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Abstract: Orthogonal time frequency space (OTFS) modulation is a recently proposed
modulation scheme that exhibits robust performance in high-Doppler environments. It is a
two-dimensional modulation scheme where information symbols are multiplexed in the de⁃
lay-Doppler (DD) domain. Also, the channel is viewed in the DD domain where the chan⁃
nel response is sparse and time-invariant for a long time. This simplifies channel estima⁃
tion in the DD domain. This paper presents an overview of the state-of-the-art approaches
in OTFS signal detection and DD channel estimation. We classify the signal detection ap⁃
proaches into three categories, namely, low-complexity linear detection, approximate max⁃
imum a posteriori (MAP) detection, and deep neural network (DNN) based detection. Simi⁃
larly, we classify the DD channel estimation approaches into three categories, namely,
separate pilot approach, embedded pilot approach, and superimposed pilot approach. We
compile and present an overview of some of the key algorithms under these categories and
illustrate their performance and complexity attributes.
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1 Introduction

Next-generation wireless systems are expected to sup⁃
port a variety of use cases with a wide range of per⁃
formance requirements. Interest in high-mobility
use cases involving high-speed trains, unmanned ve⁃

hicles/cars, drones, aeroplanes, etc. , is on the rise. Also, in
order to meet the growing bandwidth requirement, a wireless
spectrum in the mmWave frequency band is preferred. Com⁃
munication in such high-mobility and/or high carrier frequen⁃
cy scenarios has to deal with high Doppler shifts which are
common in such environments. Orthogonal frequency divi⁃
sion multiplexing (OFDM) is a widely used communication
waveform in the current generation of wireless systems. De⁃

spite its popularity and adoption in current standards, OFDM
suffers from severe performance degradation in high-Doppler
scenarios. This is because of the increased loss of orthogo⁃
nality among subcarriers and the resulting inter-carrier inter⁃
ference (ICI).
Orthogonal time frequency space (OTFS) modulation is a

recently introduced 2-dimensional (2D) modulation[1]. There
has been growing interest in this modulation recently, be⁃
cause of its superior performance compared with OFDM in
high-Doppler environments[2–6]. In OTFS modulation, infor⁃
mation symbols are multiplexed in the delay-Doppler (DD)
domain. The symbols in the DD domain are converted to the
time domain and transmitted. At the receiver, the received
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signal in the time domain is converted back to the DD do⁃
main where the information symbols are recovered. The DD
domain to time domain conversion and vice versa can be
done using two approaches. In the first approach, symbols
from the DD domain are mapped to the time domain in two
steps: DD to time-frequency (TF) domain conversion using
inverse symplectic finite Fourier transform (ISFFT), followed
by the TF domain to time domain conversion using Heisen⁃
berg transform[1]. The corresponding inverse transforms map
the received time-domain signal to the TF domain and then
to the DD domain (Wigner transform followed by SFFT). The
second approach is a direct one-step approach, where DD do⁃
main to time domain mapping is done using inverse Zak
transform[7]. At the receiver, the Zak transform maps the sig⁃
nal from the time domain directly to the DD domain. While
the first approach has been adopted in most of the studies re⁃
ported in the literature so far, the second approach is also
gaining popularity. While the first approach can be imple⁃
mented as an overlay on existing TF modulation schemes
(such as OFDM), the second approach has the benefit of re⁃
duced implementation complexity.
Since the introduction of OTFS in 2017, there has been a

spurt of research activities in OTFS leading to an increasing
volume of publications on OTFS[5–51]. Some of the key areas
of focus in these works include DD signal representation in
OTFS, input-output relation in the DD domain in the form of
a linear vector channel model, framework for DD signal pro⁃
cessing, signal detection algorithms, techniques for DD chan⁃
nel estimation, characterization of the peak-to-average power
ratio (PAPR), the effect of practical pulse shapes, diversity
analysis of OTFS, the effect of oscillator phase noise and IQ
imbalance, multi-antenna OTFS, space-time coding and pre⁃
coding in OTFS, multiuser OTFS on the uplink and down⁃
link, etc. Recognizing that efficient signal detection and
channel estimation techniques are crucial for the successful
realization of OTFS systems in practice, we focus on these
two key receiver functions in this paper.
We classify the OTFS signal detection approaches into

three broad categories. The first is the linear detection ap⁃
proach, where the focus is on exploiting the structure inher⁃
ent in the effective channel matrix for reducing complexity.
The second approach is based on approximations to maxi⁃
mum a posteriori (MAP) detection, which aim near-optimal
performance at reduced complexity. The last one is a recent
approach involving deep neural networks (DNN). We high⁃
light some of the algorithms in these categories reported in
the literature. In highlighting various detection algorithms,
perfect DD channel knowledge will be assumed at the re⁃
ceiver.
Similarly, we classify the DD channel estimation approach⁃

es into three categories. In the first approach, separate pilot
frames are employed for DD channel estimation. The channel
estimates obtained during the pilot frames are used for detec⁃

tion during data frames. The second approach involves em⁃
bedding both pilot and data symbols in a frame. This further
improves the throughput but the interference between pilot
and data symbols needs to be taken into account by way of
providing guard symbols around pilot symbols and/or inter⁃
ference cancellation. The last approach is the superimposed
pilot approach, where pilot symbols are superimposed on da⁃
ta symbols. This further increases the throughput while de⁃
manding sophisticated signal processing (e. g., interference
cancellation) to perform joint channel estimation and detec⁃
tion. We present algorithms reported in the literature under
these categories.
The rest of this paper is organized as follows. Section 2 in⁃

troduces the OTFS system model. Section 3 presents the
state-of-the-art approaches and algorithms for OTFS signal
detection. Section 4 presents the approaches and algorithms
for DD channel estimation. Section 5 provides the conclu⁃
sions.

2 OTFS Modulation and System Model

2.1 OTFS Modulation
In OTFS modulation, MN information symbols are multi⁃

plexed onto an N × M DD grid, where N is the number of
Doppler bins and M is the number of delay bins, as shown in
Fig. 1. The information symbols, denoted by x[ k, l ], k =
0,...,N - 1, l = 0,...,M - 1, come from a modulation alphabet
A (e.g., QAM/PSK). The NM symbols are transmitted over a
time duration of NT, occupying a bandwidth of MΔf, where
Δf = 1/T. The Doppler resolution is 1

NT
and the delay resolu⁃

▲Figure 1. Multiplexing in delay-Doppler grid
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tion is 1
MΔf .

The symbols in the DD grid are mapped to a time-domain
signal x (t) for transmission. This can be done in two ways as
shown in Fig. 2. In a two-step approach, the DD signal is first
mapped to a time-frequency (TF) signal which is then
mapped to a time-domain signal. The DD-to-TF domain map⁃
ping is done using ISFFT and the TF-to-time domain map⁃
ping is done using Heisenberg transform. In a one-step ap⁃
proach, the DD signal is directly mapped to a time-domain
signal using inverse Zak transform. The corresponding in⁃
verse transforms are used at the receiver to demap the re⁃
ceived time-domain signal to the DD domain. In this paper,
we adopt the two-step approach which has been widely fol⁃
lowed in the literature so far.
2.2 OTFS System Model
In this subsection, we present the OTFS system model for

the two-step approach of DD-to-time domain conversion, as
shown in Fig. 2(a). The symbols x[ k, l ] in the DD domain are
mapped to the TF domain using ISFFT, as

X [ n,m ] = 1
MN∑k = 0

N - 1∑
l = 0

M - 1
x[ ]k, l ej2π ( )nk

N
- ml
M . (1)

This TF signal is transformed into a time-domain signal us⁃
ing Heisenberg transform, as
x (t) =∑

n = 0

N - 1∑
m = 0

M - 1
X [ ]n,m gtx ( )t - nT ej2πmΔf ( )t - nT , (2)

where gtx (t) defines the transmit pulse shape. The transmit⁃
ted signal is passed through the channel whose response in
the DD domain is given by
h (τ,ν) =∑

i = 1

P

hiδ (τ - τ i)δ ( )ν - ν i , (3)
where hi, τ i, and ν i are the channel gain, delay, and Dopplershift associated with the i-th path, respectively, and P is the
number of resolvable paths in the DD domain.
The received time domain signal y (t) at the receiver is giv⁃

en by
y (t) = ∫ν∫τh ( )τ,ν x ( )t - τ ej2πν ( )t - τ dτdν + v (t) , (4)

where v (t) is the additive white Gaussian noise. Wigner
transform is applied to y (t) to transform it into a TF domain
signal, as

Y [ n,m ] = Agrx,y (t, f)| t = nT,f = mΔf ,
Agrx,y (t, f) = ∫g*rx ( )t' - t y ( )t e- j2πf ( )t' - t dt', (5)

where grx (t) defines the receive pulse shape. If grx (t) and
gtx (t) satisfy the biorthogonality condition, the input-output
relation in the TF domain is given by Ref. [11]:
Y [ n,m ] = H [ n,m ]X [ n,m ] + V [ n,m ], (6)

where V [ n,m ] is noise in TF domain and H [ n,m ] is
H [ n,m ] = ∫τ∫νh ( )τ, ν ej2πνnTe- j2π ( )ν + mΔf τ dνdτ. (7)
The TF signal Y [ n,m ] is transformed to the DD domain

signal y [ k, l ] using SFFT, as

y [ k, l ] =∑
n = 0

N - 1∑
m = 0

M - 1
Y [ ]n,m e

- j2π ( )nk
N
- ml
M . (8)

The above DD domain signal at the output of the SFFT can
be derived to be of the form1

y [ k, l ] =∑
i = 1

P

h'i x
é
ë
ê

ù
û
ú( )k - β i

N
, ( )l - α i

M
+ v[ k, l ], (9)

where h'i = hie- j2πνiτi, his are i. i. d and are distributed as
CN (0, 1/P) with uniform scattering profile, α i and β i are in⁃tegers2 corresponding to indices of delay and Doppler, re⁃
spectively, for the i-th path, i.e., τ i ≜ α i

MΔf and ν i ≜
β i
NT
, and

v[ k, l ] is the additive white Gaussian noise. By vectorizing
the input-output relation in Eq. (9), we can write[11]
y = Hx + v, (10)

where x, y, v ∈ CMN × 1, the (k + Nl) -th entry of x, xk + Nl =
1. Refer to Ref. [11] for the detailed derivation.
2. For the purpose of exposition of detection and channel estimation algorithms, integer Dopplers are considered in this paper. Refer to Ref. [11] for a similar system model for fractional
Dopplers. Also, refer to Ref. [13] for the MIMO-OTFS system model.

ISFFT: inverse symplectic finite Fourier transformSFFT: symplectic finite Fourier transform
▲ Figure 2. Orthogonal time frequency space (OTFS) modulation
scheme
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x[ k, l ], k = 0,...,N - 1, l = 0,...,M - 1 and x[ k, l ] ∈ A. Simi⁃
larly, yk + Nl = y [ k, l ] and vk + Nl = v[ k, l ], k = 0,...,N - 1, l =
0,...,M - 1, and H ∈ CMN × MN is the effective channel matrix,
whose j-th row (j = k + Nl), denoted by H [ j ], is given by
H [ j ] = éëĥ ((k - 0)N, (l - 0)M) ĥ ((k - 1)N, (l - 0)M) ...ĥ ((k -
N - 1)N, (l - M - 1)M)ùû , where ĥ (k, l) denotes the (k, l)-th el⁃ement of the N × M DD channel matrix, given by
ĥ (k, l) = {h'i , if k = βi, l = αi, i ∈ {1, 2,...,P }0, otherwise . (11)
It can be seen from the above that the effective channel

matrix H has only P non-zero entries in each row and col⁃
umn, i. e., there are only MNP non-zero elements in H. The
linear vector channel model in Eq. (10) is used for signal de⁃
tection/equalization and channel estimation in OTFS.

3 OTFS Signal Detection
In this section, we present some of the signal detection al⁃

gorithms proposed in the literature for OTFS modulation.
Based on the approaches used, these algorithms are catego⁃
rized into three groups, namely,1) low-complexity linear de⁃
tection, 2) approximate MAP detection, and 3) neural net⁃
works based detection, as shown in Fig. 3. We present algo⁃
rithms under these categories in the following subsections,
assuming perfect knowledge of the DD channel matrix. Later,
in Section 4, we will present techniques/algorithms to esti⁃
mate the channel matrix.
3.1 Low-Complexity Linear Detection
Linear equalizers detect the transmitted symbols by apply⁃

ing a linear transformation to the received vector y followed
by mapping to a symbol in the modulation alphabet A which
is closest in terms of euclidean distance. The linear transfor⁃
mation matrix is represented by G and the mapping function
is represented by f (.). Therefore, the estimate of the transmit
vector x is given by
x̂ = f (Gy) . (12)
The transformation matrix for linear minimum mean

squared error (LMMSE) equalization is given by
G lmmse = (HHH + σ2 I) -1HH, (13)

where σ2 is the noise variance and the transformation matrix
for zero-forcing (ZF) equalization is given by
Gzf = (HHH) -1HH. (14)
These equalizers in the case of OTFS have a computation

complexity of O (M 3N 3). However, the structure of the chan⁃
nel matrix in the DD domain can be exploited to reduce the
complexity of these operations[22–23].
3.1.1 Low-Complexity LMMSE Equalization
In the low-complexity linear minimum mean square error

(LMMSE) equalization[22], the channel matrix H in Eq. (10)
has a block circulant structure with M circulant blocks denot⁃
ed by A i (i = 0,1,...,M - 1) of size N ×N. Using this property
of the channel matrix, a low-complexity algorithm for imple⁃
menting LMMSE equalization has been proposed in Ref.
[22]. Let CM,N denote the class of such block circulant matri⁃ces. These matrices have the following exploitable properties.
• Any matrix H ∈ CM,N can be unitarily diagonalizable as
H = (FM ⊗ FN)

H
Λ (FM ⊗ FN) , (15)

where Λ = diag{ λ1,λ2,⋯,λMN} such that λ i is the i-th eigen⁃value of H, FM is the DFT matrix of size M, and ⊗ is the Kro⁃
necker product operator.
• The matrix Λ can be written as
Λ =∑

i = 0

M - 1
Ω i
M ⊗ Λ i, (16)

where ΩM =diag {1, ω,..., ωM - 1} and ω = ej2π/M. Λ i is N ×N di⁃agonal matrix with eigenvalues of N × N circulant block A ion the diagonal.
• For A,B ∈ CM,N, the matrices AT, AH, AB = BA , c1A +c2B,∑r = 0

R - 1 crAr (cr are all scalars) and A-1 (if exists) are also
block circulant and belong to CM,N.As H ∈ CM,N, using the above properties, we have theLMMSE transformation matrix G lmmse ∈ CM,N. Thus, by substi⁃tuting Eq. (15) in Eq. (13), we get

DNN: deep neural networkMAP: maximum a posterioriMCMC: Markov chain Monte CarloMMSE: minimum mean squared error

MP: message passingOTFS: orthogonal time frequency spacePIC: parallel interference cancellationZF: zero-forcing
▲Figure 3. Signal detection approaches in OTFS
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G lmmse = (FM ⊗ FN)
H
Ψ (FM ⊗ FN) , (17)

where Ψ is a diagonal matrix containing the eigenvalues of
G lmmse, given by
Ψ = (Λ*Λ + σ2 I) -1Λ*, (18)

where Ψ i = λ*i
|| λ i 2 + σ2

, i = 1, 2,...,MN. To reduce the com⁃

plexity of computing (FM ⊗ FN) y, write y as an N ×M ma⁃
trix Y such that vec (Y) = y. This gives
z = (FM ⊗ FN) y = vec (FNYFM) . (19)
Now, compute q = Ψz and write q as a N × M matrix Q

such that vec (Q) = q. Finally, compute the estimated x as
x̂ = G lmmsey = vec (F H

NQFM) , (20)
which gives the exact LMMSE solution at a much less com⁃
putational complexity. The complexity of computing z in⁃
volving N-point DFT and M-point IDFT operations is
O (MN logMN) and the complexity of computing q is
O (MN). Again, the computation of x̂ involves N-point
IDFT and M-point DFT operations with complexity
O (MN logMN). Therefore, the overall complexity is
O (2MN logMN + MN) which is much small compared to
the O (M 3N 3) complexity of conventional LMMSE detec⁃
tion using matrix inversion.
3.1.2 Low-Complexity LMMSE Equalization
As shown in Fig. 4, a low-complexity LMMSE equalization

method that takes advantage of the sparse and quasi-banded
nature of the OTFS demodulation matrices has been pro⁃

posed in Ref. [23]. Here, a different representation of the sys⁃
tem is used. The transmit vector x in the DD domain is writ⁃
ten as an M × N matrix X such that vec (X) = x. Assume that
E [ x (k, l) x* (k', l') ] = σ2x δ (k - k', l - l'). Using this represen⁃
tation, we obtain vector s as
s = vec (XF H

N ) . (21)
This vector s can also be written in the form s = Ax, where

A = F H
N ⊗ IM is a unitary matrix. The received vector r at thereceiver is given by

r = H͂s + n = H͂Ax + n, (22)
where H͂ =∑

i = 1

P

hiΠ
α iΔβ i, Π = circ{ }[ ]010... 0 T

MN × 1 is a circu⁃
lant delay matrix, Δ = diag (1, e1, j2π 1

MN ,..., ej2π MN - 1MN ) is a diago⁃
nal Doppler matrix, and n is i.i.d Gaussian noise vector with
variance σ2n. The detected symbol vector for this system mod⁃el in Eq. (22) using LMMSE equalization is given by

x̂ = (H͂A)H é
ë
êê(H͂A) (H͂A)

H + σ2nσ2x I
ù

û
úú

-1
r. (23)

Due to the unitary nature of A, the above equation reduces to

x̂ = AH
         
H͂H

é

ë
êê

ù

û
úúH͂H͂H + σ2nσ2x I
-1

Heq

r.
(24)

This detected vector x̂ is obtained in two steps. The first
step involves a calculation of r͂ = Heqr and the second step in⁃volves the matched filter operation AH r͂ to get x̂. Most com⁃
plexity is in the first step as it involves an inverse of Ψ =
é

ë
êêH͂H͂

H + σ2nσ2x I
ù

û
úú to obtain Heq. This complexity is reduced by

using a low-complexity LU decomposition of Ψ[23]. With LU
decomposition of Ψ, we can write Eq. (24) as

x̂ = AH H͂H
 U -1L-1r

r1

r2
. (25)

The computational complexity can be further reduced by
using the quasi-banded nature of lower triangular matrix L
and upper triangular matrix U. In Eq. (25), r1 is computedusing the forward substitution method for quasi-banded
lower triangular matrix and r2 is computed using backwardsubstitution method for quasi-banded upper triangular ma⁃
trix. The final computation of x̂ = AH H͂Hr2 is done by firstobtaining r͂ = H͂Hr2. This vector r͂ is arranged in an M ×N
matrix as

LU: lower-upper FFT: fast Fourier transform
▲ Figure 4. Low complexity linear minimum mean squared error
(LMMSE) equalization[23]
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H͂H

using sparsematrix-vectormultiplication
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Ŷ =
é

ë

ê

ê

ê

ê
êê
ê

ê

ù

û

ú

ú

ú

ú
úú
ú

ú

r͂ ( )0 r͂ ( )M ⋯ r͂ ( )MN - N
r͂ ( )1 r͂ ( )M + 1 ⋯ r͂ ( )MN - N + 1
⋮ ⋮ ⋱ ⋮

r͂ ( )M - 1 r͂ ( )2M - 1 ⋯ r͂ ( )MN - 1
.
(26)

Using the matrix Ŷ, x̂ is obtained using DFT operation as
x̂ = vec (ŶFN) . (27)
The main reduction in the complexity is in the computa⁃

tion of r͂. All the steps involved in obtaining r2 together havea complexity of O (MN) and the final computation in Eq. (27)
to obtain x̂ has a complexity of O (MN2 log2N). On the whole,
this LMMSE equalization method has a complexity of just
O (MN2 log2N + MN) compared to O (M 3N 3) of the conven⁃
tional LMMSE equalization.
3.2 Approximate MAP Detection
From the vectorized representation y = Hx + v in Eq. (10),

the MAP decision rule for detection of x is given by
x̂ = arg max

x ∈ AMN Pr (x|y,H) . (28)
When the transmit symbol vectors are equally likely, the

decision rule for maximum-likelihood (ML) detection is
x̂ = arg max

a ∈ AMN Pr (y|x = a,H) Pr (x = a) =
arg max

a ∈ AMN
1
||A Pr (y|x = a,H) . (29)

Assuming the noise vector v to be i.i.d Gaussian, the opti⁃
mum decision rule is given by
x̂ = arg min

x ∈ AMN ||y - Hx||2. (30)
The complexity of the optimum detector grows exponential⁃

ly in MN because of the exhaustive enumeration/search in⁃
volved. Therefore, several suboptimum detection algorithms
have been proposed that are efficient with low complexity. In
the following, some of the popular low-complexity approximate
MAP algorithms for OTFS signal detection are presented.
3.2.1 Message Passing Algorithm
One of the popular detectors reported in the early OTFS

literature is an approximate MAP detector based on low-com⁃
plexity message passing[11]. The key advantages of this detec⁃
tor are its linear complexity in MN and very good perfor⁃
mance. The message passing algorithm involves the computa⁃
tion of approximate a posteriori probability of the modulation
symbols by passing messages on a factor graph. The transmit⁃
ted vector x is represented by MN variable nodes and the re⁃

ceived vector y is represented by MN check nodes in the
graph. As noted earlier in Section 2, H is sparse with only L
non-zero elements in any row or column (generally L ≪ MN
and L = P for non-fractional delays and Dopplers).
Let I (r) and J (c) denote the indices corresponding to non-

zero elements in the r-th row and c-th column, respectively,
such that | I (r) | = |J (c) | = L for all rows and columns. In the
factor graph, each variable node x[ c ] has connections with L
check nodes y [ r ], r ∈ J (c) and each check node y [ r ] has
connections with L variable nodes x[ c ], c ∈ I (r) as shown in
Fig. 5. The symbol-by-symbol decision rule is given by
x̂[ c ] = arg max

aj ∈ A
1
||A Pr (y|x[ c ] = a j,H) ≈

arg max
aj ∈ A ∏r ∈ JcPr ( )y [ ]r |x[ ]c = aj,H . (31)

This approximation is obtained assuming that the compo⁃
nents of vector y are independent for a given x[ c ] because of
the sparsity of H matrix. From the system model, we can write
y [ r ] = x[ c ]H [ r,c ] +

             
∑

e ∈ I ( )r , e ≠ c
x[ ]e H [ ]r, e + v[ ]r

ζ( )ir,c

.
(32)

In the i-th iteration, the complete interference plus noise
term in Eq. (32) is modelled as a single Gaussian random
variable ζ( )ir,c with mean μ( )ir,c and variance (σ( )i

r,c)
2.

1) Message from check node y [ r ] to variable node x[ c ]:
The check nodes pass mean and variance information to the
variable nodes, where
μ( )ir,c = ∑

e ∈ I ( )r , e ≠ c
∑
j = 1

||A
p( )i - 1
e, r ( )aj ajH [ ]r, e , (33)

(σ( )i
r, c)

2 =
∑

e ∈ I ( )r , e ≠ c( )∑
j = 1

||A
p( )i - 1
e,r ( )aj || aj

2
||H [ ]r, e 2 - |

|
||

|

|
||∑
j = 1

||A
p( )i - 1
e,r ( )aj ajH [ ]r, e

2
+ σ2,

(34)
and σ2 is the variance of v[ r ].

▲Figure 5. Message passing between variable nodes and check nodes
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2) Message from variable node x[ c ] to check node y [ r ]:
The variable nodes compute the probability mass function
and pass it to the check nodes. Each component of the proba⁃
bility mass function p( )i( )c, r is given by
p( )i( )c, r (aj) = Δ.p͂( )i( )c, r (aj) + (1 - Δ) .p͂( )i - 1

( )c, r (aj) , (35)
where
p͂( )i( )c,r (aj) = ∏

e ∈ J ( )c ,e ≠ r
Pr ( )y [ ]e |x[ ]c = aj,H =

∏
e ∈ J ( )c ,e ≠ r

ξ( )i ( )e, c, j
∑
t = 1

||A ξ( )i ( )e, c, t
,

(36)

ξ( )i (e, c, t) = exp ( - || y [ ]e - μ( )i
e,c - He,cat

2

( )σ( )i
e,c

2 ) . (37)
3) Compute convergence parameter η( )i for some γ > 0, as
η( )i = 1

MN∑c = 1
MN

I ( )max
aj ∈ A

p( )ic ( )aj ≥ 1 - γ , (38)
and

p( )ic (aj) = ∏
e ∈ J ( )c

ξ( )i ( )e, c, j
∑
t = 1

||A ξ( )i ( )e, c, t
.

(39)
4) If η( )i < η( )i - 1 for c = 1, 2,...,MN, then update
x̂[ c ] = arg max

aj ∈ A
p( )ic (aj) . (40)

5) Stop the iterations if any one of the following holds:
• The maximum limit set for the number of iterations has

reached;
• η( )i = 1;
• η( )i < η( )s* - ϵ for some small ϵ, where η( )s* = max

s < i η( )s .Modified variants of this message passing algorithm have
also been proposed. For example, a low complexity variant
that exploits channel hardening through match filtering oper⁃
ation on y and message passing on the resulting system mod⁃
el is presented in Ref. [15]. Another variant in Ref. [17] is
presented below.
3.2.2 Gaussian Approximate Message Passing Algorithm
In this variant of message passing, the a posteriori proba⁃

bility of each transmitted symbol is assumed to be Gaussian
distributed instead of assuming the inter-symbol interference
to be Gaussian as done earlier[17]. We have

Pr (y|x) =∏
r = 1

MN Pr ( )y [ ]r |x . (41)
As the channel matrix is sparse, we get
Pr (y [ r ]|x) = Pr (y [ r ]|xI ( )r ) , (42)

where xI ( )r contains the elements x[ c ], c ∈ I (r). The Gauss⁃
ian assumption is that
Pr (y [ r ]|xI ( )r ) = 1

2π σ exp ( - 1
2σ2 | y [ r ] - HI ( )r xI ( )r |

2) ,
(43)

where HI ( )r is a row vector containing the non-zero elements
in r-th row of H. This approach has been proposed in Ref.
[17] and the results presented show that this approach has su⁃
perior bit error rate (BER) performance with the same com⁃
plexity order.
3.2.3 Variational Bayes Detection
An iterative algorithm that approximates the optimal MAP

detection and has a faster convergence compared to the mes⁃
sage passing algorithm has been proposed in Ref. [20]. An
approximation of the a posteriori probability p (x|y) is ob⁃
tained by using Kullback-Leibler (KL) divergence D (q||p )
and the corresponding evidence lower bound (ELBO) is maxi⁃
mized iteratively using the variational Bayes approach. The
convergence is guaranteed because the ELBO maximization
problem is convexly resulting in a globally optimum solution.
In this way, the marginal distribution for each symbol is ob⁃
tained which is used for symbol-by-symbol MAP detection.
The approximate distribution q (x) is obtained by searching
over a family of distributions Q such that
q* (x) =
arg max

q ∈ Q D (q||p ) = arg maxq ∈ Q              Eq [ ]-ln q ( )x + ln p ( )x|y
L

. (44)
The ELBO is given by L which is the expectation over x

having distribution q (x). In particular, when a family Q with
mutually independent variables is considered,
q (x) =∏

i = 1

MN

qi ( )x[ ]i . (45)
q* (x[ i ]) is obtained iteratively i = 1, 2,...,MN, and the

symbols are detected as
x̂[ i ] = arg max

x[ ]i ∈ A q
*
i (x[ i ]) . (46)

In addition to having complexity lower than that of MAP
detection, this detection method has performance significant⁃
ly close to the performance of MAP detection.
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3.2.4 Hybrid MAP and PIC Detection
Another approximation to the MAP detection using a parti⁃

tioning method based on path gains has been proposed in
Ref. [16]. The hybrid MAP-PIC algorithm is a combination of
both symbol-by-symbol MAP detection and message passing
algorithm. The received symbols are partitioned into two sub⁃
sets based on the path gains of the channel. On one part with
good path gains MAP detection is used, and on the remaining
part parallel interference cancellation (PIC) method is used.
Define the following sets: H( )i ≜ { hj| 1 ≤ j ≤ P, j ≠ i } ,
Yk,l ≜ { y [ (k + β j )N, ( l + α j )M ] | 1 ≤ j ≤ P } , X(i )

k,l ≜ { y [ (k +β i - βj )N, ( l + α i - αj )M ] | 1 ≤ j ≤ P, j ≠ i } , where P is the
number of channel paths and i is the path index. The P re⁃
ceived symbols that are associated with the transmitted sym⁃
bol x[ k, l ] are in set Yk,l. Similarly, the P - 1 transmittedsymbols, other than x[ k, l ], corresponding to the received
symbol Yk,l [ i ] are in set X(i )

k,l. The path gains in H( )i are ar⁃
ranged in decreasing order such that |hm|2 > |hn|2 when
m < n. The set X(i )

k,l is partitioned into two subsets by enumer⁃ating different possible combinations of S (where S is the size
of the first subset with good path gains) as follows:
~X (i )

k,l ≜ {X(i )
k,l [ j ] | 1 ≤ j ≤ S}, (47)

X̄(i )
k,l ≜ {X( )i

k,l [ j ] |S + 1 ≤ j ≤ P - 1} . (48)
It is proposed to perform MAP detection on X͂( )i

k,l and PIC
on X̄( )i

k,l. The message passing algorithm that we discussed ear⁃
lier is a special case of Hybrid-MAP-PIC detection when S =
0. Results have shown that choosing S = P/2 gives good error
performance. A trade-off can be established between BER
performance and computation complexity by choosing a suit⁃
able value for S.
3.2.5 MCMC Sampling Based Detection
This detection algorithm proposed in Ref. [8] uses the Mar⁃

kov chain Monte Carlo (MCMC) sampling method to obtain
an approximate solution to Eq. (28). The joint probability dis⁃
tribution is given by

Pr (x|y,H) = Pr (x1, x2,..., xMN|y,H) ∝ exp ( || || y - Hx 2

σ2 ) . (49)
The algorithm starts by initializing a random initial vector

x( )t = 0 , where t denotes the iteration number. The MN coordi⁃
nates of the x vector are updated in each iteration based on
the coordinates of the previous iteration as follows:
x( )t + 11 ∼ Pr (x1|x( )t2 , x( )t3 ,..., x( )tMN, y,H) ,
x( )t + 12 ∼ Pr (x2|x( )t1 , x( )t3 ,..., x( )tMN, y,H) ,
x( )t + 13 ∼ Pr (x3|x( )t1 , x( )t2 , x( )t4 ,..., x( )tMN, y,H) , and

x( )t + 1
MN ∼ Pr (xMN|x( )t1 , x( )t2 ,..., x( )tMN - 1, y,H) .
After updating over a certain number of iterations, the dis⁃

tribution obtained approximately converges to the distribu⁃
tion in Eq. (49). For a received vector, the symbol vector
which has minimum ML cost | | y - Hx | |2 in all the iterations
is chosen as the detected symbol vector. A modification to
this has also been proposed to reduce the number of itera⁃
tions and also to overcome the phenomenon of stalling seen
in the Gibbs sampling method at high SNRs which limits the
BER performance. The modified joint distribution involves a
temperature parameter α chosen based on the operating SNR
and is given by

Pr (x|y,H) ∝ exp ( || || y - Hx 2

σ2α2 ) . (50)
Alternately, the sampling can be randomized by updating

the parameters in each iteration using the conventional
Gibbs sampling method with probability q (e.g., q = 1

MN
) and

obtaining samples from a uniform distribution with probabili⁃
ty 1 - q. This randomized sampling has been shown to avoid
stalling problems and achieve good BER performance.
3.3 Neural Networks Based Detection
Apart from the detection methods based on conventional

approaches, detectors based on DNN have been proposed re⁃
cently. Two DNN approaches have been presented in Ref.
[18]. One approach is to use a single fully-connected DNN to
detect the signal vector. The detection problem is formulated
as a multi-class classification problem where each class cor⁃
responds to each vector in the transmitted signal set, en⁃
abling joint detection of the transmitted symbol vector. The
number of input neurons in the network is decided by the
size of the received vector (MN) and the number of output
neurons is decided by the size of the multi-dimensional mod⁃
ulation alphabet (|A |MN). This approach requires a large num⁃
ber of parameters to be learned and is computationally com⁃
plex because of the exponential growth in the number of out⁃
put neurons with the size of transmit symbol vector. The ar⁃
chitecture of this fully connected DNN is shown in Fig. 6.
The real and imaginary parts of the received vector y are giv⁃
en as input to the DNN. The activation function used in the
output layer is Softmax activation so that the output of each
output neuron gives the probability of the corresponding
transmitted signal vector and all these probabilities sum to
one. The detected symbol vector is the one that has maxi⁃
mum probability.
Another architecture that uses multiple DNNs is shown in

Fig. 7. In this approach, each symbol in the transmitted vec⁃
tor is detected by an individual DNN. In this way, each DNN
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has the number of output neurons growing linearly in the size
of modulation alphabet (|A |). Also, the number of DNNs
grows linearly with the size of the transmit symbol vector
(MN). This symbol-DNN architecture does symbol-by-symbol
detection at lower complexity and achieves BER perfor⁃
mance almost the same as that of full-DNN. Each DNN uses
Softmax activation in the output layer and obtains probabili⁃
ties corresponding to each symbol in A.
The training of the DNNs is done by pseudo-randomly gen⁃

erating a set of training examples xT which are known both atthe transmitter and the receiver. These training examples are
sent to the receiver through the channel. The transmitted sig⁃
nal vector xT and the corresponding received signal vector yform the training pair at the receiver. The real and imaginary
parts of y are given as input to the DNNs. The DNN trained
in this manner learns the mapping from the received vector
to the corresponding symbol in the transmitted vector. Anoth⁃
er approach of using neural networks for signal detection has
been reported in Ref. [19], where the two-dimensional struc⁃
ture of the OTFS frame with data augmentation based pre-
processing is given as input to two-dimensional convolution⁃
al neural networks (CNN) for signal detection.
The benefits of using DNNs for signal detection can be

predominantly seen when there are deviations in the noise
model from the standard i. i.d. Gaussian model. In situations

where there are deviations from the Gaussian as well as inde⁃
pendence assumptions in the standard noise model, DNN
based detection could outperform conventional ML detec⁃
tion. This is because ML detection is optimum only for the
standard i.i.d. Gaussian noise model and the DNNs have the
ability to learn the underlying deviations in the model.
3.4 Performance Results
In this subsection, we present the BER performance of

some of the detectors presented in the previous subsections,
assuming perfect DD channel knowledge at the receiver.
The system parameters considered are according to the
IEEE.802.11p standard for wireless access in vehicular en⁃
vironments (WAVE)[52]. A carrier frequency of 5.9 GHz with
a subcarrier spacing of 0.156 MHz, a maximum speed of
220 km/h, and a multipath channel with P = 5 paths are
considered. BPSK modulation alphabet is used with a frame
size of M = 32 and N = 12.
Fig. 8 shows the BER performance of the linear detectors

including conventional MMSE/ZF detectors and low-com⁃
plexity MMSE/ZF detectors. It can be observed from Fig. 8
that the performance of the conventional MMSE detector and
the low-complexity MMSE detectors in Refs. [22] and [23]
are the same. However, the detectors in Refs. [22] and [23]
achieve this with significantly lower complexities compared
to the conventional MMSE detector complexity. This is illus⁃
trated in Fig. 9 where the computational complexities (in the
number of real operations) for these detectors are plotted.
The BER performance of the message passing detector in

Ref. [11] and the symbol-DNN based detector in Ref. [18]
are shown in Fig. 10. MMSE detection performance is also
shown for comparison. In this figure, a system with a carrier
frequency of 4 GHz, subcarrier spacing of 15 kHz, OTFS
frame size of M = N = 16, and a uniform power delay profile

▲Figure 6. Full deep neural network (DNN) architecture for detection
OTFS: orthogonal time frequency space

▲Figure 7. Symbol DNN architecture for detection

DNN: deep neural network

▲ Figure 8. BER performance of linear OTFS detectors for IEEE
802.11p WAVE channel model

BER: bit error rateBPSK: binary phase shift keyingLMMSE: linear minimum mean squared errorMMSE: minimum mean squared error

SNR: signal-to-noise ratioWAVE: wireless access in vehicu⁃lar environmentsZF: zero forcing
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channel with P = 8 are considered. The delay-Doppler pro⁃
file considered is shown in Table 1. For the message passing
algorithm, a damping factor of Δ = 0.6 and maximum itera⁃
tions of 30 are used. For the symbol-DNN based detection,
the parameters of the neural network are shown in Table 2. It
can be seen from Fig. 10 that the symbol-DNN performs bet⁃
ter than the MMSE detector, and the message passing detec⁃
tor gives the best performance among them.
Next, the performance superiority of DNN-based detection

compared to ML detection in correlated noise is illustrated in
Fig. 11. This figure shows the BER performance of the ML

detector and symbol-DNN detector for a MIMO-OTFS system
when the noise is correlated. The correlated noise vector is
taken to be vc = Ncv, where v is the i.i.d Gaussian noise vec⁃tor and Nc is the correlation matrix Nc =
é

ë

ê

ê

ê

ê
ê
êê
ê

ù

û

ú

ú

ú

ú
ú
úú
ú

1 ρ ρ2 ⋯ ρnr - 1

ρ 1 ρ ⋯ ρnr - 2

⋮ ⋮ ⋱ ⋮
ρnr - 1 ρnr - 2 ⋯ 1

, given by Ref. [53], where ρ

is the correlation coefficient (0 ≤ ρ ≤ 1), nt is the number oftransmit antennas, and nr is the number of receive antennas.The following system parameters are considered in Fig. 11:
carrier frequency of 4 GHz, subcarrier spacing of 3.75 kHz,
frame size of M = N = 2, uniform power delay profile chan⁃
nel with P = 4, MIMO configuration with nt = nr = 2, and acorrelation coefficient ρ = 0.4. The symbol-DNN architecture
has an input layer with 16 nodes, one hidden layer with 32
nodes, and an output layer with 2 nodes. The hidden layer
has ReLU activation and the output layer has Softmax activa⁃

▲Figure 9. Computational complexity of conventional MMSE and low-
complexity MMSE detectors

LMMSE: linear minimum mean squared error MMSE: minimum mean squared error

▼Table 1. Delay-Doppler profile considered in Figure 10
Path (i )
τ i (μs)
ν i (ms)

1
0
0

2
4.16
0

3
8.32
938.5

4
12.48
938.5

5
16.64
938.5

6
20.8
1 875

7
24.96
1 875

8
29.12
1 875

▲Figure 10. BER performance of MMSE, message passing, and sym⁃
bol-DNN based detectors

BER: bit error rateBPSK: binary phase shift keyingDNN: deep neural network
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▼Table 2. Parameters of symbol-DNN detector in Figure 10
Parameters

Number of input neurons
Number of output neurons
Number of hidden layers

Number of neurons in hidden layers
Hidden layer activation
Output layer activation

Optimization
Loss function
Training SNR

Number of training examples
Number of epochs

Symbol-DNN

2MN = 512
|A| = 2
1
256
ReLU
Softmax
Adam

Binary cross entropy
10 dB
50 000
50

DNN: deep neural network ReLU: Rectified Linear Unit SNR: signal-to-noise ratio

BER: bit error rateBPSK: binary phase shift keyingDNN: deep neural network
ML: maximum likelihoodSNR: signal-to-noise ratio

▲ Figure 11. BER performance of ML detection and symbol-DNN
based detection in 2×2 MIMO-OTFS with correlated noise
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tion. The DNN is trained at an SNR of 8 dB for 60 epochs
with 50 000 training examples. It can be seen from Fig. 11
that the symbol-DNN based detector outperforms the ML de⁃
tector by almost 1 dB at BER of 10-4. This is because the ML
detector is optimal only when the noise is i.i.d Gaussian and
is suboptimal in correlated noise. On the other hand, the sym⁃
bol-DNN based detector performs well as it effectively learns
the noise correlation leading to superior BER performance.

4 DD Channel Estimation
The task of channel estimation at the receiver is crucial

as signal detection operation requires the knowledge of the
channel state information. In OTFS, signal detection is car⁃
ried out in the DD domain. In the system model in Eq.
(10), knowledge of the DD channel matrix H is needed for
detection. In order to estimate H, x vector consisting of
known pilot symbols is sent. Given the knowledge of the pi⁃
lot symbol(s) in x and the observation vector y, channel es⁃
timation algorithms estimate H. For the purpose of exposi⁃
tion, we classify the channel estimation approaches into
three broad categories based on the OTFS frame pattern
used to transmit the pilot and data symbols. Fig. 12 shows
this classification consisting of 1) separate pilot approach,
2) embedded pilot approach, and 3) superimposed pilot ap⁃
proach. In the first approach, pilot frames consisting of on⁃
ly pilot symbols are used for channel estimation. The esti⁃
mated channel matrix obtained during the pilot frame is
used for detection during data frames. The second ap⁃
proach involves embedding both pilot and data symbols in
a frame. In the third approach, pilot symbols are superim⁃
posed on data symbols. Some of the channel estimation
techniques/algorithms employing these approaches are
presented in the following subsections.
4.1 Separate Pilot Approach
As mentioned earlier, in this approach, separate frames

are used for sending pilot symbols and data symbols. A pilot
frame consists of only pilot symbol(s). One pilot frame per
spatial coherence interval of the DD channel is sent. The
channel estimated during the pilot frame is used for the de⁃
tection of symbols in the data frames in that coherence inter⁃
val. In the following, we present three-channel estimation
methods using this approach.
4.1.1 Impulse Based Channel Estimation
In this method, impulses in the DD domain are sent as pi⁃

lots[13], i.e., the pilot symbol is given by

xp [ k, l ]{1, if ( )k, l = ( )kp, lp
0, ∀ ( )k, l ≠ ( )kp, lp . (51)

For this transmitted pilot, the received signal at the receiv⁃
er is
yp [ k, l ] = 1

MN∑l' = 0
N - 1∑

k' = 0

M - 1
xp [ ]k', l' hw ( )k - k'

NT
, l - l'
MΔf +

v[ k, l ] = 1
MN

hw ( k - kpNT
, l - lp
MΔf ) + v[ k, l ]. (52)

As the receiver knows the pilot locations kp and lp a priori,
hw ( kNT , l

MΔf ) can be estimated using Eq. (52) and the esti⁃
mated channel matrix Ĥ can be obtained.
4.1.2 PN Pilot Based Estimation
Instead of impulses as pilots, this method uses PN se⁃

quence as a pilot[8]. The estimation is done in the discrete do⁃
main and the parameters to be estimated are delay tap τi,Doppler shift νi, and channel fade coefficient h'i. The input-output relation for a P path channel in the time domain can
be obtained as
y (t) =∑

i = 1

P

hi x (t - τi) ej2πνi ( )t - τi + v (t) =

∑
i = 1

P

h'i e
j2πνi t x ( )t - τ i + v (t) , (53)

where h'i = e- j2πνiτi.Let H denote the vector space of complex-valued func⁃
tions on the set of finite integers ZNp

= { 0,1,...,Np - 1} with
an inner product defined as

g1, g2 = ∑
n ∈ ZNp

g1 [ n ] g*2 [ ]n , g1, g2 ∈ H. (54)
A signal is transmitted which is given by
SA (t) =∑

n = 0

M - 1
S [ n mod Np ] sinc ( )Wt - n , (55)▲Figure 12. DD channel estimation approaches in OTFS

DD: delay-DopplerOTFS: orthogonal time frequency space PN: pseudo-noise

DD channel estimationin OTFS

Separate pilot approach
• Impulses as pilots[13]• PN sequence as pi⁃lot[8]• Compressed sensingbased estimation[28]

Embedded pilotapproach
• Threshold based esti⁃mation with guardsymbols[27]• Sparse Bayesianlearning based esti⁃mation without guardsymbols[29]

Superimposed pilotapproach
• Single pilot super⁃imposition[35]• Multiple pilots su⁃perimposition[36]
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where S ∈ H,M = Np + éê ù
úWmax ( )τ i ≥ Np. For some S ∈ H

that is transmitted, the received sequence R [ n ] is
R [ n ] =∑

i = 1

P

αie (ωin) S [ ]n - δi + v[ n ], n ∈ ZNp
, (56)

where e (t) = ej
2π
Np
t, δ i,ω i ∈ ZNp

, α i ∈ C, and v[ n ] ∈ H. Eq.
(56) can be simplified as
R [ n ] = e (ω0n) S [ n - δ0 ] + v[ n ], (57)

such that (δ0,ω0) ∈ ZNp
× ZNp

. The (δ0,ω0) pairs are estimat⁃
ed using the time-frequency shift problem. A matched filter
matrix for R and S is defined as
M(R, S)[ δ,ω ] = R [ ]n , e ( )ωn S [ ]n - δ =

{ 1 + ϵ'Np, if ( )δ,ω = ( )δ0,ω0
ϵNp, if ( )δ,ω ≠ ( )δ0,ω0 , (58)

where | ϵ'Np | ≤ 1
Np

and | ϵNp | ≤ C + 1Np

for some positive con⁃
stant C. Thus, compute M(R, S) and choose (δ0,ω0) such
that M(R, S)[ δ0,ω0 ] ≈ 1. Once δ0 and ω0 are estimated, h'i,
τi and νi can be obtained.
4.1.3 Compressed Sensing Based Estimation
The channel estimation problem can be formulated as a

sparse signal recovery problem using compressed sensing
based methods like orthogonal matching pursuit (OMP) and
modified sub-space pursuit (MSP)[28]. The channel is estimat⁃
ed by sending a pilot matrix Xp in the DD domain with i. i.dGaussian random sequences as pilots. The system model is
rewritten as
yp = Xph + v, (59)

such that Xp ∈ CMN × MN and h ∈ CMN × 1 have P non-zero ele⁃
ments. The channel estimation problem as a sparse signal re⁃
covery problem is given by
min | | h | |0 s.t yp = Xph + v. (60)
OMP algorithm is used when the knowledge of the number

of paths P is available. Initialize h0 = 0, S0 = ∅, and r0 = yp.The following operations are performed in the ith iteration.
The indices of the highest correlated columns are obtained
as T i = arg max

j |X H
p r

i - 1 | , and the support is updated as Si =
Si - 1 ∪ T i. The non-zero values corresponding to the support
are h

Si
= (X Si

p )
†
yp, where (.) † is the pseudo-inverse operator.

Finally, the residue is updated as r i = yp - X Si
p hSi. Stop the

iterations when | | r i | |2 is less than a threshold ϵ and obtain
the estimate as ĥ

Si
= (X Si

p )
†
yp and ĥ S̄i = 0.

When the knowledge of the number of channel paths P is
not known, the subspace pursuit algorithm is modified to esti⁃
mate the channel and the corresponding support using Algo⁃
rithm 1. yp,Xp and ϵ are given as input and ĥ is obtained asoutput.
Algorithm 1. MSP based channel estimation[28]
Inputs: y,X,ϵ
Initialize: i = 1,r1 = y
while (| | r i | |2 - | | r i - 1 | |2 > ϵ) do

Initialize: t = 0, h0i = 0, S0i = { l01,..., l0i } are indices of imax. entries of |XHy |, b0i = X †
S0i
y, r 0i = y - XS0i

b0i
while t ≤ tmax do

t = t + 1~
Sti = Sti ∪ Θ t

i, where Θ t
i is a set of i indices corre⁃sponding to the i max. entries of |XHr t - 1i |

u ti = X †
~
Sti
y

Sti = { lt1,..., lti} are i entries from ~Sti which leads to
i max. entries of | u ti |
b ti = X †

Sti
y

r ti = y - XSti
b ti

r i = r tmaxi

Si = Stmaxi
i = i + 1Output: Estimated channel is ĥSi = X †

Sti
y and ĥ-Si = 0

4.2 Embedded Pilot Approach
In this approach, instead of allocating an entire OTFS

frame for pilot transmission, pilot symbols are transmitted in
the same frame as data symbols with guard symbols around
to prevent interference between pilot and data symbols. If no
guard symbols are provided, then more sophisticated algo⁃
rithms may be needed to handle the interference. In the fol⁃
lowing, we present two estimation algorithms for the embed⁃
ded pilot approach. The first algorithm is applicable when
guard symbols are provided. The second algorithm, based on
sparse Bayesian learning, is applicable for embedded frames
without guard symbols.
4.2.1 Embedded Pilot Based Estimation
In the embedded pilot based estimation[27], let (kp, lp) be

the pilot location such that 0 ≤ kp ≤ N - 1 and 0 ≤ lp ≤ M -
1. Define α = max { αi} corresponding to the largest delayand β = max { βi} corresponding to the largest Doppler. More
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precisely, it is better to choose (kp, lp) such that 0 ≤ lp - α ≤
lp ≤ lp + α ≤ M - 1, and 0 ≤ kp - 2β ≤ kp ≤ kp + 2β ≤ N -1. The pilot, guard, and data symbols in an OTFS frame are
arranged as follows (see Fig. 13 for an example):
x[ k,l ] =
ì

í

î

ïï
ïï

xp k = kp,l = lp
0 kp - 2β ≤ k ≤ kp + 2β, lp - α ≤ l ≤ lp + α .

xd [ ]k,l otherwise. (61)
At the receiver, the subgrid in y [ k,l ] used for channel esti⁃

mation is given by [ kp - β ≤ k ≤ kp + β,lp ≤ l ≤ lp + α ].
Within this subgrid, if | y [ k,l ] | ≥ T for a detection threshold
T > 0, then ĥ[ k - kp,l - lp ] = y [ k,l ] /xp and ĥ[ k - kp,l -
lp ] = 0 otherwise. If a path exists, then it must be seen in the
received frame as a scaled version of the pilot plus Gaussian
noise. It has been shown that choosing T = 3σ gives good es⁃
timation where σ2 is the noise variance. An extension to this
method has also been proposed in Ref. [27] considering the
fractional Doppler scenario. A method to select a threshold
value based on the receiver operating characteristics (ROC)
curve has been demonstrated in Ref. [32].
4.2.2 Sparse Bayesian Learning Based Estimation
In this method, the problem of channel estimation is con⁃

verted to a problem of sparse signal recovery by exploiting
the sparsity of the channel in the DD domain[29]. This method
does not require guard symbols and uses pilot SNR to be the
same as data SNR. This approach considers the case of frac⁃
tional Dopplers as well. The structure of the OTFS frame is
given by (see Fig. 14 for an example)
x[ k,l ] = {xp, kp - 2β - Q ≤ k ≤ kp + 2β + Q, lp - α ≤ l ≤ lp + lrxd [ ]k, l , otherwise ,

(62)
where kp and lp are chosen to be N 2 and M 2, respectively,
and Q is a parameter that approximates the effect of Doppler.
Results in Ref. [27] show that the channel approximation is

good when Q = 5. Further, lr is a parameter that obtains atrade-off between the error performance and pilot overhead.
At the receiver, y [ k, l ], k ∈ [ kp - β, kp + β ], l ∈ [ lp, lp + lr ]
are used for channel estimation. The system model for L =
(2β + 2Q + 1) × (α + 1) pilot symbols (xp [ k, l ]) is modified
as
y = (X⊙B)h + v = Φh + v, (63)

where X ∈ CMN × L, h ∈ CP × 1, and v ∈ CMN × 1. B is the phase
compensation matrix which is a block diagonal matrix with
the conjugate of the phase terms on the diagonal, and ⊙ is
Hadamard product operator. The noise in Eq. (63) is as⁃
sumed to be Gaussian with zero mean and variance 1/ν0,
Pr (v|ν0) = N (v|0,ν-10 I). The precision parameter ν0 is as⁃
sumed to be Gamma distributed with parameters a and b.
With this assumption, the distribution of the received vector
is given as Pr (y|Φh,ν-10 I). By modelling the conjugate prior
as per the Bayesian estimation framework, we get
Pr (h|ν) = N (0,Λ) , (64)

Pr (ν ; λ) =∏
i = 1

L Γ ( )νi|1, λ2 , (65)
where Λ = diag (ν) is the covariance matrix and ν i is thevariance of hi. All the hi's are identical with a Laplace sparseprior distribution

Pr (h i|λ) = Laplace (0, 1λ ) , i = 1, 2,..., L . (66)
The joint probability distribution of this model is written as
Pr (y,h,ν,ν0) = Pr (y|ν)Pr (h|ν)Pr (ν)Pr (ν0) , (67)

and
Pr (h|y,ν,ν0) = N (h|μ,Σ) , (68)

▲Figure 13. Transmit and receive symbol pattern for embedded pilot
based channel estimation[27]

: Pilot : Guard +: Data
0 1 lp-α lp lp+α M-1

: Channel estimation △: Data detection
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kp-2β10
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kp-2β10
0 1 lp-α lp lp+α M-1

▲Figure 14. Transmit and receive symbol pattern for sparse Bayesian
learning based channel estimation[29]
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where μ = ν0ΣΦTy and Σ = (ν0ΦTΦ + Λ-1) -1. The values
of ν and ν0 are obtained by solving expectation maximization(EM) algorithm as
(ν̂,ν̂0) = arg maxν,ν0 E { ln Pr (y, h, ν, ν0) } , (69)

which gives
ν i =

1 + 4λ ( )Σ ii + μ2i - 1
2λ , i = 1, 2,..., L, (70)

ν̂0 = 2a - 2 + MN
2b + ν-10 ∑

i = 1

L

( )1 - ν-1i Σ ii + || || y - Φμ 2
2

.
(71)

After obtaining μ, the first P (2Q + 1) largest values in μ
are selected as h.
4.3 Superimposed Pilot Approach
In this approach, pilot symbols are superimposed on data

symbols in an OTFS frame. For example, each bin in the DD
grid has a data symbol and a pilot symbol superimposed on it
as shown in Fig. 15[35]. Fig. 16 shows another example where
all bins have data symbols and only one among them has a
superimposed pilot symbol[36].
4.3.1 Superimposed Pilots Based Estimation in Ref. [35]
In this method of estimation, low-powered pilot symbols are

superimposed on the data symbols in the DD grid (Fig. 15).
The mutual interference between the pilot and the data sym⁃
bols is handled by optimum selection of pilot SNR and by
adopting an iterative approach that iterates between channel

estimation and data detection. The system model considered is
y = Xh + v, (72)

where X ∈ C MN × P, h ∈ C P × 1, and v ∈ C MN × 1. When the pilot
symbols are superimposed on the data symbols, the system
model is given by
y = Xph +  Xdh + v

vd

= Xph + vd , (73)
where Xp corresponds to pilot symbols, Xd corresponds to da⁃ta symbols, and vd is the noise plus interference term havingmean μvd = 0MN × 1 and covariance

Cvd
= ((∑

i = 1

P σ2hi)σ2d + σ2v ) IMN, (74)
where σ2d = E éëê| xd (k,l) |

2ù
û
ú, σ2hi is the variance of ith channel

coefficient, and σ2v is the noise variance. Under these as⁃sumptions, the MMSE estimate of the channel using superim⁃
posed pilots is given by
ĥsp = (X H

p C
-1
vd
Xp + C -1

h )
-1
X H
p C

-1
vd
y, (75)

where Ch = diag (σ2h1,σ2h2,...,σ2hP). Message passing algorithms
along with the MMSE estimated channel are used to detect
the data symbols X̂ ( )0

d . This is used as initialization of Xd foran iterative channel estimation algorithm which is more ro⁃
bust to the interference than the MMSE estimate. With this,
the system model in Eq. (73) can be rewritten as

▲Figure 16. Transmit symbol pattern in superimposed pilot scheme in
Ref. [36]

▲Figure 15. Transmit symbol pattern in superimposed pilot scheme in
Ref. [35]
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y = (Xp + X̂ ( )0
d ) h + (Xd - X̂ ( )0

d ) h + v = X ( )0
xp,x̂d h + ξ ( )0

w . (76)
Here, the data-aided pilot is given by X ( )0xp,x̂d and the inter⁃

ference plus noise term is given by ξ( )0
w , where

X ( )0
xp,x̂d = Xp + X̂ ( )0

d , ξ ( )0
w = (Xd - X̂ ( )0

d ) h + v. (77)
For the system model in Eq. (76), the MMSE channel esti⁃

mate in the n-th iteration ĥ( )n is obtained using Eq. (75) as

ĥ( )n = ((X ( )n - 1
xp,x̂d )H (C ( )n

ξw )
-1
X ( )n - 1
xp,x̂d + C -1

h )
-1
⋅

(X ( )n - 1
xp,x̂d )H (C ( )n

ξw )
-1
y, (78)

where C ( )nξw = E [ ξ( )n
w ξ( )n

w
H ] is given by

C ( )n
ξw
= 2 (∑

i = 1

P

σ2hi)σ2d IMN + σ2v IMN. (79)
Thus, the expression in Eq. (78) gives the channel estimation
after n iterations.
4.3.2 Superimposed Pilot Based Estimation in Ref. [36]
A data-aided channel estimation that uses the whole OTFS

frame for data transmission scheme with one pilot symbol su⁃
perimposed on a data symbol in the (kp, lp) location of the
grid is reported in Ref. [36]. The allocation of symbols in the
DD grid is given by
x[ k, l ] = {xp + xd [ k, l ] , k = kp, l = lpxd [ k, l ] , otherwise . (80)
The energy of the pilot symbol is denoted by Ep = | xp |2

and the average energy of the data symbol is denoted by Ed =
E éë| x[ k,l ] |

2ù
û. With this frame structure, the received signal

in the DD domain is given by
y [ k, l ] = xphw éëê(k - kp)N, (l - lp)M

ù
û
ú + Ik,l + v[ k, l ], (81)

where Ik,l is the interference due to data symbols, given by
Ik,l = ∑

k' = k - β

k + β ∑
l' = l - α

l

x[ ]k', l' hw éë ù
û( )k - k' N, ( )l - l' M . (82)

The channel is initially estimated using a modified
threshold which incorporates the effect due to Ik,l. Usingthis estimated channel, the data symbols are detected by a
sum-product algorithm. The interference term can be sim⁃
plified as

Ik,l = ∑
i ∈ Qk,l

hi x
é
ë
ê(k - βi)

N
, (l - αi)

M

ù
û
ú e

- j2π αi βi
MN , (83)

where Qk,l is the set of indices of the data symbols that con⁃
tribute to y [ k, l ] such that |Qk,l | = P. From this, the energy of
the interference part is obtained as
E { | Ik,l |2} = ∑

i ∈ Qk,l
E { | hi |2} Es. (84)

When∑
i = 1

P

E { | hi |2} = 1, we get E { | Ik,l |2} = Es. Using the
interference energy, the threshold is obtained as
γ = 3( N0 + Es ) . (85)
If | y [ k, l ] | ≥ γ, the estimates of the channel coefficients

can be obtained as
ĥw

é
ë
ê(k - kp)

N
, (l - lp)

M

ù
û
ú = y [ ]k, l

xp
. (86)

The data symbols are detected using the estimated ĥw bythe decision rule:
x̂[ k, l ] = arg min

x[ ]k,l ∈ A Pr (x[ k, l ]|y) . (87)
The marginal PDF is obtained by using a sum-product al⁃

gorithm. After detecting the data symbols, the interference
caused by them is cancelled and the resultant symbols are
given by
y͂ [ k, l ] = y [ k, l ] -∑

k'
∑
l'
x̂[ ]k', l' ĥw éë ù

û( )k - k' N, ( )l - l' M .
(88)

These symbols would contain only the pilot information if
the interference was completely cancelled. However, due to
imperfect estimates, this method of channel estimation fol⁃
lowed by data detection and interference cancellation is per⁃
formed iteratively to obtain better estimates.
4.4 Performance Results
In this subsection, we present the performance of some of

the channel estimation methods presented in the previous
subsections. The OTFS system considered has a carrier fre⁃
quency of 4 GHz, a subcarrier spacing of 15 kHz, and a DD
grid with M = N = 32. A multipath channel with P = 5
paths, exponential power delay profile, and delay-Doppler
profile shown in Table 3 are considered. Fig. 17 shows the
mean squared error (MSE) performance as a function of pilot
SNR for 1) OMP, 2) impulse based estimation, and 3) embed⁃
ded pilot based estimation. A pilot frame with i.i.d Gaussian
random sequences occupying the entire DD grid is used for
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OMP based channel estimation. A pilot frame with an im⁃
pulse at location (kp, lp) = (15, 15) and zeros elsewhere is
considered for impulse based channel estimation. An embed⁃
ded frame is used for embedded pilot based channel estima⁃
tion, with impulse as a pilot at location (kp, lp) = (15, 15),
guard symbols in the locations 7 ≤ k ≤ 23, 10 ≤ l ≤ 20, and
data symbols elsewhere.
It can be seen from Fig. 17 that the OMP algorithm gives

the channel estimate with small MSE, which is in the order
of 10-3 for a pilot SNR of 15 dB. Impulse based channel esti⁃
mation scheme is simpler but its MSE is high. The MSE of
the embedded pilot based channel estimation is also high.
Fig. 18 shows the BER performance of these estimation meth⁃
ods using MMSE detection as a function of data SNR for a pi⁃
lot SNR of 20 dB. BPSK modulation is used. The BER perfor⁃
mance of OMP based channel estimation is close to the per⁃
formance using perfect channel knowledge. Impulse based
estimation performance is inferior compared to OMP perfor⁃
mance but is superior compared to that of embedded pilot
based estimation. Embedded pilot based estimation can be
used with high pilot SNRs to achieve good BER performance
and higher throughput.

5 Conclusions
OTFS modulation is regarded as an attractive physical layer

waveform for future wireless systems. It has demonstrated ro⁃

bust performance in high-Doppler scenarios which are expect⁃
ed in emerging standards. In this paper, we presented an over⁃
view of the state-of-the-art approaches in OTFS signal detec⁃
tion and DD channel estimation. We classified the detection
approaches as low-complexity linear approach, approximate
MAP approach, and DNN approach. Low complexities possi⁃
ble in the linear approach due to the structure of the channel
matrix make it attractive for practical implementations. The it⁃
erative MAP approach (e.g., message passing) is known for its
good performance at low complexities. DNN approach is
emerging with good promise particularly when there are model
deviations that are typical in practice. In the DD channel esti⁃
mation space, we highlighted approaches based on exclusive
pilot frames, embedded pilot frames, and superimposed pilot
frames. More research in OTFS transceiver designs using the
DNN approach can be pursued as future work.
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