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Abstract: With the vigorous development of mobile networks, the number of devices at
the network edge is growing rapidly and the massive amount of data generated by the de‑
vices brings a huge challenge of response latency and communication burden. Existing re‑
source monitoring systems are widely deployed in cloud data centers, but it is difficult for
traditional resource monitoring solutions to handle the massive data generated by thou‑
sands of edge devices. To address these challenges, we propose a super resolution sensing
(SRS) method for distributed resource monitoring, which can be used to recover reliable
and accurate high‑frequency data from low‑frequency sampled resource monitoring data.
Experiments based on the proposed SRS model are also conducted and the experimental
results show that it can effectively reduce the errors generated when recovering
low‑frequency monitoring data to high‑frequency data, and verify the effectiveness and
practical value of applying SRS method for resource monitoring on edge clouds.
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1 Introduction

In recent decades, with the advent of the era of Internet of
Things and the rapid development of mobile networks,
the number of edge devices and the number of data gener‑
ated at the edge have been growing exponentially, leading

to higher and higher requirements for network bandwidth. At
the same time, driving modern intelligent mobile applications,
deep learning has attracted much attention from scientists and
IT enterprises. New applications based on deep neural net‑
works have achieved great success in computer vision, speech
recognition, natural language processing and intelligent ro‑
bots. Although complex computing tasks are completed and re‑
liable and accurate results are obtained, the massive data gen‑
erated by these new applications will put forward higher re‑
quirements on network bandwidth and time delay. According
to IDC’s prediction, the global data volume would be more
than 40 ZB before 2020, and the data generated at the edge
will account for 45% of the total[1]. In new edge cloud scenari‑
os, the traditional cloud computing technologies are difficult
to process the billion-scale data generated by edge devices[2],
and only using the strong computing power and storage re‑
sources of the cloud data center to solve the computation and
storage problems can no longer adapt to the needs of the new

era, because it has two main shortcomings: high latency and
bandwidth limitation. The latency requirements of deep learn‑
ing-based applications at the edge are very high. Such an ap‑
plication needs to transfer the data to the cloud and the data
will be processed and then returned to the device side, which
may significantly increase the processing delay of the applica‑
tion. For example, a car running at a high speed has millisec‑
ond-level delay requirements, but if the processing delay of
the application increases due to the change of network condi‑
tions, the consequences will be unimaginable. Besides, affect‑
ed by the edge device resource limitations, the data generated
by the device will be transmitted to the cloud in real time; for
example, the amount of data generated by the aircraft per sec‑
ond will exceed 5 GB[3]. However, the bandwidth limitations
prevent this real-time transmission in edge cloud scenarios.
In recent years, with the development of cloud computing,

virtualization and containerization technologies, companies
such as eBay, Facebook, Google and Microsoft have made a
lot of investment in large-scale data centers supporting cloud
services[4]. Servers are the core part of data centers and moni‑
toring server resources aims to guarantee the smooth operation
of data centers. At present, resource monitoring is one of the
key technologies to support cloud computing platforms, which
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mainly includes cloud resource management, fault analysis, re‑
source scheduling, statistical analysis and anomaly warning.
The existing resource monitoring system is widely deployed in
cloud data centers, but with the increasing of edge devices, re‑
sources need to be monitored on edge clouds. A large number
of resource monitoring data will make the network bandwidth
a bottleneck affecting system performance, but these high-fre‑
quency resource data are the basis for the monitoring system
to conduct reliable and accurate early warning.
The traditional solutions to recovering low-frequency re‑

source monitoring data into high-frequency data include linear
interpolation, cubic interpolation and compressed sensing-
based methods[5]. However, with the rapid development of
deep learning technology, the traditional methods have two ob‑
vious shortcomings. One is that they need to either collect the
original high-frequency data at the edge device end or con‑
sume additional computing power to calculate the low-frequen‑
cy monitoring data, and then upload the data to the cloud,
which will obviously increase the computing cost of the edge
device. The other one is that the accuracy of high-frequency
monitoring data recovered by the reconstruction algorithm
based on the traditional methods cannot meet the needs of
some online services; however, with the increasing number of
online services in cloud data centers, the accuracy of high-fre‑
quency monitoring data is greatly important.
To tackle the challenges discussed above, novel methods

are needed to support high-frequency sensing of monitoring
systems on edge clouds. In this paper, we achieve this goal by
applying the super resolution sensing (SRS) technology. The
SRS technology based on deep learning is used to avoid col‑
lecting original high-frequency data at the edge device and re‑
duce unnecessary calculation cost. It only involves low-fre‑
quency data at the transmission and storage stage of monitor‑
ing data and information reconstruction can be carried out by
using this technology only when high-frequency data with high
precision is needed, which can significantly reduce the cost of
calculation and communication. The proposed SRS process is
mainly divided into three stages: feature extraction, relation‑
ship mapping and information recovery. The feature extraction
module is used to obtain the intrinsic features of the low-fre‑
quency data, followed by a gated recurrent unit network based
on the attention mechanism to find the potential relationship
between the low-frequency data and the high-frequency data
in the relationship mapping stage, and finally, the high-fre‑
quency surveillance data are recovered based on the learned
feature information in the information recovery stage.
The rest of the paper is organized as follows. We briefly re‑

view the related work in Section 2. We propose an SRS system
for resource monitoring and present its network structure in
Section 3. Then we demonstrate the effectiveness of the pro‑
posed approach by simulations in Section 4. Finally, we pro‑
vide conclusions and some future work directions in Section 5.

2 Related Work
At present, super-resolution sensing techniques can be

broadly classified into three categories: interpolation, recon‑
struction, and deep learning-based reconstruction methods.
The interpolation-based methods are mainly based on the

relationship between the values of neighboring pixel points in
the image and the positions of other pixel points around them,
and the missing values of the pixel points on the high-resolu‑
tion image are complemented by interpolation, and finally the
high-resolution image is recovered by noise reduction and de‑
blurring. The common interpolation-based methods include
nearest neighbor interpolation, bilinear interpolation based on
wavelet domain[6] and cubic interpolation[7]. On this basis,
some researchers have further proposed interpolation based on
gradient features, interpolation based on image features, etc.
The interpolation based on bilateral filter proposed by TOMA‑
SI et al.[8] uses bilateral filtering as a constraint term to reduce
the edge noise generated by the reconstructed image. To fur‑
ther reduce the effects of blurring and ringing in the recovered
images, LI et al. [9] proposed an interpolation algorithm based
on edge orientation, which uses a geometric pairwise method
to interpolate the specified edge regions and highly textured
regions in the image orientation, thus significantly improving
the quality of image reconstruction. To reduce the artifacts in
the recovered image, BELAHMIDI et al. [10] introduced partial
differential equations and data fidelity for directional interpo‑
lation of edges, but the effectiveness of these algorithms is af‑
fected by the edge regions. Therefore, adaptive interpolation
algorithms based on texture partitioning have also been pro‑
posed by some researchers[11].
Although the interpolation-based method is simple, it fails

to introduce any priori knowledge and its information recovery
capability is insufficient. Therefore, a reconstruction-based re‑
construction method is used, which is more concerned with
the image degradation itself than the interpolation method.
STARK and OSKOUI proposed the convex set projection
method[12], which, based on the set theory, first defines a set of
convex constraint sets for the solution space of the image and
seeks the points that satisfy all the conditions of the con‑
strained convex sets by stepwise iteration to complete the re‑
construction of the high-resolution image. Another typical al‑
gorithm is the maximum a posteriori (MAP) probability estima‑
tion method[13–15], a method proposed based on probability sta‑
tistics, which treats the known low-resolution image and the
high-resolution image to be recovered as two independent sto‑
chastic processes, and requires the design of a reasonable sta‑
tistical prior model to maximize the posterior probability of im‑
age recovery after reconstruction. It has the advantages of di‑
rect incorporation of a priori constraints, high convergence sta‑
bility and strong noise reduction capability, but the disadvan‑
tages are large computational effort and slow convergence
speed. Another common reconstruction-based method is the it‑
erative back-projection method[16], which back-projects the er‑
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ror between the degraded image and the low-resolution image
of the reconstructed image and uses this error to correct the
current reconstructed image. A super-resolution sensing meth‑
od based on maximum likelihood estimation and convex set
projection was proposed later[17], which makes full use of the
prior knowledge and possesses good convergence stability.
With the continuous improvement of computer computing

power, deep learning has become a popular topic for many re‑
searchers and scholars, and the application of neural networks
in the field of image and signal processing has become a new
development trend. Convolutional neural networks (CNN)
have become a representative structure in the field of comput‑
er vision after KRIZHEVSKY et al. [18] applied CNN to image
classification and achieved amazing results in 2012. In 2014,
DONG et al. [19] first used CNN for super-resolution sensing of
images and proposed a CNN-based super-resolution recon‑
struction network (SRCNN), which learns the features from
low-resolution images to high-resolution images by pre-pro‑
cessing the input low-resolution images with linear interpola‑
tion and then recovering the high-resolution images through
feature extraction, nonlinear mapping and image reconstruc‑
tion. This model learns the feature mapping relationship from
low-resolution images to high-resolution images, which is the
pioneer of super-resolution image reconstruction based on
deep learning, and has a great improvement in the quality of
recovered images compared with traditional methods. In 2016,
DONG et al. [20] proposed the faster SRCNN (FSRCNN), which
eliminates the interpolation preprocessing step, takes the low-
resolution image as the input of the model directly, and uses
the deconvolution operation to enlarge the feature map at the
end, which greatly reduces the computation of the model and
accelerates the operation speed. Subsequently, SHI et al. [21]
proposed an efficient sub-pixel convolutional neural network
(ESPCN), which uses sub-pixel convolution layers instead of
deconvolution to scale up the learned feature maps, further re‑
ducing the computational effort of the model and providing
better image recovery quality compared with FSRCNN. Later,
with the emergence of the residual network and the recurrent
neural network (RNN), KIM et al. successively proposed the
deeply-recursive convolution network (DRCN) [22] and very
deep super resolution (VDSR)[23] models. The DRCN utilizes a
recursive approach to share the parameters of the network lay‑
ers and reduce the number of parameters of the model, while
the VDSR model utilizes the global jump connection property
of the residual structure to connect the input layer for better
image recovery quality. LEDIG et al.[24] proposed super resolu‑
tion residual network (SRResNet), a super-resolution sensing
algorithm based on deep residual networks, which adds multi‑
ple modules for local residual learning and increases the num‑
ber of layers of the network to learn more low-resolution to
high-resolution feature mapping information, and achieves fur‑
ther improvement in the quality of image recovery. With the
popularity of generative adversarial networks (GAN) [25],

LEDIG also proposed the super resolution generative adversar‑
ial network (SRGAN) model with the main improvement of
changing the loss function to adversarial loss and content loss,
which can better recover the texture details of images. LIM et
al.[26] proposed enhanced deep super resolution model (EDSR)
based on SRResNet in 2017, the batch normalization layer in
the model was removed, the network parameters were re‑
duced, and it was applied to scenes with multi-scale recovery
of low-resolution images.

3 Super Resolution Sensing for Resource
Monitoring on Edge Clouds

3.1 System Model
At present, super-resolution sensing technology is mostly

applied in the field of image and video processing, which can
reconstruct low-resolution images into high-resolution images
by deep learning methods and has great improvement in accu‑
racy compared with traditional methods, but it is rarely ap‑
plied to the reconstruction of low-frequency time series. In‑
spired by this, this paper proposes a super-resolution sensing
algorithm for resource monitoring.
Fig. 1 shows the framework of the algorithm on edge clouds.

It can be seen that there are three main phases included in the
edge cloud application scenario, which are the data acquisi‑
tion phase, offline training phase and online recovery phase.
First, in the data collection phase, low-frequency and high-fre‑
quency monitoring data, which can be CPU utilization, memo‑
ry usage or bandwidth status, need to be collected from each
edge device side in a distributed manner and then received
and stored uniformly by the cloud proxy server after the collec‑
tion is completed. Then, in the offline training phase, the col‑
lected low-frequency and high-frequency resource data are
used to train the corresponding SRS models, which are respon‑
sible for information reconstruction tasks with different sens‑
ing factors, such as super resolution sensing models with sens‑
ing factors of 2, 5, and 10. Once the training is completed, the
trained models can be packaged into containers to be de‑
ployed as online services in the resource monitoring system in
the cloud. Finally, the online recovery phase is to recover the
reliable and accurate high-frequency data from the low-fre‑
quency data collected at the edge device side through the
trained super-resolution sensing model, and the resource mon‑
itoring system will select the model with the appropriate sens‑
ing factors for recovery when and only when high-frequency
data is needed, which can significantly reduce the communica‑
tion and storage cost of resource data.
3.2 SRS Network Structure
Based on the attention mechanism and gate recurrent unit

(GRU) network, this paper proposes a super-resolution sens‑
ing model for resource monitoring, which can extract feature
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information after inputting low-frequency data, reconstruct
high-frequency information through relational mapping, and fi‑
nally recover the corresponding high-frequency signal. The
specific model structure is shown in Fig. 2. This super-resolu‑
tion sensing model is mainly divided into three stages: the fea‑
ture extraction, relational mapping and information recovery.
In the feature extraction stage, multiple one-dimensional con‑
volutional layers act as global feature extractors of low-fre‑
quency information to extract abstract features of the input sig‑
nal and represent them as feature vectors. And the relational
mapping layer consists of a series of GRU network blocks du‑
al-attention GRU (DAGRU) based on the temporal attention
mechanism and feature attention mechanism, in which global
residual blocks and local residual blocks are also added. The
sub-network composed of many DAGRU blocks can effective‑
ly learn the intrinsic connection between low-frequency infor‑
mation and high-frequency information, and the information
lost by low-frequency information can be made up by relation‑
al mapping. Finally, in the information recovery stage, the in‑
formation inferred by the relationship mapping layer is passed

through the convolutional layer for feature extraction of poten‑
tial relationships, while the feature map dimension is recon‑
structed, and then the low-frequency information is recon‑
structed into the high-frequency information corresponding to
the sensing factors by multiple sub-pixel convolutional layers,
followed by the recovery of the complete high-frequency re‑
source monitoring information using the fully connected layer.
The most important part of the super-resolution sensing

model proposed in this paper is the relational mapping layer
and the feature information FL obtained from the low-frequen‑
cy resource signal through the feature extraction layer is used
as input, which can complete the missing information of the
feature vector in the low-frequency data after the relational in‑
ference by multiple DAGRU networks. As a variant of recur‑
rent neural network, GRU can solve the problem of gradient
disappearance and explosion than the standard RNN structure
and can extract long-term dependencies in temporal sequenc‑
es. It requires less computational resources, has fewer model
parameters and has good convergence than the widely popular
LSTM unit. Therefore, in this paper, GRU is used as a basic

▲Figure 1. Framework of super-resolution sensing for resource monitoring

SRS: super-resolution sensing
Data acquisition

Edge
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SRS model(x2) SRS model(xN)

Offline training Online recovering
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…

▲Figure 2. The proposed super-resolution sensing network structure
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unit in the relational mapping layer and the DAGRU network
is designed by combining the attention mechanism (Fig. 3).
The attention mechanism can be basically divided into hard

attention mechanism and soft attention mechanism according to
the degree of attention to important regions. The hard attention
mechanism refers to the targeted selection of some features in
the input information for learning while directly ignoring other
unselected features. It can be implemented in two ways. One is
to select input information with the highest frequency and the
other can be obtained by performing random sampling on the at‑
tention distribution. Hard attention can greatly reduce the size
of the parameters in a neural network and lower the require‑
ment for computational resources by learning only some of the
key regions and discarding other irrelevant information. Howev‑
er, it is usually based on random sampling to determine the in‑
put information, so it leads to a non-derivable relationship be‑

tween the attention distribution and the loss function. There‑
fore, it is difficult to optimize the loss function by back-propaga‑
tion methods. On the other hand, the soft attention mechanism
can be used to learn the overall features according to the impor‑
tance of different regions in the information by using weighted
averaging without directly discarding some irrelevant regions,
and the degree of each region being attended to can be ex‑
pressed by a value between 0 and 1. Therefore, it is a micro‑
scopic process, which can be used in the training of neural net‑
works by forward propagation to perform relational mapping
and back propagation to perform parameter optimization. Based
on the soft attention mechanism, in this paper, two attention
mechanisms are designed in the DAGRU sub-network, which
are the temporal attention mechanism (TA) and the feature at‑
tention mechanism.
Since the fluctuation of resource monitoring information is

affected by the historical state, GRU network can be used to
extract long-term dependencies, but this is not enough to meet
the requirements for the accuracy of the trained model. After
the analysis of some monitoring resource sequences, it is
found that, for example, CPU utilization may rise suddenly in
a period of time due to the sudden need to deal with computa‑
tionally intensive tasks. This shows that the degree of influ‑
ence of each historical moment on the current moment state is
different, so a temporal attention mechanism is added on the
basis of GRU network, which can adaptively decide the de‑
gree of influence of historical moments on the current moment
information. The specific structure is shown in Fig. 4.
The hidden layer state values hi containing informationabout the historical moments are taken as inputs in Fig. 4 and

i ∈ [ 1, t - 1 ]. Their degrees of influence on the current mo‑
ment ht are analyzed, which can be achieved by the scoringmechanism, and the scoring function f is in the form of a dot
product as follows:
f (ht, hi) = hTt W hi , (1)

▲ Figure 3. Structure of dual-attention gate recurrent unit (DAGRU
network based on attention mechanism)
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where W is a weight matrix about the hidden values of the his‑
torical states, followed by a softmax function to find the degree
of influence of each historical moment on the current moment
defined as αi with the following formula:

αi =
exp ( )f ( )ht, hi
∑exp ( )f ( )ht, hi

.
(2)

Then, according to the derived attention distribution αi, aweighted average is done for each input hi, and the input infor‑mation is encoded to obtain the context vector ct described bythe formula:
ct =∑

i = 1

t - 1
αihi . (3)

After obtaining the context vector ct, the final state value a tis obtained with the hidden layer state value ht by an additivemodel and by the tanh activation function with the following
formula:
at = tanh (Wc [ ct ; ht ]). (4)
It can be seen from the above equations that the temporal at‑

tention mechanism of the hidden layer states in the GRU unit
can determine the degrees of correlation of historical state val‑
ues at different moments. Combined with the current moment
state values, this mechanism enables a kind of adaptive extrac‑
tion of long-term dependency features, which can effectively
suppress the less influential historical state values and help
improve the quality of the recovered signal.

4 Evaluation
To verify the effectiveness of the super-resolution model for

resource monitoring proposed in this paper, we select the
2018 cluster resource dataset named cluster-trace-v2018 pub‑
licly available from Alibaba Group, which contains resource

monitoring information of about 4 000 servers over eight days.
4.1 Quantitative Comparison
In order to study the characteristics and effectiveness of the

proposed SRS method, we conduct experiments using three met‑
rics: the mean absolute percentage error (MAPE), peak signal to
noise ratio (PSNR) and dynamic time warping (DTW)[27]. MAPE
is commonly used to measure the temporal similarity of differ‑
ent time series and a higher MAPE value means a larger differ‑
ence between the true value and the recovery value. PSNR rep‑
resents the ratio of the maximum power of the signal to the aver‑
age power of noise and a higher PSNR value indicates that the
recovery value contains a smaller noise. DTW distance is a pop‑
ular metric to obtain an optimal alignment that can be used to
measure the similarity of shape features, which can be relative‑
ly robust to interference factors. We compare our SRS method
with traditional upsampling methods including the linear inter‑
polation, cubic interpolation, and compressive sampling match‑
ing pursuit (CoSaMP)[28] based on compressed sensing (CS). The
quantitative comparison results between SRS and the other
methods are shown in Table 1. It is obvious that the proposed
SRS method is significantly better than other methods in differ‑
ent frequencies. From the perspective of DTW distances, the re‑
sults of the SRS method are smaller than the results obtained
by the other methods, which demonstrates that the proposed
SRS method can effectively recover the shape characteristics of
high-frequency resource data.
4.2 Qualitative Comparison
Figs. 5 and 6 show the qualitative comparison results. For

each visualization result, it is obvious that the interpolation
and compressed sensing methods cannot recover the missing
details in the high-frequency data, resulting in the loss of in‑
formation during the degradation process. Compared with the
proposed SRS method, the other methods can only recover the
rough shape of waveform, which is difficult to restore the peak
values of the resource information. The proposed SRS method
can effectively recover the shape of waveforms and peak value
of high-frequency resource information.

▼Table 1. Comparison results attained by SRS and other methods

fl

1/20
1/50
1/100
1/200
1/400
1/100
1/100
1/200
1/400

fh

1/10
1/10
1/10
1/10
1/10
1/50
1/20
1/20
1/20

SRF
2
5
10
20
40
2
5
10
20

Linear Interpolation
(MAPE/PSNR/DTW)
4.78%/33.58/334.62
7.23%/29.89/493.52
8.99%/27.99/623.26
11.93%/26.02/781.07
13.16%/24.30/936.30
5.33%/32.66/78.78
7.72%/29.34/264.58
9.78%/27.41/347.59
11.23%/26.38/428.85

Cubic Interpolation
(MAPE/PSNR/DTW)
4.66%/33.73/317.26
7.16%/29.86/472.10
9.10%/27.89/600.04
11.02%/26.52/757.24
12.62%/24.35/918.10
5.33%/32.69/74.23
7.81%/29.92/252.15
9.99%/27.19/334.94
11.13%/26.03/419.25

CS
(MAPE/PSNR/DTW)
11.30%/27.04/678.56
23.03%/20.93/1 499.84
30.85%/19.06/2 157.87
36.45%/18.42/2 649.60
106.59%/15.34/8 549.43
14.90%/24.85/191.03
24.42%/20.77/819.10
31.70%/16.64/1 159.87
82.49%/16.16/3 458.83

SRS
(MAPE/PSNR/DTW)
4.15%/34.78/296.52

6.32%/30.95/442.34

8.09%/28.72/548.06

9.85%/27.03/696.51

11.09%/26.01/817.40

4.84%/33.91/70.99

6.98%/30.29/241.26

8.94%/28.03/318.82

10.26%/26.79/379.41

fl: low sampling frequency of CPU usage fh: high sampling frequency of CPU usage CS: compressed sensing DTW: dynamic time warping
MAPE: mean absolute percentage error PSNR: peak signal to noise ratio SRF: super resolution factor SRS: super resolution sensing
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4.3 Analysis of Latency Under Dynamic Bandwidth
The delay variations of different algorithms under dynamic

bandwidth environment with certain recovery accuracy are
shown in Fig. 7. It can be seen that the super-resolution sensing
model proposed in this paper can reduce the delay requirement
of sending monitoring data from the edge to the cloud by allow‑
ing the edge devices to collect resources at a lower frequency
and guaranteeing certain recovery accuracy at a lower band‑
width. In addition, along with the increase of bandwidth, the de‑
lay variation is basically in a smooth state while the other meth‑
ods will generate higher delay on low-bandwidth network.

5 Conclusions and Future Work
With the advent of the IoT era, computing power has started

to gradually move from the cloud down to the edge and the tra‑
ditional cloud computing models are quietly changing. The
emergence of thousands of edge devices will greatly share the
pressure of cloud computing, so it is also necessary to provide
a perfect resource monitoring scheme for the new edge cloud
scenario. However, the existing resource monitoring schemes
basically serve the cloud data center and there is no need to
consider the computational overhead and bandwidth cost
when collecting the resource monitoring data. Therefore, this
paper proposes a super-resolution sensing model for resource
monitoring by studying the existing signal reconstruction tech‑
niques including compressed sensing and super-resolution
sensing for the edge cloud application scenario, which is main‑
ly divided into three structures: the feature extraction layer,
the relationship mapping layer and the information recovery
layer. In the feature extraction layer, the low-frequency re‑
source monitoring information is extracted by three-layer one-
dimensional convolution. Then in the relationship mapping
phase, the mapping relationship between low-frequency data
and high-frequency data is mined by a GRU network based on
the temporal attention mechanism and feature attention mech‑
anism, which is used as the input of the information recovery
layer. Finally, the low-frequency feature information is recon‑
structed into reliable and accurate high-frequency information
in the multi-scale sub-pixel convolution layer.
Aiming at meeting the requirement of real-time monitoring,

the super-resolution sensing technique for resource monitoring
proposed in this paper reduces the amount of transmitted re‑
source data by reducing the sampling frequency at the edge de‑
vices. Due to the limitation of the experimental environment, a
finite number of edge devices are used in our experiments, and
subsequent studies can be migrated to larger edge clusters for
future experiments. In addition, in the dynamic bandwidth envi‑
ronment, the data acquisition module can be allowed to adjust
the acquisition frequency adaptively to collect monitoring re‑
sources, and the super-resolution sensing model with corre‑
sponding sensing factors can be trained in the cloud to increase
the robustness of real-time resource monitoring by adjusting the

sensing factors. In addition, only a single type of resource infor‑
mation is used to train the model in this paper, and subsequent
research can also analyze the similarity of different types of re‑
source information to collaborate the recovery process from low-
frequency data to high-frequency data, which can also effective‑
ly improve the quality of resource information recovery and the
generalization ability of the SRS model.

▲Figure 5. SRS results of the experiment with fl = 1/50 Hz and fh = 1/10 Hz
CS: compressed sensing SRS: super resolution sensing
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True dataLinear interpolationCubic interpolationCSSRS
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e
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▲Figure 6. SRS results of the experiment with fl = 1/200 Hz and fh = 1/20 Hz
CS: compressed sensing SRS: super resolution sensing
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▲Figure 7. Results of latency under dynamic bandwidth obtained by
SRS and other methods
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