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Abstract: The orthogonal time frequency space (OTFS) modulation has emerged as a promis⁃
ing modulation scheme for wireless communications in high-mobility scenarios. An efficient
detector is of paramount importance to harvesting the time and frequency diversities promised
by OTFS. Recently, some message passing based detectors have been developed by exploiting
the features of the OTFS channel matrices. In this paper, we provide an overview of some re⁃
cent message passing based OTFS detectors, compare their performance, and shed some light
on potential research on the design of message passing based OTFS receivers.
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1 Introduction

Recently the orthogonal time frequency space (OTFS)
modulation has attracted much attention due to its ca⁃
pability of achieving reliable communications in high
mobility scenarios[1–6]. OTFS is a two-dimensional

modulation scheme, and the information is modulated in the
delay Doppler (DD) domain, which is in contrast to the time
frequency (TF) domain modulation in the orthogonal frequen⁃
cy division multiplexing (OFDM). In OTFS, each symbol
spreads over the time and frequency domains through the two
dimensional (2D) inverse symplectic finite Fourier transform
(SFFT), leading to both time and frequency diversities[1–2]. It
has been shown that OTFS can significantly outperform

OFDM in high mobility scenarios[7].
To harvest the diversities promised by OTFS, the design of

a powerful detector is paramount. The optimal maximum a pos⁃
teriori (MAP) detector is impractical due to its complexity
growing exponentially with the length of the OTFS block. Re⁃
cently, significant efforts have been devoted to the design of
more efficient detectors. In Ref. [8], an effective channel ma⁃
trix in the DD domain was derived, based on which a low-com⁃
plexity two-stage detector was proposed. The first-order Neu⁃
mann series was used in Ref. [9] to approximately solve the
matrix inverse problem involved in the linear minimum mean
squared error (MMSE) estimation based detection. A detection
scheme was developed in Ref. [10], where the MMSE equaliza⁃
tion was used in the first iteration, followed by parallel inter⁃
ference cancellation with a soft-output sphere decoder in sub⁃
sequent iterations. A rectangular waveform was considered in
Ref. [11], where the sparsity and quasi banded structure of
channel matrices without fractional Doppler shifts were ex⁃
ploited to reduce the detection complexity. The linear equaliz⁃
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ers were extended to the multiple input and multiple output
(MIMO) -OTFS systems in Ref. [12]. A cross-domain method
was proposed in Ref. [13], where a conventional linear MMSE
estimator is adopted for equalization in the time domain and a
low-complexity symbol-by-symbol detection is utilized in the
DD domain. A low complexity iterative rake decision feedback
detector was proposed in Ref. [14], which extracts and coher⁃
ently combines the multiple copies of the symbols (due to mul⁃
tipath propagation) in the DD grid using maximal ratio com⁃
bining (MRC).
Another line of OTFS detector design is based on factor

graphs and message passing techniques[15, 23]. When the num⁃
ber of channel paths is small, the effective channel matrix in
the DD domain is sparse, which allows efficient detection us⁃
ing the message passing algorithm (MPA) [2]. An expectation
propagation (EP) algorithm was proposed in Ref. [16], where
EP is used for message update with Gaussian approximation.
A variational Bayes (VB) based detector was proposed in Ref.
[17] to achieve better convergence. Studying the matched fil⁃
tering processing, the authors in Ref. [18] proposed a message
passing detector, which is combined with a probability clip⁃
ping solution. The detectors in Refs. [2, 17, 19] take advan⁃
tage of the sparsity of the channel matrix in the DD domain,
and their complexity depends on the number of nonzero ele⁃
ments in each row of the channel matrix, which is denoted by
S. Without considering fractional Doppler shifts, S is equal to
the number of channel paths. In general, a wideband system
can provide sufficient delay resolution. The Doppler resolu⁃
tion depends on the time duration of the OTFS block. To fulfill
the low latency requirement in wireless communications, the
time duration of an OTFS block should be relatively small,
where it is necessary to consider fractional Doppler shifts[2, 20].
In this case, the value of S can be significantly larger than the
number of channel paths. In the case of rich scattering envi⁃
ronments, the complexity of these detectors can be a concern
and the short loops in the corresponding system graph model
may result in significant performance. To overcome the above
issues, the design of OTFS detectors based approximate mes⁃
sage passing (AMP) [21–22] was investigated in Ref. [25]. AMP
works well for independent and identically distributed (sub- )
Gaussian system transfer matrix, but it suffers from perfor⁃
mance loss or even diverges for a general system transfer ma⁃
trix[27–29]. Instead, the works in Refs. [25– 26] resort to the
unitary AMP (UAMP) [27–29], which is a variant of AMP and
was formerly called UTAMP[27]. In UAMP, a unitary transfor⁃
mation of the original model is used, where the unitary matrix
for transformation can be the conjugate transpose of the left
singular matrix of the general system transfer matrix[27] ob⁃
tained through singular value decomposition (SVD). It is
shown in Ref. [25] that UAMP is well suitable for OTFS due to
the structure of block circulant matrix with circulant block
(BCCB) of the DD domain channel matrices, where the 2D dis⁃
crete Fourier transform is used for the unitary transformation,

leading to very efficient implementation using the 2D fast Fou⁃
rier transform (FFT) algorithm. In addition, as the noise vari⁃
ance is normally unknown, the noise variance estimation is al⁃
so incorporated into the UAMP-based detector in Ref. [25].
In this paper, we provide an overview of the message pass⁃

ing based detectors, provide some comparison results, and dis⁃
cuss potential research on the design of message passing
based OTFS receivers. The notations used in this paper are as
follows. Boldface lower-case and upper-case letters denote
vectors and matrices, respectively. We use ( ⋅ )H and ( ⋅ )T to de⁃
note the conjugate transpose and the transpose, respectively.
The superscript * denotes the conjugate operation. We define
[ ⋅ ] M as the mod M operation. We use N ( x|x̂,νx ) to denote theprobability density function of a complex Gaussian variable
with mean x̂ and variance νx. The notation f (x )

q (x ) denotes
the expectation of the function f (x ) with respect to the distri⁃
bution q (x ). The relation f ( x ) = cg ( x ) for some positive con⁃
stant c is written as f ( x ) ∝ g ( x ). The notation ⊗ represents
the Kronecker product, and a ⋅ b and a ⋅ /b represent the com⁃
ponent-wise product and the division between vectors a and b,
respectively. We use X = reshapeM (x) to denote that the vec⁃
tor x is reshaped as an M × N matrix X column by column,
where the length of x is MN, and use x = vec (X) to represent
vectorization of matrix X column by column. The notation
diag (a ) represents a diagonal matrix with the elements of a as
its diagonal. We use |A|2 to denote the element-wise magni⁃
tude squared operation for matrix A. The notations 1 and 0 are
used to denote an all-ones vector and an all-zeros vector with
a proper length, respectively. The j-th entry of q is denoted by
qj. The superscript t of st denotes the iteration index of the vari⁃able s involved in an iterative algorithm.

2 System Model
The modulation and demodulation for OTFS are illustrated

in Fig. 1, which are implemented with the 2D inverse SFFT
(ISFFT) and SFFT at the transmitter and receiver, respective⁃
ly[1, 24]. Before the OTFS modulation, a (coded) bit sequence is
mapped to symbols x [ k,l ] ,k = 0,...,N - 1, l = 0,...,M - 1 in
the DD domain, where x [ k,l ] ∈ A = { α1,...,α |A|}, |A| is the car⁃dinality of A, l and k denote the indices of the delay and Dop⁃
pler shifts, respectively, and N and M are the number of grids

▲ Figure 1. Modulation and demodulation in an orthogonal time fre⁃
quency space (OTFS) system[2]

ISFFT: inverse symplectic finite Fourier transformSFFT: symplectic finite Fourier transform

ISFFT SFFTWignertransformChannel
h(τ, ν)Heisenbergtransform
Time-frequency domain

Delay-Doppler domain

x[k, l] x[n, m] s(t) r(t) y[k, l]y[n, m]
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of the DD plane. At the transmitter side, ISFFT is performed
to convert the DD domain symbols to signals in the time-fre⁃
quency (TF) domain.
Xtf [ n,m ] = 1

MN
∑k = 0

N - 1∑l = 0
M - 1x [ k,l ] ej2π ( nkN - ml

M
)
. (1)

After that, the signals Xtf [m,n ] in the TF domain are con⁃
verted to a continuous-time waveform s (t) using the Heisen⁃
berg transform with a transmit waveform gtx (t)[2], i.e.,
s ( t ) =∑n = 0

N - 1∑m = 0
M - 1Xtf [ n,m ] gtx ( t - nT )ej2πmΔf ( t - nT ) , (2)

where Δf is subcarrier spacing and T = 1/Δf. Then the signal
s (t) is transmitted over a time-varying channel and the re⁃
ceived signal in the time domain is given as:
r ( t ) = ∫∫h (τ,ν ) s ( t - τ )ej2πν ( t - τ )dτdν, (3)

where h (τ,ν ) is the channel impulse response in the continu⁃
ous DD domain, and it can be expressed as[1]:
h (τ,ν ) =∑i = 0

P - 1hi δ (τ - τi )δ (ν - νi ) , (4)
with δ ( ⋅ ) being the Dirac delta function, P being the num⁃
ber of channel paths, and hi, τi and νi being the gain, delayand Doppler shift associated with the i-th path, respective⁃
ly. The delay and Doppler-shift taps for the i-th path are giv⁃
en by
τi = li

MΔf , νi =
ki + κi
NT , (5)

where li and ki are the delay and Doppler indices of the i-thpath, and κi ∈ [ -1 2 , 1 2 ] is a fractional Doppler associat⁃
ed with the i-th path. In the above equation, MΔf is the system
bandwidth and NT is the duration of an OTFS block.
At the receiver, a receive waveform grx (t) is used to trans⁃

form the received signal r (t) to the TF domain, i.e.,
Y ( t,f ) = ∫g*rx ( t′ - t ) r ( t′)e- j2πf ( t′ - t )dt′, (6)

which is then sampled at t = nT and f = mΔf, yielding
Y [ n,m ]. Then SFFT is applied to Y [ n,m ] to generate the DD
domain signal y [ k,l ], i.e.,
y [ k,l ] = 1

MN
∑
n = 0

N - 1∑
m = 0

M - 1
Y [ n,m ] e- j2π ( nkN - ml

M
)
. (7)

Assuming that the transmitted waveform and the received
waveform satisfy the bi-orthogonal property[1], in the DD do⁃
main we have the input-output relationship[2].

y [ k,l ] =∑
i = 0

P - 1∑
c = -Ni

Ni

hi x ( [ k - ki + c ] N,

[ l - li ] M) 1N
1 - e- j2π ( -c - κi )

1 - e- j2π
-c - κi
N

e
- j2π li (ki + κi )

MN + ω [ k,l ]
, (8)

where Ni < N is an integer, and ω [ k,l ] is the noise in the DDdomain. We can see that for each path, the transmitted signal
is circularly shifted, and scaled by a corresponding channel
gain. We arrange {x[ k,l ]} as a vector x ∈ CMN × 1, where the j-
th element xj is x[ k,l ] with j = kM + l. Similarly, a vector
y ∈ CMN × 1 can also be constructed based on y [ k,l ]. Then Eq.
(8) can be rewritten in a vector form as:
y = Hx + ω, (9)

where H ∈ CMN × MN is the effective channel matrix in the DD
domain, and ω denotes a white Gaussian noise with mean 0
and variance ϵ-1 (or precision ϵ). The channel matrix H in Eq.
(9) can be represented as[25]:
H =∑

i = 0

P - 1∑
c = -Ni

Ni

IN ( -[ c - ki ] N )⊗ [ IM ( li )hi ×
1 - e- j2π ( -c - κi )

N - Ne- j2π
-c - κi
N

e
- j2π li (ki + κi )

MN ]
, (10)

where IN ( -[ q - ki ] N ) denotes an N × N matrix obtained bycircularly shifting the rows of the identity matrix by
-[ q - ki ] N , and IM ( li ) is obtained similarly. Without fraction⁃al Doppler, i.e., κi = 0, the channel matrix H is reduced to

H =∑
i = 0

P - 1
IN (ki )⊗ é

ë
êêIM ( li )hie- j2π

liki
MN
ù

û
úú. (11)

3 Message Passing (MP) Based Detectors
Based on the model (9) in the DD domain, several detectors

have been proposed using the message passing techniques.
3.1 MP Detector in Ref. [2]
In model (9), the MN × MN DD domain complex channel

matrix H is sparse (especially in the case without fractional
Doppler shifts), which makes belief propagation suitable for im⁃
plementing the OTFS detectors. In Eq. (2), y and ω are length-
MN complex vectors with elements denoted by y [ d ] and ω [ d ],
1 ≤ d ≤ MN, the element of H is denoted by H [ d,c ], 1 ≤ d,c ≤
MN, x is a length-MN symbol vector with elements x [ c ] ∈ A,
1 ≤ c ≤ MN, and A denotes the modulation alphabet.
Thanks to the sparsity of H , the joint distribution of the ran⁃

dom variables in model (9) can be represented with a sparsely-
connected factor graph with MN variable nodes corresponding
to x and MN observation nodes corresponding to y. As shown in
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Fig. 2, each observation node y [ d ] is connected to a set of vari⁃
able nodes { x [ es ] ,es ∈ I (d ) }, and similarly, each variablenode x [ c ] is connected to a set of observation nodes
y [ es ] , es ∈ J [ c ], where I (d ) and J (c ) respectively denotethe sets of indexes of non-zero elements in the d-th row and c-th
columns of H, | I (d ) | = |J (c ) | = S and 1 ≤ s ≤ S . The proba⁃
bility mass function (PMF) pc,es = { pc,es (aj )|aj ∈ A } represents
the messages from variable nodes x [ c ] to factor nodes y [ es ].Based on the factor graph in Fig. 2, a message passing algo⁃
rithm was proposed in Ref. [2], and the detector is called MP
detector in this paper. The following is a brief derivation of the
message computations in the i-th iteration of the message com⁃
putations.
1) Messages passing from observation node y [ d ] to vari⁃

able node x[ es ]
The message is approximated to be Gaussian, and the mean

μid,es and variance (σid,es )2are computed as
μid,es = ∑

e ∈ Jd,e ≠ es
∑
j = 1

Q

pi - 1e,d (aj )ajH [ d,e ] , (12)

(σid,es )2 =

∑
e ∈ Jd,e ≠ es( )∑

j = 1

Q

pi - 1e,d (aj )|aj|2|H [ d,e ] |2 -
|

|
||

|

|
||∑
j = 1

Q

pi - 1e,d (aj )ajH [ d,e ]
2
+ ϵ-1 .
(13)

2) Messages passing from variable node x [ c ] to observation
node y [ es ]The PMF p ic,d can be updated as
pic,es (aj ) = Δ ⋅ p͂ic,es (aj ) + (1 - Δ) ⋅ p͂i - 1c,es (aj ), (14)

where Δ ∈ [ 0,1 ] is the damping factor and
p͂ic,es (aj ) ∝ ∏

e ∈ J (c),e ≠ es
Pr ( y [ e ] |x [ c ] = aj,H ) =

∏
e ∈ J (c),e ≠ es

ςi (e,c,j )
∑
k = 1

Q

ςi (e,c,j ) , (15)

with

ςi (e,c,k ) = exp ( - || y [ e ] - μie,c - H [ e,c ] ak 2

(σie,c )2 ). (16)
After a certain number of iterations by repeating 1) and 2),

the decision on the transmitted symbol can be obtained, i.e.,
x̂ [ c ] = arg minaj ∈ A pic (aj ), c = 1,...,MN, (17)

where
pic (aj ) = ∏

e ∈ J (c)
ςi (e,c,j )
∑
k = 1

Q

ςi (e,c,j ) . (18)
The MP detector is summarized in Algorithm 1.
Algorithm 1. MPA detector in Ref. [2]
Input: y, H, Initialize: p0c,es = 1/|A||, c = 1,...,MN,

es ∈ J (c ), i = 11: Repeat
2: ∀d: update μid,es and (σid,es )2 with Eqs. (12) and (13)3: ∀c: update pc,d i with Eq. (14)4: i = i + 1
5: Until terminate
Output: The decision on transmitted symbols x̂ [ c ] using

Eq. (17)
The MP algorithm shown above is an approximation to

loopy belief propagation since it approximates the interfer⁃
ence to be Gaussian to achieve lower complexity. The com⁃
plexity of the algorithm is O (MNS|A|) per iteration, which
depends on the sparsity of the channel, i. e., the value of S.
When S is small, the detector is very attractive because it
has low complexity and the detector delivers a good perfor⁃
mance as no short loops in the factor graph model. However,
in the case of rich-scatting environments and fractional Dop⁃
pler shifts, the value of S can be large, leading to a denser
factor graph model, which can affect the performance of the
MP detector and result in a significant increase in computa⁃
tional complexity.
3.2 VB Detector
The VB detector was proposed in Ref. [17] to guarantee the

convergence of the iterative detector, which can be implement⁃
ed with variational message passing. With model (9), the opti⁃
mal MAP detection can be formulated as:
x̂ = arg maxx p (x|y ). (19)
However, the complexity of solving the above optimization

problem increases exponentially with the size of x. VB is ad⁃▲ Figure 2. Graph representation used to derive the message passing
(MP) detector in Ref. [2]

y[d]

( μd,e1,σ2d,e1 ) ( μd,es,σ2d,es )

x[e1] x[es]
{ }e1,e2,...,es = Id

. . .

y[e1] y[es]

x[c]
{ }e1,e2,...,es = Jc

Pc,e1
Pc,es

. . .
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opted to achieve low complexity approximate detection. In this
method, a distribution q (x ) from a tractable distribution fami⁃
ly Q is found as an approximation to the a posteriori distribu⁃
tion p (x|y ). The trial distribution q (x ) can be obtained by min⁃
imizing the Kullback-Leibler divergence D (q||p ), i.e.,
q* (x ) = arg max

q ∈ Q
D (q||p ) =

arg max
q ∈ Q             Eq [ -ln q (x ) + ln p (x|y ) ]

L , (20)
where the expectation is taken over x according to the trial dis⁃
tribution q (x ).
To simplify the optimization problem, q(x) is assumed to be

fully factorized, i.e.,
q (x ) =∏k,l qk,l ( xk,l ) , (21)

where k ∈ [ 0,N - 1], M ∈ [ 0,M - 1] and xk,l denotes the(kM + l )-th entry of x. With this assumption, q (x ) can be up⁃
dated iteratively by maximizing L. Since the noise sample ωk,land data symbol xk,l, ∀k,l are independent, and
ωk,l~CN (ωk,l ; 0,ϵ-1 ), p (x|y ) can be rewritten as:
p (x|y ) ∝∏k,l p ( xk,l ) p ( yk,l|y ), (22)

where yk,l = hTk,lx + ωk,l, hk,l denotes the equivalent channelvector whose (kM + l )-th entry is hk,l [ k,l ]. Then the distribu⁃tion p (x|y ) can be further rewritten as:
p (x|y ) ∝∏

k,l
ζk,l ( xk,l )∏

k′,l′
ψk,l ( xk,l,xk′,l′), (23)

where

ζk,l ( xk,l ) = p ( xk,l )exp ( - ρk,l|xk,l|2 + ηk,l xk,lϵ-2 ), (24)

ψk,l ( xk,l,xk′,l′) = exp ( - ϱk,l,k′,l′xk,l xk′,l′ϵ-2 ), (25)
with ρk,l =∑k′,l′|hk′,l′(k,l )|2, ηk,l = 2∑k′,l′R [ hk′,l′[ k,l ] ⋅ yk,l′],
and ϱk,l,k′,l′ = 2R [ hk,l [ k,l ] h*k,l [ k′,l′] ]. Substituting p (x|y ) in
Eq. (23) and q (x ) into L yields

L = Eq

é

ë
êê∑
k,l
lnψk,l ( xk,l,xk′,l′) -∑

k,l
ln qk,l ( xk,l )
ζk,l ( xk,l )

ù

û
úú =

Eq

é

ë

ê

ê
êê -
∑
k,l
ϱk,l,k′,l′ xk,l xk′,l′

ϵ-2
-∑

k,l
ln qk,l ( xk,l )
ζk,l ( xk,l )

ù

û

ú

ú
úú

. (26)

To find a stationary point of L, the partial derivations of L
with respect to all local functions qk,l ( xk,l ), ∀k, l need to be ze⁃ro. Take the latent variable xk,l as an example. Setting the par⁃tial derivation ∂L/∂qk,l ( xk,l ) to zero leads to:

Eq\k,l

é

ë

ê

ê
êê -
∑
k′,l′
ϱk,l,k′,l′ xk,l xk′,l′
ϵ-2

ù

û

ú

ú
úú + lnζk,l ( xk,l ) - ln qiterk,l ( xk,l ) + C = 0

,
(27)

where qk,l =∏(k′,l′) ≠ (k,l )q
iter - 1
k′,l′ ( xk,l ), qiter - 1k′,l′ ( xk,l ) is obtained in

the (iter - 1)-th iteration and C denotes a constant.
Then, solving Eq. (27) for qk,l ( xk,l ) results in the local distri⁃bution, which can be expressed as:

qiterk,l ( xk,l ) ∝ ζk.l ( xk,l )exp
æ

è

ç

ç
ççEq\k,l

é

ë

ê

ê
êê -

∑
k′,l′
ϱk,l,k′,l′ xk,l xk′,l′
ϵ-2

ù

û

ú

ú
úú

ö

ø

÷

÷
÷÷ ∝ p ( xk,l )exp ( - ρk,l|xk,l|2 - mk,ldk,l

ϵ-2 )
, (28)

where mk,l = ηk,l -∑(k′,l′) ≠ (k,l ) ϱk,l,k′,l′Eqiter - 1k′,l′
x [ k′,l′].

It is noted that the variance of xk,l is underestimated and on⁃ly the noise variance is considered in Eq. (28). To fix the un⁃
derestimation, a practical solution is to repeat the above proce⁃
dure to approximate the a posteriori distribution for all the da⁃
ta symbols iteratively, resulting in the approximate marginal
q*k,l ( xk,l ),∀k,l. Then, the decision on the symbols can be madeby maximizing the approximate marginal distribution q*k,l ( xk,l ),i.e.,
x̂k,l = arg max

xk,l ∈ A
q*k,l ( xk,l ). (29)

The complexity of the algorithm per iteration is O (MNS|A|).
3.3 UAMP Detector
Leveraging the UAMP algorithm, the UAMP detector was

developed in Ref. [25], where the BCCB structure of the DD
domain channel matrix is exploited, leading to a highly effi⁃
cient OTFS detector with 2D FFT. It can be seen from Eqs.
(10) and (11) that the DD domain channel matrix H has a BC⁃
CB structure. A useful property of the BCCB matrix H is that
it can be diagonalized using 2D Discrete Fourier Transform
matrix, i.e.,
H = FHΛF, (30)

where F = FN ⊗ FM with FN and FM being respectively thenormalized N-point and M-point DFT matrices. In Eq. (30),

38



ZTE COMMUNICATIONS
December 2021 Vol. 19 No. 4

Message Passing Based Detection for Orthogonal Time Frequency Space Modulation Special Topic

YUAN Zhengdao, LIU Fei, GUO Qinghua, WANG Zhongyong

matrix Λ is a diagonal matrix, i. e.,Λ = diag (d ), and d is a
length-MN vector that can be computed using 2D FFT.
d = vec(FFT2(C ) ), (31)

where FFT2( ⋅ ) represents the 2D FFT operation, C =
reshapeM (H (:,1) ) is an M × N matrix, and H (:,1) with length-

MN is the first column of matrix H.
The above property is exploited in the design of the UAMP

detector, leading to high computational efficiency while with
outstanding performance compared with the existing detectors.
Instead of using model (9) directly, the UAMP algorithm[27–29]
works with the unitary transform of the model. The channel
matrix H admits the diagonalization in Eq. (30), leading to the
following unitary transform of the OTFS system model:
r = ΛFx + ω', (32)

where r = Fy, ω' = Fω, and the noise ω' has the same distri⁃
bution with ω as F is an unitary matrix. The precision of the
noise is still denoted by ϵ, which needs to be estimated. De⁃
fine Φ = ΛF and an auxiliary vector z = Φx. Then we can fac⁃
torize the joint distribution of the unknown variables x,z,ϵ giv⁃
en r as
p (x,z,ϵ|r ) = p (ϵ) p (r|z,ϵ) p ( z|x ) p (x ) =
p (ϵ)∏j

p ( rj|zj,ϵ) p ( zj|x )∏i
p ( xi ) =

fϵ∏j
frj ( zj,ϵ) fδj ( zj,x )∏i

fxi ( xi ) , (33)
where indices i,j ∈ [1:MN ]. To facilitate the factor graph rep⁃
resentation of the factorization in Eq. (33), the relevant nota⁃
tions are listed in Table 1, which shows the correspondence
between the factor nodes and their associated distributions.
The factor graph representation for the factorization in Eq.
(33) is depicted in Fig. 3.
Following the UAMP algorithm, a UAMP based iterative de⁃

tector can be designed, which is summarized in Algorithm 2.
According to the derivation of (U)AMP using loopy belief prop⁃
agation, UAMP provides the message from variable node zj tofunction node frj, which is Gaussian and denoted by
mzj → frj

( zj ) = N ( zj|pj,νpj ). Here, the mean pj and the variance
νpj are given in Lines 1 and 2 of the Algorithm in a vector

form. With the mean field rule[23] at the function node frj, we
can compute the message passed from function node frj to vari⁃
able node ϵ, i.e.,

mfrj
→ ϵ (ϵ) ∝ exp{ log frj ( rj|zj,ϵ) b ( )zj } ∝ ϵexp{ - ϵ(|rj -

ẑ j|2 + vzj )}, (34)
where b ( zj ) is the belief of zj. It turns out that b ( zj ) is alsoGaussian with its variance and mean given by
νzj = 1/ (1/νpj + ϵ̂), ẑ = νzj (pj /νpj + ϵ̂rj), (35)

respectively, where ϵ̂ is the estimate of ϵ in the last iteration.
They can be expressed in a vector form shown in Lines 3 and
4 in Algorithm 2. The estimate of ϵ can be obtained based on
the belief b (ϵ) at the variable node ϵ shown in Fig. 3, i.e.,
b (ϵ) ∝ fϵ (ϵ)∏

j = 1

MN

mfrj
→ ϵ (ϵ). (36)

And the estimate is given as
ϵ̂ = ∫0∞ ϵb (ϵ)dϵ = MN/∑j = 1MN ( )|rj - ẑ j|2 + νzj , (37)

which can be rewritten in a vector form shown in Line 5 of the
algorithm. With the mean field rule at the function node frj
again, the message passed from the function node frj to the
variable node zj can be computed as:
mfrj

→ zj
( zj ) ∝ exp{ log frj ( rj|zj,ϵ̂) b ( )ϵ } ∝ N (hj|rj,ϵ̂-1 ). (38)

Then the UAMP algorithm with known noise can be used as
if the true noise precision is ϵ̂, leading to Lines 6– 15 and

▼Table 1. Factors, underlying distributions and functional forms asso⁃
ciated with Eq. (31)

Factor
frj

fδj

fxi

fϵ

Distribution
p (rj|zj,ϵ)
p (zj|x)
p (xi)
p (ϵ)

Function Form
N (zj ; rj,ϵ-1)
δ (zj - Φ jx)

(1/|A|)∑a = 1
A δ (xi - αa)
ϵ-1

▲Figure 3. Factor graph representation of Eq. (31)

x1
fx1

xi
fxi

fxMN

xMNfrMN fδMNzMN

zj fδjfrj
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Lines 1–2 of the Algorithm 2. In Lines 10–13, the Gaussian
message is combined with the discrete prior to obtain the
MMSE estimates of the symbols in terms of their posterior
means and variances. There is an extra operation in Line 14,
which averages the variances of xj. Thanks to the special formof the unitary matrix F, 2D FFT is used in the implementa⁃
tions in Lines 2 and 9. It can be seen that the UAMP detector
does not require any matrix-vector products, the algorithm re⁃
quires only element-wise vector operations or scalar opera⁃
tions, except Lines 2 and 9, which are implemented with FFT.
So the complexity of the UAMP detector is
O (MN log (MN ) ) + O (MN|A|) per OTFS block per iteration,
which is independent of S.

Algorithm 2. UAMP detector for OTFS
Unitary transform:r = Fy = Λ Fx + ω with F = FN ⊗ FM.Calculated d with Eq. (29), and define vector Λ = d·d*.
Initialize s-1 = 0, x̂ = 0, ϵ̂(0) = 1, ν(0)x = 1, and t = 0.
Input: y, H
Repeat
1: νp = νtxΛ
2: p = d ⋅ vec (FFT2 (reshapeM ( x̂t ) )) - νp ⋅ st - 1
3: νz = 1./ (1./νp + ϵ̂t)
4: z = νz ⋅ (p./νp + ϵ̂tr)
5: ϵ̂t + 1 = MN/ ( r - z 2

2 + 1Tνz)
6: νs = 1./ (νp + 1/ϵt + 11)
7: st = νs ⋅ (r - p̂)
8: νq = ΛTνs / (MN )
9: q = x̂( t ) + νqvec (IFFT2 (reshapeM (d ⋅ st ) ))
10: ∀j:ξj,a = exp ( - ν-1q |αa - qj|2)
11: ∀j:βj,a = ξj,a /∑a = 1

|A| ξj,a
12: ∀j:x̂t + 1j =∑a = 1

|A| αa βj,a
13: ∀j:νt + 1xj

=∑a = 1
|A| βj,a |αa - x̂t + 1j |2

14: νt + 1x = 1
MN∑j = 1

MN νt + 1xj

15: t = t + 1
Until terminated
Output: the estimate of x i.e., x̂
Compared with the UAMP detector, the MP and VB de⁃

tectors have a complexity of O (MNS|A|) per OTFS block
per iteration, which can be considerably higher than that of
the UAMP detector in the case of rich scattering environ⁃
ments and when fractional Doppler shifts have to be consid⁃
ered (leading to a large S). Moreover, the UAMP detector
can deliver much better performance when the number of
paths is relatively large. In particular, the UAMP detector
with estimated noise precision can significantly outperform
other detectors with perfect noise precision. We note that,

the OTFS detector can be implemented directly with the
AMP algorithm. However, due to the deviation of the chan⁃
nel matrix from the i. i. d. Gaussian matrix, the AMP detec⁃
tor may perform poorly.

4 Turbo Processing in Coded Systems
It is well known that joint decoding and detection can bring

significant system performance improvement, and it can be re⁃
alized in a way that the detector and decoder exchange infor⁃
mation iteratively, i. e., the turbo processing[30–31]. The OTFS
detectors can be incorporated into a turbo receiver by endow⁃
ing the OTFS detectors with the capabilities of taking the out⁃
put log-likelihood ratios (LLRs) of the decoder as (soft) input
and producing (soft) output in the form of extrinsic LLRs of
the coded bits, i.e., the so-called soft input soft output (SISO)
detector.
A typical turbo system is shown in Fig. 4, where Π and Π-1

represent interleaver and de-interleaver, respectively. The in⁃
formation bits are encoded and interleaved before symbol map⁃
ping, where each symbol xj ∈ A = { α1,...,α |A|} in the DD do⁃main is mapped from a sub-sequence of the coded bit se⁃
quence, which is denoted by c j = [ c1j ,...,clog|A|j ]. Each αacorre⁃
sponds to a length-Alog|A| binary sequence, which is denoted
by {α1a,...,α log|A|a }. Based on the LLRs provided by the SISO de⁃
coder and the output of the OTFS demodulator as shown in
Fig. 4, the task of the SISO OTFS detector is to compute the
extrinsic LLR for each coded bit, i.e.,

Le (cqj ) = ln P (c
q
j = 0|r )

P (cqj = 1|r ) - L
a (cqj ), (39)

where La (cqj ) is the output extrinsic LLR of the decoder in thelast iteration. The extrinsic LLR Le (cqj ) is passed to the decod⁃er. The extrinsic LLR Le (cqj ) can be expressed in terms of ex⁃trinsic mean and variance of the symbols[32], i.e.,

Le (cqj ) = ln
∑
αa ∈ A0q

exp ( - |αa - m
e
j |2

vej
)∏
q′ ≠ q
P (cq′j = αq′a )

∑
αa ∈ A1q

exp ( - |αa - m
e
j |2

vej
)∏
q′ ≠ q
P (cq′j = αq′a ) , (40)

where me
j and vej are the extrinsic mean and variance of xj, and

A 0
q and A 0

q represent the subsets of all αa corresponding to
cqj = 0 and cqj = 1, respectively. The extrinsic variance andmean are defined in Ref. [32].
vej = (1/vpj - 1/vj )-1,me

j = vej (mp
j /vpj - mj /vj ), (41)

where mj and vj are the a priori mean and variance of xj calcu⁃
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lated based on the output LLRs of the SISO decoder[30] and mp
jand vpj are a posteriori mean and variance of xj.Taking the UAMP detector as an example, we show the

incorporation of the OTFS detector into a turbo receiver. Ac⁃
cording to the derivation of the UAMP algorithm, we can
find that q and νq consist of the extrinsic means and varianc⁃es of the symbols in x as they are the messages passed from
the observation side and do not contain the immediate a pri⁃
ori information about x. Hence we have me

j = qj and vej = νq.Then Eq. (40) can be readily used to compute the extrinsic
LLRs of the coded bits. With the LLRs provided by the
SISO decoder, one can compute the probability p ( xj = αa )for each xj, which is no longer the“non-informative prior ”
in Algorithm 2. Therefore, ξj,a in Line 7 of the algorithm ischanged to
ξj,a = p ( xj = αa )exp ( -ν-1q |αa - qj|2 ). (42)
In addition, the iteration of the UAMP detector can be com⁃

bined with the iteration between the SISO decoder and detec⁃
tor, which leads to a single loop iteration (i.e., inner iterations
are not required).
The computational complexity of the detectors is summa⁃

rized in Table 2. In the above discussion, we focus on the bi-
orthogonal waveform. The detectors can be extended to OTFS
systems with other waveforms, such as the simple rectangular
waveform[25].

5 Simulation Results
In this section, we compare the performance of the mes⁃

sage passing based detectors. The low complexity MRC de⁃
tector in Ref. [14] is also included. We set M = 256 and N =

32, i. e., there are 32 time slots and 256 subcarriers in the
TF domain. Both quadrature phase shift keying (QPSK)
modulation and 16-quadrature amplitude modulation
(QAM) are considered. The carrier frequency is 3 GHz, and
the subcarrier spacing is 2 kHz. The speed of the mobile us⁃
er is set to v = 135 km/h, leading to a maximum Doppler fre⁃
quency shift index kmax = 6. We assume that the maximumdelay index is lmax=14. The Doppler index of the i-th path isuniformly drawn from the set [ -kmax,kmax ] and the delay in⁃dex is in the range of [1,lmax ] excluding the first path(l1 = 0). We assume that the fractional Doppler κi is uni⁃formly distributed within [ -1/2,1/2 ], and the channel coeffi⁃
cients hi are independently drawn from a complex Gaussiandistribution with mean 0 and variance ηli, where the normal⁃
ized power delay profile ηi = exp( -αli )/∑i

exp( -αli ) with
α being 0 or 0.1. The maximum number of iterations is set
to 15 for all iterative detectors. We note that, all detectors
except the MRC detector require the noise variance. The
UAMP detector performs noise precision estimation, while
the other detectors (except the MRC detector) including the
AMP detector assume perfect noise precision. We evaluate
the performance of the detectors in a variety of scenarios in⁃
cluding the bi-orthogonal and rectangular waveforms with
integer or fractional Doppler shifts, and QPSK or 16-QAM
for modulations. In addition, both uncoded and coded sys⁃
tems are evaluated.
Fig. 5 shows the BER performance of various detectors

in the case of the bi-orthogonal waveform with different
numbers of paths, where we assume no fractional Doppler
shifts, i. e., S = P. We also assume α = 0, and QPSK is
used. From this figure, we can see that, the MP detector
performs well when P = 6, but with the increase of P, its
performance becomes worse. The VB detector has a similar
trend. The MRC detector performs similarly to the MP and
VB detectors when P=6 and delivers better performance
than the MP and VB detectors with larger P. The AMP and
UAMP detectors perform well, where we can see that they
enjoy the diversity gain and achieve better performance
with the increase of P. In all cases, the UAMP based detec⁃
tor delivers the best performance and significantly outper⁃
forms other detectors.
With the rectangular waveform and factional Doppler shifts,

we compare the bit error ratio (BER) performance of the AMP,
UAMP and MRC detectors in Fig. 6, where the number of
paths P = 9 and α = 0.1 is used for the power delay profile.
Both QPSK and 16-QAM are considered. Due to the deviation
of the channel matrix from the i. i. d. (sub- ) Gaussian matrix,
AMP exhibits performance loss, leading to significantly worse
performance compared with the UAMP detector. Thanks to the
robustness of UAMP against a general matrix, UAMP performs
well. We can see that the MRC detector performs better than
the AMP detector. The UAMP detector performs the best and
the gaps between other detectors with the UAMP detector be⁃

▼Table 2. Computational complexity of various detectors per iteration
Detectors

MP detector
VB detector
UAMP detector

Complexity

O (MNS|A|)
O (MNS|A|)

O (MN log (MN ) ) + O (MN|A|)
MP: message passing UAMP: unitary approximate message passing
VB: variational Bayes

▲Figure 4. Iterative joint detection and decoding in a coded OTFS system[25]

OTFS: orthogonal time frequency space SISO: soft input soft output

Time varyingchannel

OTFSmodulatorMapperEncoder

OTFSdemodulatorOTFSSISO detectorOTFSdecoder
Decision

∏

∏-1

∏

Data c x[k,l] s(t)

y[k,l]
ω

u(t)
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come larger in the case of higher order modulation 16-QAM,
compared with QPSK.
We then evaluate the performance of the detectors in a cod⁃

ed OTFS system, where the turbo receiver in Fig. 4 is em⁃
ployed. The number of paths P=14, and a rectangular wave⁃
form is used. In Fig. 7(a), we show the performance of the un⁃
coded system with the AMP and UAMP detectors. In Fig. 7(b),
we use a rate-1/2 convolutional code with a generator [ 5,7 ] 8followed by a random interleaver and QPSK modulation. The
length of the codeword is MN. The BCJR algorithm is used for
the SISO decoder. We can find that the performance gaps be⁃
tween the AMP detector and the UAMP detector become larg⁃
er in the coded system. The turbo receiver can achieve much
better performance (about 3.5 - 4 dB at the BER of 10-4)

▲Figure 5. BER performance of detectors with bi-orthogonal waveform and integer Doppler shifts (results are based on Ref. [25])

AMP: approximate message passingBER: bit error ratio MP: message passingMRC: maximal ratio combining SNR: signal-noise ratioUAMP: unitary approximate message passing VB: variational Bayes

▲Figure 6. BER performance of detectors with the rectangular wave⁃
form and fractional Doppler shifts (results are based on Ref. [25])

AMP: approximate message passingBER: bit error ratioMRC: maximal ratio combiningSNR: signal-noise ratio

UAMP: unitary approximate message passingQAM: quadrature amplitude modulationQPSK: quadrature phase shift keying

(a) QPSK (b) 16-QAM

▲Figure 7. BER performance comparison of coded and uncoded system with rectangular waveform (part of the results is based on Ref. [25])

AMP: approximate message passingBER: bit error ratio SNR: signal-noise ratioLDPC: low density parity check code UAMP: unitary approximate message passing

(a) P=6 (b) P=12 (c) P=14
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thanks to the joint processing of decoding and detection. In
Fig. 7(c), we investigate the performance of the system with a
more powerful LDPC. The 8 192 information bits are coded at
rate R=1/2 by an irregular LDPC code with an average column
weight of 3, then the coded bits are randomly interleaved and
mapped. As expected, the system performance is improved
considerably when the LDPC is used. From Fig. 7(c), we can
see that the use of the LDPC code can improve the perfor⁃
mance of the UAMP based detector significantly and the per⁃
formance gap between AMP and UAMP increases when the
LDPC is used.

6 Conclusions and Potential Future Work
In this paper, we review and compare the recently pro⁃

posed message passing based OTFS detectors, which ex⁃
ploit the structures of the OTFS channel matrices, such as
sparsity and BCCB. According to the results, the MP and
VB detectors are more suitable in the scenarios that the
number of paths is relatively small and the modulation or⁃
der is low, where they deliver good performance while with
relatively low complexity. The UAMP detector seems very
promising especially in the case of rich-scattering environ⁃
ments and/or when fractional Doppler shifts have to be con⁃
sidered, where the UAMP detector is attractive in both com⁃
putational complexity and performance. The results also
show that the OTFS system with a turbo receiver can pro⁃
vide significant performance gain.
The message passing techniques seem promising in the de⁃

sign of OTFS receivers. In this paper, we assume the OTFS
channel matrix is known, which however has to be estimated
for practical applications. Message passing based OTFS chan⁃
nel estimation has been investigated in the literature, such as
the work in Ref. [33]. With the message passing techniques,
channel estimation and detection can be integrated for joint
channel estimation and detection, which is expected to lead to
superior system performance and/or significant reduction of
the training overhead. This is because the data symbols can be
used to serve as a virtual training sequence and the guard
band between the training symbols and data symbols is not
necessary.
It has been shown that joint decoding and detection based

on a turbo receiver can significantly improve the system per⁃
formance. The system performance can be potentially further
improved by optimizing the error control codes. This requires
fast and accurate performance prediction of the iterative re⁃
ceiver, so that the error control codes, e.g., LDPC, can be opti⁃
mized.
The message passing techniques could be used to imple⁃

ment sophisticated receivers in more complex systems, such
as multi-user OTFS systems, grant-free multiple access with
OTFS, multiple-output-multiple-input (MIMO)-OTFS, integrat⁃
ed sensing and communication with OTFS.
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