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Abstract: Intelligent perception technology of sensors in autonomous vehicles has been
deeply integrated with the algorithm of autonomous driving. This paper provides a survey of
the impact of sensing technologies on autonomous driving, including the intelligent percep‑
tion reshaping the car architecture from distributed to centralized processing and the com‑
mon perception algorithms being explored in autonomous driving vehicles, such as visual
perception, 3D perception and sensor fusion. The pure visual sensing solutions have shown
the powerful capabilities in 3D perception leveraging the latest self-supervised learning
progress, compared with light detection and ranging (LiDAR)-based solutions. Moreover, we
discuss the trends on end-to-end policy decision models of high-level autonomous driving
technologies.
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1 Introduction

The next generation vehicles are transforming from me‑
chanical-centric to software-defined. Since the Grand
Challenge orchestrated by the Defense Advanced Re‑
search Projects Agency (DARPA) [1], autonomous driv‑

ing (AD) technologies have been accelerating. Autonomous
driving is considered to be a revolutionary technology that pro‑
foundly affects human society and transportation. To catego‑
rize these systems, the Society of Automobile Engineers (SAE)
has defined six levels of automation ranging from 0 (no auto‑
mation) to 5 (full automation). The deployment of full autono‑
my is still expected in years. Automotive manufactures are
more inclined to gradually increase the level of autonomy from
Advanced Driver Assistance Systems (ADAS) to full autono‑
mous driving. The ADAS ranges on the spectrum of passive to

active safety functions, such as forward collision warning
(FCW), lane departure warning (LDW), blind spot monitoring
(BSM), autonomous emergency braking (AEB), lane keeping
assistance (LKA), adaptive cruise control (ACC), forward colli‑
sion-avoidance (FCA), traffic jam assist (TJA), and traffic jam
pilot (TJP).
Autonomous driving cars need to understand the surround‑

ing environment and then take actions continuously. Autono‑
mous vehicles rely on different sensors that work together to
perceive the internal and external car environments. The most
involved sensors in the car are radars, light detection and rang‑
ing (LiDAR) systems, cameras, ultrasonic and far-infrared sen‑
sors, etc. [2] These long-range and short-range sensors provide
relevant data to interpret the surrounding scenes near the vehi‑
cle with a variety of solutions, such as from 8 Vision 1 Radar
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(8V1R) to 15 Vision 5 Radar 3 LiDAR (15V5R3L). Sensor fu‑
sion processing is also deeply integrated into the algorithms of
autonomous driving. Smart sensors combined with the extreme
compute performance deployed in a car make the car more
and more like a robot. This will be continuously increasing the
complexity and bringing challenges for the automotive elec‑
tronic architecture.
The goal of this paper is to provide a survey of sensing tech‑

nologies on autonomous vehicles. Ref. [2] reviewed the most
popular sensor technologies and their characteristics but did
not analyze how the progress of the algorithms affected the
configuration of vehicle sensors. Here we track some impor‑
tant improvements of the neural network and deep learning al‑
gorithms linked with perception in autonomous driving. The
well-known mask region based convolutional neural network
(Mask R-CNN) algorithm[3] achieves the best instance segmen‑
tation accuracy in 2D visual recognition. The popular vision
algorithm You Only Look Once (YOLO)[4] is less accurate but
much faster than Mask R-CNN and suitable for autonomous
driving. YOLO is also extended to LiDAR 3D point clouds[5].
The fusion of multiple sensors like vision and LiDAR[6] has
taken more advantages before Pseudo LiDAR technology[7]
emerges and the latter is showing the power of pure vision in
3D perception. Unsupervised learning approaches of depth es‑
timation[8] have further accelerated the utilization of pure vi‑
sion in autonomous driving. Moreover, sensors should not only
perceive the current environment, but also constantly predict
the environmental context in the next few seconds. For exam‑
ple, Uber uses a convolutional neural network (CNN) model to
predict possible trajectories of the surrounding actors[9].
The structure of this paper is arranged as follows. Section 2

explains the impact of intelligent sensing technology on auto‑
motive electronic architecture. Section 3 provides a detailed
overview of the sensing algorithms. Section 4 discusses a deci‑
sion-making model. Finally, Section 5
concludes this paper.

2 Impacts on Electrical/Elec⁃
tronic (E/E) Architecture
Autonomous driving requires process‑

ing of dozens of sensors with high perfor‑
mance computation. This brings new im‑
pacts on the traditional automotive elec‑
trical and electronic architecture. Firstly,
centralized processing will replace the
distributed processing to provide high
computational power. Secondly, sensor
data transmission will require higher
communication bandwidth and time-sen‑
sitive networking (TSN) becomes the
promising technology for it.

2.1 Centralized Computing
Traditional cars are composed of one-box one-function mod‑

ular electronic control units (ECUs). However, due to the com‑
plexity of autonomous vehicles, the approach where ECUs are
tightly coupled with firmware from hardware will encounter
difficulties to meet the requirements of high computation pow‑
er and software integration in intelligent perception. Regard‑
ing the increasing number of sensors and actuators in autono‑
mous vehicles, there are several impacts on the legacy automo‑
tive E/E architecture such as complexity, harness, high band‑
width, and artificial intelligence (AI) computing.
The distributed modular ECU system needs to upgrade to

an integrated centralized computing system for autonomous
driving. The future trend is combining sensors and ECUs into
the domain controller (Fig. 1). Then all domain controllers will
be further merged into one centralized vehicle computing plat‑
form with functional redundancy to achieve functional central‑
ization.
Fig. 1 shows the domain architecture and the zonal architec‑

ture with a centralized vehicle computing platform to further
optimize the harness layout. The domain architecture consists
of separated domain controllers according to the vehicle func‑
tions. The zonal architecture consists of gateways connected
with the redundant computing platform that supports service
oriented architecture (SoA) to process the vehicle functions.
Fig. 1(c) shows a ZTE’s ADAS/AD domain controller, which
can be used in L2 and L3 autonomous driving scenarios.
2.2 Time-Sensitive Networking
Another impact is the high data rate sensors and actuators,

such as raw data cameras, LiDARs and radars, which will
need high bandwidth and deterministic real-time communica‑
tion within the car. As early as 2006, the IEEE802.1 estab‑
lished the audio video bridging (AVB) working group and suc‑

▲Figure 1. Domain and zonal electrical and electronic (E/E) architecture

AD: autonomous drivingADAS: advanced driver assistance system SOA: service-oriented architectureTSN: time-sensitive networking

(a) Domain architecture (b) Zonal architecture (c) A ZTE’s ADAS/AD domain controller
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cessfully solved real-time synchronous data transmission in the
following years. This immediately attracted the attention of the
automotive industry. In 2012, The AVB working group was re‑
named by the TSN working group, focusing on enabling low-la‑
tency and high-quality transmission of streaming data. TSN
aims to establish a“universal”time-sensitive mechanism for
the Ethernet protocol to ensure the time determinism of network
data transmission and the delay reaches the microsecond level.
So it will be the ideal candidate communication backbone tech‑
nology for the new automotive E/E architecture. As shown in
Fig. 1, in the automotive backbone which requires high band‑
width and deterministic real-time communication, the TSN gate‑
way is used to ensure that it can transmit between different do‑
mains with low latency and small jitters. The TSN node will al‑
so transmit a redundant frame for the high-performance sensors
(e.g., high-resolution cameras). The Ethernet TSN can reach 1
Gbit/s or more, while the controller area network (CAN) and
FlexRay are 1 Mbit/s and 20 Mbit/s respectively.

3 Sensing Algorithms
At present, most intelligent perception tasks are achieved

by deep neural network models. Here we analyze several basic
algorithms and their development.
3.1 Deep Learning Models
For intelligent sensing, a very basic deep learning model is

well known as illustrated in Fig. 2. A deep neural network
f ( xi,W ) consists of multiple layers. For example, it could becombinations of CNN, fully connected (FC) networks, residual
networks (ResNet), long short term memory (LSTM) networks,
even transformer networks, etc. An input data set {( xi, yi ) } ni = 1is sampled from the collected data which could be historical
driving data or synthesized data constructed from a simulator.
Within the input data set where xi is denoted as the sensor da‑ta that could be images, videos, or LiDAR point clouds and yidenoted as the ground truth of the target or labels that are ex‑
tracted from the car environment. The target yi can be spatialinformation (like drivable area, lanes, roads, etc.), semantic in‑

formation (traffic lights, traffic signs, turn indicators, on-road
marking, etc.), or moving objects (pedestrians, cyclists, cars,
etc.). We can manually label them or generate them by a simu‑
lator.
The difference between the predicted result of the neural

network f and the ground truth yi is the loss function denotedas L. The training goal is to optimize L through iterations of
the data set and adjust the weights W.
The weights W could be a very large tensor including all the

weights of each deep network layer. The neural network f can
do the inference once we get the optimal weight W*:
W* = argmin

W

1
n∑i = 1

n L ( f ( xi ; W ), yi ) , (1)
where W = {W (0) ,W (1) ,... }.
Reasonably defining the loss function L is the most impor‑

tant work for designing deep learning model. For example, for
the classification case, we use the binary cross-entropy to mea‑
sure the loss:
L = 1

n∑i = 1
n yi log ( f ( xi ; W ) ) + (1 - yi )log (1 - f ( xi ; W ) ).

(2)
And for the regression case, we use mean square error (MSE)
to measure the loss：
L = 1

n∑i = 1
n ( yi - f ( xi ; W ) )2. (3)

We can also put extra terms in the loss function to reduce
its generalization error but not its training error. These strate‑
gies are as known as regularization.
3.2 Visual Perception Understanding
Computer vision has almost become the foundation of intel‑

ligent perception for autonomous driving. Many visual recogni‑
tion problems are related to autonomous driving, such as ob‑
ject detection, segmentation and instance detection. We has
built a practice Mask R-CNN[3] for visual perception, as shown
in Fig. 3.
We use a ResNet50[10] to construct the backbone of the

Mask R-CNN. The original images are resized to a fixed size
before entering the backbone network. The feature maps exact‑
ed from the backbone are C2, C3, C4, and C5, which construct
the feature pyramid networks (FPN) in order to detect the ob‑
jects from different scales. FPN has a bottom-up and top-down
structure to connect the corresponding layer and generate a
new feature map [P2, P3, P4, P5, P6], where P5 corresponds
to C5, P4 corresponds to C4+ UpSampling2D of P5, P3 corre‑
sponds to C3+ UpSampling2D of P4, P2 corresponds to C2+
UpSampling2D of P3, and P6 corresponds to MaxPooling2D of
P5. Then this feature map is put into a region proposal net‑▲Figure 2. Basic deep learning model

f ( xi,W ): a deep neural network
xi: sensor data

yi: ground truth
W: weights

L: loss

W
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work (RPN) to generate the region of interest (ROI) proposals
and tune the coordinates.
This network completes three tasks simultaneously: 1) tar‑

get localization, which directly predicts a target bounding box
on the image. Here it is called Bbox_pred; 2) target classifica‑
tion, which is denoted as Class_prob; 3) pixel-level target seg‑
mentation, denoted as the Mask_pred for each ROI.
The total loss of the network is:
L = Lcls + Lbox + Lmask, (4)

where Lcls is the classification loss, Lbox is the bounding-boxloss, and Lmask is the average binary cross-entropy loss of pixel-wise mask for each instance.
Although the accuracy of Mask R-CNN is relatively high,

its region proposal pipelines are still time-consuming. For au‑
tonomous driving, since the perception task requires real-time
performance, we need to make the inference efficient and
maintain good accuracy. So a single shot detector model like
YOLO[4] will be a better choice than Mask-R-CNN. It can pro‑
cess videos at real time.
3.3 3D Perception
3D object detection in autonomous driving is a common

task. A direct and reliable approach is employing the LiDAR
sensor to provide the 3D point cloud reconstruction of the sur‑
rounding environment. The object detection and classification
of LiDAR point clouds may be conducted in 2D bird-view by
projecting the 3D point clouds into 2D or directly conducted
in 3D space. Unlike visual systems, LiDAR point clouds lack
of rich RGB information, the density of the point cloud is criti‑
cal for small object detection.
For high resolution LiDAR, YOLO3D[5] introduced a 3D ob‑

▼Table 1. YOLO3D network architecture[5]

Layer
Conv2d

Maxpooling
Conv2d

Maxpooling
Conv2d
Conv2d
Conv2d

Maxpooling
Conv2d
Conv2d
Conv2d

Maxpooling
Conv2d
Conv2d
Conv2d
Conv2d
Conv2d

Maxpooling
Conv2d
Conv2d
Conv2d
Conv2d
Conv2d
Conv2d
Conv2d
Conv2d
Conv2d
Reshape

Filter
32

64

128
64
128

256
128
256

512
256
512
256
512

1 024
512
1 024
512
1 024
1 024
1 024
1 024
1 024

Size
(3, 3)

(size 2, stride 2)
(3, 3)

(size 2, stride 2)
(3, 3)
(3, 3)
(3, 3)

(size 2, stride 1)
(3, 3)
(3, 3)
(3, 3)

(size 2, stride 2)
(3, 3)
(1,1)
(3, 3)
(1,1)
(3, 3)

(size 2, stride 2)
(3, 3)
(1, 1)
(3, 3)
(1, 1)
(3, 3)
(3, 3)
(3, 3)
(3, 3)
(1,1)

Feature Maps
608×608×2

38×38×33
38×38×3×11

▲Figure 3. A practiced mask region based convolutional neural network (Mask R-CNN)

FCN: fully convolutional network FPN: feature pyramid network ROI: region of interest RPN: region proposal network
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ject detection algorithm that direct expands from the 2D algo‑
rithm YOLO[4]. This approach directly projects the LiDAR
point cloud to the bird-view space for real-time classification
and detecting 3D Object Bounding Box. The structure of the
network is shown in Table 1.
The network output prediction is expanded by the YOLO re‑

gression to 3D dimensions regression output and target classi‑
fication. It will return the object bounding box center (x, y,
and z), the 3D dimensions (length, width, and height), the ori‑
entation in the bird-view space, the confidence, and the object
class label. The YOLO3D grid expanding from YOLO is
shown in Fig. 4.
The loss also extends from the YOLO 2D boxes (x, y, l, h) to

3D oriented boxes (x, y, z, w, l, h) and the orientation. The to‑
tal loss includes the confidence score and the cross-entropy
loss over the object classes.
The YOLO3D network is trained end to end because it is a

single shot detector that ensures its real-time 3D performance
in the inference path.

3.4 Sensor Fusion
If the density of the LiDAR point cloud is sparse, small ob‑

jects like pedestrians and cyclists will be hard to recognize.
The LiDAR needs to do a sensor fusion with the camera. The
sensor fusion can take advantage of both LiDAR point clouds
and camera images, which can preserve more semantic infor‑
mation to achieve higher object detection accuracy. Therefore,
the autonomous driving cars are commonly equipped with mul‑
tiple kinds of sensors like both LiDAR and camera.
The multi-view 3D (MV3D) network[6] gives an example of

sensor fusion framework that takes 3D LiDAR point clouds
and RGB images as input to predict 3D objects (Fig. 5).
The MV3D network consists of two sub-nets: a 3D proposal

network and a region-based fusion network. The 3D proposal
network generates highly accurate 3D candidate boxes from
the bird’s eye view of a point cloud. The region-based fusion
network deeply fuses multi-view features to predict the posi‑
tion, size, and orientations of the 3D target.
A multiple layer feature fusion is adopted to increase the se‑

lected ROI from the fusion between different view features.
The fusion network can significantly improve the position ac‑
curacy and recognition accuracy of 3D perception.
3.5 Pure Vision vs. LiDAR
In autonomous driving cars, LiDAR or pure vision based so‑

lution has become a controversial topic. We mainly consider
the perception algorithm to put aside the cost, weather envi‑
ronment and other factors.
There is a vast difference in perception between pure vision

and the LiDAR solution. While in the LiDAR case, the vehi‑
cle detects the 3D object to avoid collisions of pedestrians, bi‑
cycles, vehicles, etc. and it also compares the features of real-
time 3D point clouds with a pre-built high definition map, uti‑▲Figure 4. YOLO3D grid cells, assuming one layer high[5]

Cx

(Cx+σ(tx), Cy+σ(ty), (Cz+σ(tz))

σ(tz)
σ(tx) σ(ty)
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▲Figure 5. Multi-view 3D object detection network (MV3D)[6]
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lizing the simultaneous localization and mapping (SLAM) algo‑
rithm to precisely localize the vehicle position and execute
lane follow function. However, for pure vision cases, the cam‑
era creates 2D information and it is difficult to reliably and ac‑
curately reconstruct the 3D environment of each pixel, so the
SLAM will not be conducted to directly predict the lane from
the camera images. This limits the pure vision solution under
the L3 autonomy.
With the progress of monocular or binocular camera 3D per‑

ception, the accuracy of depth estimation is continuously im‑
proved and even pseudo-LiDAR can be constructed, as shown
in Fig. 6[7].
With the input of stereo or monocular images, the network

can predict the depth map and back-project it into a 3D point
cloud in the LiDAR coordinate system called a pseudo-LiDAR,
so we can reuse the LiDAR-based algorithms in the pure visual
solution and also implement high-level autonomy.
3.6 Self-Supervised Learning
The supervised learning requires the provision of a data set

with depth information as a ground truth. However, the
ground-truth of depth information of visual data is more diffi‑
cult to obtain, so pure visual depth perception technology men‑

tioned in the previous section is limited to a restricted training
data set, while the self-supervised method developed later
does not require depth information annotation and directly us‑
es video frames to complete the training, which is a great im‑
provement.
The self-supervised learning method is to reconstruct the re‑

lated pixels through geometric constraints between two frames
of the multi-view as the supervision input so that there is no
need to rely on the annotation of depth. In the backbone net‑
work, it is the same as the original network of supervised
learning.
A self-supervised learning example[8] is shown in Fig. 7. It

can estimate the depth and movement of the camera using ste‑
reo video sequences.
Ref. [8] enables the use of both spatial and temporal photo‑

metric warp errors, and constrains the scene depth and cam‑
era motion in a common real-world scale.
As shown in Fig. 8, a convolutional neural network for sin‑

gle view depth (CNND) and a convolutional neural network forvisual odometry (CNNVO) are used. For self-supervised learn‑ing, the fundamental supervision signal comes from the task of
image reconstruction and the image reconstruction loss is
used as a supervision signal to train CNND and CNNVO.

▲Figure 6. Image-based 3D object detection[7]

LiDAR: light detection and ranging

Stereo/mono images Depth estimation

Stereo/monodepth

Depth map Pseudo LiDAR 3D object detection Predicted 3D boxes

LiDAR-baseddetection

▲Figure 7. A self-supervised learning example with the use of stereo video sequences[8]
CNN: convolutional neural network

|| IL,t2 - I'R,t2

|| IL, t2 - I'L, t1

Reference view

Temporal pair
Odometry CNN

Tt2→t1

Warping

Depth CNN

Warping

①

②

61



Special Topic A Survey of Intelligent Sensing Technologies in Autonomous Driving

SHAO Hong, XIE Daxiong, HUANG Yihua

ZTE COMMUNICATIONS
September 2021 Vol. 19 No. 3

4 End-to-End Decision Model
A typical autonomous intelligent vehicle system can be sim‑

ply divided into three parts: the perception part, the planner
and the controller. The perception part extracts the features
from the environment and the planner outputs a driving trajec‑
tory for driving in the 3D space. The controller then executes
this trajectory as the steering angle and acceleration within
the physical constraint of the vehicle. We call the decision
model end-to-end when it takes in sensing data and outputs
how we should drive with fully end-to-end training approach
to mimic human driving.
We usually implement autonomous driving by using a rule-

based planner to make trajectory decisions. Engineers will
manually write the planner for such an autonomous driving
system. Due to the complexity of the driving problem, the man‑
ual rule-based planner may never enable the level of full au‑
tonomy because the edge cases, such as temporary road sig‑
nals and traffic accidents, are constantly increasing in new
scenarios. To build an end-to-end intelligent planner based on
neural network is an idealist goal people want to achieve[9].
The reinforcement learning algorithms such as AlphaGo, Al‑

phaZero and muZero[11] have shown powerful capabilities in
policy searching for building an end-to-end decision model.

However, reinforcement learning is still limited to being
trained in a simulation environment or a game environment.
Interacting with the true environment of autonomous driving is
extremely expensive, slow and dangerous, which is completely
unrealistic.
Recent development shows model-based offline reinforce‑

ment learning approaches are trying to learn a policy model
from the environment dynamics. Just learning from observa‑
tional data, the model may perform well in a real environment.
Intuitively, we may extend this kind of model to build an end-
to-end planner. Then human driving behaviors are collected
and a model with observational data is trained to predict the
trajectories for mimicking human driving. Fig. 9 shows the pro‑
totype of an end-to-end decision model we are studying. The
videos from multiple cameras are input to a convolutional fu‑
sion network and a feature map is output. The features go into
a temporal block, such as LSTM and GRU, to extract the se‑
quence features, and then connect to the policy network and
predict possible multiple trajectories.
However, the learning policies from purely observational da‑

ta may not normally work because the data only cover a small
region of the observed space[12]. Once a car deviates from the
predicted best“human driving”trajectory, it is difficult for
the car to recover from deviation and it will drift away from the

▲Figure 8. A self-supervised learning framework[8]

CNND: convolutional neural network for single view depth CNNVO: convolutional neural network for visual odometry
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ideal trajectory. The reason is that, unlike the learning in sim‑
ulation environment where interaction and self-correcting are
allowed, there is no actual interactive driving data for training
on in this case.
In order to solve the problem, Ref. [12] proposes to train a

policy by unrolling a learned model of the environment dynam‑
ics over multiple time steps while explicitly penalizing such
costs as an uncertainty cost that represents its divergence from
the states (trajectories) on which it is trained.

5 Conclusions
We discuss the application of intelligent sensors in autono‑

mous vehicles and their impacts on automotive E/E architec‑
ture. The distributed ECU system will be replaced by central‑
ized architecture to provide more computation power and inte‑
gration. Moreover, for the sensors with high data rates, a TSN
backbone plays a key role for E/E architecture. The algorithm
of sensing perception based on neural networks is highly inte‑
grated with autonomous driving. The fusion of multiple sen‑
sors may enable better accuracy and robustness. Moreover,
pure visual perception shows a powerful capability of 3D esti‑
mation versus LiDAR, and the visual-based pseud-LiDAR can
reuse the existing LiDAR-based algorithms and improve the
autonomy to a high level. Self-supervised learning is a more
promising technology for cars in 3D perception.
It is also pointed out that the rule-based policy will never

get over the edge cases, so the end-to-end policy seems to be a
better approach to high-level autonomous driving and still
needs further studying.
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