t) is the additive white Gaussian noise with zero
mean and one-sided power spectral density of N0.At the receiver, r (t) is subject to the Wigner transform to ob⁃
tain the received symbols Y [m,n ] in the TF domain, given by
Y [m,n ] = ∫r (t) g∗rx (t - nT) e- j2πmΔf ( )t - nT dt, (10)

where grx (t) is the pulse shaping filter at the receiver. Eq. (10)
can be further written as[5]:
Y [m,n ] = ∑

m′ = 0

M - 1∑
n′ = 0

N - 1
Hm,n [ ]m′,n′ X [ ]m′,n′ + w̄[m,n ], (11)

where w̄[m,n ] is the noise sample in the TF domain, and
Hm,n [m′,n′] is the channel impulse response in the TF do⁃
main, i.e.,

Hm,n [m′,n′] = ∬h ( )τ,ν Agrx,gtx ((m - m′)Δf - ν, (n - n′)T -
τ) ej2π ( )ν + m′Δf ( )( )n - n′T - τ ej2πνn′Tdτdν. (12)

In Eq. (12), Agrx,gtx (τ,ν) is referred to as the cross-ambiguity
function, which represents the interference between symbols
in the DD domain caused by the channel dispersion[20], and
can be expressed as:
Agrx,gtx (τ,ν) = ∫g∗rx (t - τ) gtx (t) ej2πνΔftdt. (13)
The received symbols in the DD domain are given as:
y [ l,k ] = SFFT (Y [m,n ]) =

1
NM
∑
m = 0

M - 1∑
n = 0

N - 1
Y [ ]m,n e

- j2π ( )nk
N
- ml
M + w[ l,k ] , (14)

for l = 0,1,...,M - 1, k = 0,1,...,N - 1, where w[ l,k ] is the
noise sample in the DD domain. Upon the received symbols
y [ l,k ], a signal detection algorithm is then performed. In ad⁃
dition, a joint iterative strategy between detection and decod⁃
ing can also be considered.
It is generally known that the MAP detection is optimum for

OTFS systems. However, the complexity of the MAP detection
increases exponentially with the block size of each OTFS
frame. As a compromise of the MAP detection, a lot of litera⁃
ture has studied the massage passing detection algorithm
based on the factor graph, which can effectively reduce the de⁃
tection complexity, such as Ref. [5]. For the coded system, the
iterative signal processing of the detector and the decoder is
usually considered at the receiver, as shown in Fig. 2. Corre⁃
spondingly, soft decision detection algorithms should be adopt⁃
ed, such as MP, unitary approximate MP (UAMP), vector AMP
(VAMP), sum-product algorithm (SPA) and other message
passing algorithms. With Log-Likelihood Ratios (LLRs), the
message Le, det passed from the detector to the decoder is calcu⁃lated as:
Le, det (xl,k = aj) = Lapp, det (xl,k = aj) - La, det (xl,k = aj) =

ln P ( )xl,k = aj | YDD
P ( )xl.k = 0 | YDD

- La, det (xl,k = aj) ,
(15)

where Lapp, det and La, det represent the a posteriori LLRs andthe priori LLRs of the detector, respectively; P ( ⋅ ) denotes
the priori symbol probabilities, aj ∈ A, j = 1,..., |A |, and the
binary vector (signal label) corresponding to aj can be ex⁃pressed as v j. Similarly, the extrinsic LLRs of the decoder
Le, dec are also obtained by subtracting priori LLRs La, dec fromthe a posteriori LLRs Lapp, dec, and La, dec is updated by the ex⁃trinsic LLRs of the detector. The iterative process between
the detector and the decoder can be described as follows.
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Algorithm 1. Algorithm of the iterative process between the
detector and the decoder
1: Initialization: Set the number of joint iterations η = 0, the
maximum number of joint iterations ηmax, the maximumnumber of detection iterations ηdetmax, the maximum numberof decoding iterations ηdecmax, and the priori LLRs La, det = 02: while η ≤ ηmax do3: Perform detection until ηdetmax is satisfied.4: Calculate the a posteriori LLRs Lapp, det and the extrinsic
LLRs of the detector Le, det (xl,k = aj ) for all j = 1,..., |A |,
k = 0,…,N - 1,l = 0,...,M - 1

5: Convert the symbol form of Le, det (xl,k = aj) into the bit
form Le, det (ci), i = 0,1,...,Nc - 1

6: Deinterleave the extrinsic LLRs Le, det (ci), resulting in
L′e, det (ci)

7: Set La, dec (ci) = L′e, det (ci),i = 0,1,...,Nc - 1
8: Perform decoding until ηdecmax is satisfied9: Calculate the a posteriori LLRs Lapp, dec and the extrinsic

LLRs of the decoder Le, dec (ci) for i = 0,1,...,Nc - 1
10: if η < ηmax then
11: Interleave the extrinsic LLRs Le, dec (ci), resulting in

L′e, dec (ci)
12: Convert the bit form of L′e, dec (ci) into the symbol form

L′e, dec (xl,k = aj)
13: Set La, det (xl,k = aj) = L′e, dec (xl,k = aj)
14: end if
15: η = η + 1
16: end while
17: Make decisions of ci according to the a posteriori LLRs

Lapp, dec for i = 0,1,...,K - 1
2.3 Vectorization Representation of the System
With respect to the vectorization, the following definitions

are given, xDD = vec (xDD) ∈ AMN × 1, xTF = vec (XTF) ∈ CMN × 1,
yTF = vec (YTF) ∈ AMN × 1, and yDD = vec (YDD) ∈ CMN × 1,
where vec ( ⋅ ) denotes the vectorized version of the 2D matrix
formed by stacking the columns of the one into a single column
vector. Besides, the N-point DFT matrix and its inverse are rep⁃
resented by FN and F H

N respectively and are assumed to be nor⁃malized so that FNF
H
N = IN. According to the introduction ofthe coded OTFS system in the above subsection, the relation⁃

ship between the symbol matrix XTF ∈ CM × N in the TF domain
and xDD ∈ CM × N in the DD domain can be described as:
XTF = FM xDDF

H
N . (16)

The vectorized form can be expressed as:

xTF = vec (XTF) = (F H
N ⊗ FM) xDD . (17)

Considering that the pulse shaping filter gtx (t) is the rectan⁃
gular form, the output of the Heisenberg transform is given by
S = F H

MXTF = xDDF
H
N , (18)

where S ∈ CM × N represents the transmitted signal matrix in
the time domain. Vectorize S by stacking each column of S in⁃
to a vector, we have
s = vec (S) = (F H

N ⊗ IM) xDD. (19)
At the receiver, the received signal expressed by Eq. (9) in

discrete form is

r (n) =∑
i = 1

P

hie
j2πki ( )n - li

MN s ([ n - li ]MN) + w (n), (20)
where [ ⋅ ]MN indicates mod MN operation, r (n), s (n) and
w (n) are the corresponding discrete forms of r (t), s (t) and
w (t), respectively. Thus, the received signal can be written in
the vector form as
r = HT s + w. (21)
In the above formula, HT is an MN × MN matrix, given byRef. [10],
HT =∑

i = 1

P

hiΠ
liΔ( )ki , (22)

where Π is the permutation matrix (forward cyclic shift), and
Δ( )ki is the diagonal matrix, as shown below.

Π =
é

ë

ê

ê

ê
êê
ê

ù

û

ú

ú

ú
úú
ú

0 ⋯ 0 1
1 ⋱ 0 0
⋮ ⋱ ⋱ ⋮
0 ⋯ 1 0 MN × MN, (23)

Δ( )ki =
é

ë

ê

ê

ê

ê

ê
êê
ê
ê

ê

ù

û

ú

ú

ú

ú

ú
úú
ú
ú

ú

1 0 ⋯ 0
0 e

j2πki
MN ⋯ 0

⋮ ⋱ ⋱ ⋮
0 0 ⋯ e

j2πki ( )MN - 1
MN

MN × MN. (24)
The received signal vector r is devectorized into an M × N

matrix R. Then, the Wigner transform and SFFT can be suc⁃
cessive to obtain the received signal matrix YDD with the size
M × N in the DD domain as follows:
YDD = F H

M (FMR)FN = RFN. (25)
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The vector form can be obtained by
y = vec (YDD) = (FN ⊗ IM) r . (26)
Substituting Eqs. (19) and (21) with Eq. (26), we can get the

vector form of the input-output relation in the DD domain as
follows:
y = (FN ⊗ IM)HT (F H

N ⊗ IM) xDD + w͂ =
HeffxDD + w͂ . (27)
The vectorized forms of each operation are simple and more

vivid, which contribute to understanding the OTFS modulation
more clearly and they are widely used in the research of the
OTFS modulation.

3 Error Performance of the Coded OTFS
System

3.1 Error Performance Analysis
PEP is commonly used in communication systems for analyz⁃

ing the error performance of the system. In Ref. [8], the achiev⁃
able diversity order of the OTFS system is analyzed based on
the PEP under the maximum likelihood (ML) detection. Similar⁃
ly, the PEP under the ML detection is also used to analyze the
error performance of OTFS modulation in Ref. [21]. On this ba⁃
sis, the effective diversity (ED) is introduced from the perspec⁃
tive of PEP[9]. In Ref. [20], the conditional PEP and the uncondi⁃
tional PEP are utilized to analyze the error performance of cod⁃
ed OTFS systems. And an approximate upper bound on the un⁃
conditional PEP for small P is derived by:

Pr (xDD → x̂DD) ≲ (d2E ( )e P) -r ( Es4N0 )
-r

, (28)
where e ≜ xDD - x̂DD is the codeword difference vector, d2E (e) =
eHe is the squared Euclidean distance between xDD and x̂DD,and r is the rank of the positive semidefinite Hermite matrix
Ω (e) given by Eq. (18) [20]. In Eq. (28), the exponent r and the
term d2E ( )e P are regarded as the diversity gain and the coding
gain, respectively. According to the early works, e. g. Refs. [1]
and [8], OTFS can achieve full diversity, whose order is the
number of the separable multipath P. When the channel code is
given, the term d2E (e) is also fixed. Thus, as described in Corol⁃lary 1 in Ref. [20], the diversity gain increases and the coding
gain decreases with the increase of P, which reveals an interest⁃
ing trade-off between them. In addition, an approximate upper
bound on the unconditional PEP for large P is also given by

Pr (xDD → x̂DD) ≲ exp ( - Es
16N0 d

2
E (e)) , (29)

which only depends on the signal to noise ratio (SNR) and
d2E (e), and demonstrates that channels with a large number ofresolvable paths approach an AWGN model.
More detailed derivation and illustration can be found in

Ref. [20]. It should be noted that the upper bound on the un⁃
conditional PEP shown in Eqs. (28) and (29) are approximate.
Referring to the appendix A in Ref. [22], the upper bound on
the unconditional PEP has a more accurate display.
Note that Ω (e) is also a Gram matrix[23] corresponding to

vectors {u1,u2,...,uP}, where u i ≜ Ξ ie, and
Ξ i ≜ (FN ⊗ IM)Π liΔ( )ki (F H

N ⊗ IM). According to the appen⁃
dix A in Ref. [22] , the determinant of Gram matrix Ω (e) can
be calculated by
det (Ω (e)) = GD ({u1,u2,...,uP - 1}) u͂P

2 ≤
GD ({u1,u2,...,uP - 1}) uP

2

⋮
≤∏

j = 1

P

 u j
2 =∏

j = 1

P

eHe = (d2E (e)) P , (30)
where u͂ j is the orthogonal projection of u j onto the orthogonal
complement of span (u1,u2,...,u j - 1). Besides, the maximum
value of the rank of the matrix Ω (e) is the number of resolv⁃
able paths P. In particular, when matrix Ω (e) is full-rank, we
have r = P. Then the upper bound on the unconditional PEP
of the coded OTFS system can be rewritten as

Pr (xDD → x̂DD) ≤ ( d2E ( )e
P )

-P ( Es4N0 )
-P

, (31)
Furthermore, the equality holds if Ω (e) is a diagonal matrix.
3.2 Design Issues of Channel Codes for OTFS Systems
In Ref. [20], the code design criterion for the coded OTFS is

given based on the PEP analysis, which is to maximize the
minimum squared Euclidean distance of all possible codeword
pairs. Simulation results show the performance of the coded
OTFS system under convolutional codes with different mini⁃
mum squared Euclidean distances and verify the proposed
code design criterion. At present, most channel codes are de⁃
signed for AWGN channels. In Ref. [20], authors also reveal
that the channel with a large number of diversity paths ap⁃
proaches an AWGN channel when the number of resolvable
paths P is large enough. In this case, some good channel
codes can be used in the OTFS system. However, the increase
of P will bring about large ISI, making signal detection more
complicated. Therefore, it is necessary to design channel
codes according to the characteristics of the OTFS modula⁃
tion. In particular, the joint iteration between decoding and de⁃
tection is needed, when the channel conditions are poor. In a
word, the design of the channel coding scheme is still an inter⁃
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esting challenge.
A simple and direct method to analyze coded OTFS systems

is to use the extrinsic information transfer (EXIT) chart[24],
which is commonly used to aid the construction of good itera⁃
tively-decoded error-correcting codes. EXIT charts are espe⁃
cially popular in the analysis of low-density parity-check (LD⁃
PC) codes and Turbo codes. In the most works of coded
OFDM systems, the tool, EXIT chart, is also commonly uti⁃
lized to optimize the performance of iterative decoding, and
parameters of the corresponding channel coding scheme and
detection, such as Refs. [25–26].
Another possible method is to learn from the code construc⁃

tion method under ISI channels. In general, ISI channels can
be conveniently represented by a trellis[27] or a factor graph[28].
Codes such as Turbo codes and LDPC codes can also be repre⁃
sented by a trellis or a factor graph. Note this, the channel fac⁃
tor graph and the code factor graph are considered together to
obtain the joint channel/code graph in Ref. [29]. The limits of
the performance of LDPC codes over binary linear ISI chan⁃
nels are also studied in Ref. [29]. With the use of density evo⁃
lution, the noise tolerance threshold is calculated. This may
provide some reference for the design of coded OTFS system,
because the received signals with ISI can also be represented
by a trellis or a factor graph.

4 Numerical Results
Numerical results of the considered coded OTFS system

are provided in this section. The 5G LDPC code is used,
whose code rate and length of information sequence are R =
1 2 and K = 1 024, respectively. Without loss of generality,
quadrature phase shift keying (QPSK) and 16QAM are cho⁃
sen as the traditional modulation schemes, whose corre⁃
sponding OTFS frame sizes are M × N = 64 × 16 and M ×
N = 32 × 16, respectively. In all simulations, the LTV chan⁃
nel with path number P = 4 is used, where the path gain fol⁃
lows the Rayleigh distribution with respect to the exponen⁃
tial power delay profile. For the DD domain channel, the in⁃
dices of delay and Doppler shifts are integers. Moreover, ac⁃
cording to 4G LTE and 5G NR, the carrier frequency and
subcarrier interval are selected as 4 GHz and 15 kHz, re⁃
spectively. Thus, we consider the maximum delay index
lmax = 5 and the maximum Doppler shift index kmax = 1, 2, 3,corresponding to the cases in which relative speeds are
around 275 km/h, 500 km/h, and 750 km/h, respectively. It
should be noted that the delay and Doppler shift indices are
generated uniformly at random. At the receiver, the near-op⁃
timal symbol-by-symbol MAP detection algorithm[19] is used,
unless otherwise specified. In order to accelerate the itera⁃
tive convergence between the detector and the decoder, the
offset min-sum algorithm (MSA) with an offset factor of 0.5
is adopted by the decoder. The maximum iteration number
of the detection is 10, while that of the decoding is 50.

Fig. 3 shows the frame error rate (FER) performances of the
uncoded OTFS and OFDM systems with 16QAM and different
relative speeds, such as 275 km/h, 500 km/h and 750 km/h.
For a fair comparison, we also apply the near-optimal symbol-
by-symbol MAP detection[19] for OFDM systems, which is de⁃
signed to exploit all the interference (including both ISI and
ICI). Unless otherwise specified, this detection algorithm will
be used in subsequent simulations of uncoded/coded OFDM
systems. As shown in Fig. 3, we first observe that both uncod⁃
ed OTFS and OFDM systems have good robustness at different
relative speeds. This is because the channel coherence time
(Tc = 1 fd = 0.981, 0.539, 0.360 ms corresponding to relative
speeds of 275 km/h, 500 km/h and 750 km/h, respectively) is
longer than the OFDM symbol time (Ts = 1 Δf = 0.067 ms).
The channel variation is slow at considered relative speeds,
and the interference between adjacent subcarriers demon⁃
strates similar property. It is also assumed that the channel
state information is perfectly known to the receiver. Thus, with
the use of the near-optimal symbol-by-symbol MAP detection,
all the ISI and ICI can be effectively cancelled. Furthermore,
the error performances for OFDM transmission with consid⁃
ered relative speeds are similar. On the other hand, for OTFS
transmission, different Doppler shifts caused by different rela⁃
tive speeds do not change the 2D convolution nature of the sig⁃
nal-channel interaction in the DD domain. Therefore, OTFS is
insensitive to Doppler effects. In addition, we notice that the
OTFS system has a better error performance than the corre⁃
sponding OFDM system. Moreover, the slope of the FER curve
for the OTFS system is greatly higher than that for the OFDM
system, which indicates that OTFS enjoys a larger diversity ad⁃

▲Figure 3. FER performance of uncoded OTFS and OFDM systems with
16QAM, where relative speeds are 275 km/h, 500 km/h, and 750 km/h re⁃
spectively
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vantage. Those observations align with the findings in Refs.
[5] and [20].
The FER performances of the coded OTFS and OFDM sys⁃

tems without the joint iteration are also shown in Fig. 4, where
the relative speeds are 275 km/h, 500 km/h, and 750 km/h, re⁃
spectively. The 16QAM modulated symbols are considered in
the simulation. Similar to Fig. 3, we observe that the FER per⁃
formances of both coded OTFS and OFDM systems do not
change much with different relative speeds, thanks to the near-
optimal MAP detection. Furthermore, compared with uncoded
cases, both coded OTFS and OFDM systems enjoy an im⁃
proved error performance. In addition, we also notice that the
error performance of the coded OTFS is much better than that
of the coded OFDM. However, it can be noticed that the cod⁃
ing improvement for the OFDM system is more significant
compared with that of the OTFS system. Moreover, the FER
curve of the coded OFDM system shares almost the same
slope as that of the coded OTFS system. This is because OTFS
has the potential to achieve the full channel diversity and con⁃
sequently, channel coding cannot improve the diversity perfor⁃
mance very much for OTFS systems. In contrast, OFDM sys⁃
tems rely deeply on the channel coding to achieve the larger
diversity gain. Those observations are also consistent with the
analysis in Ref. [20].
The FER performance of the coded OTFS system with dif⁃

ferent joint detection and decoding iterations is compared in
Fig. 5, as well as the uncoded OTFS system. The modulation
type is QPSK and the relative speed is 500 km/h in the simula⁃
tion. We can obviously observe that the channel coding signifi⁃
cantly improves the error performance. In addition, we notice
that the iterations between the detector and decoder do not im⁃

prove the error performance very much. This is because the
near-optimal symbol-by-symbol MAP detection algorithm
used in the coded OTFS system exploits all possible interfer⁃
ence patterns, and therefore the a priori information from
channel decoding cannot improve the extrinsic information
from the near-optimal detection for decoding. Consequently,
the iterations between the detector and decoder cannot im⁃
prove the error performance very much.

5 Conclusions
In this paper, the coded OTFS system is introduced and the

existing research work of the coded OTFS is summarized.
Based on this, the upper bound on unconditional PEP for the
coded OTFS system is supplemented, and the design issues of
the channel coding scheme are discussed. Furthermore, the
performance of the uncoded OTFS and OFDM systems is ana⁃
lyzed, as well as that of 5G LDPC coded systems. Simulation
results show that the performance of the OTFS system signifi⁃
cantly outperforms that of OFDM system under different
speeds, modulation schemes and iterations, whether coded or
uncoded.
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