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Abstract: Mobile edge users (MEUs) collect data from sensor devices and report to cloud
systems, which can facilitate numerous applications in sensor‑cloud systems (SCS). Howev‑
er, because there is no effective way to access the ground truth to verify the quality of sens‑
ing devices’data or MEUs’reports, malicious sensing devices or MEUs may report false da‑
ta and cause damage to the platform. It is critical for selecting sensing devices and MEUs to
report truthful data. To tackle this challenge, a novel scheme that uses unmanned aerial ve‑
hicles (UAV) to detect the truth of sensing devices and MEUs (UAV‑DT) is proposed to con‑
struct a clean data collection platform for SCS. In the UAV‑DT scheme, the UAV delivers
check codes to sensor devices and requires them to provide routes to the specified destina‑
tion node. Then, the UAV flies along the path that enables maximal truth detection and col‑
lects the information of the sensing devices forwarding data packets to the cloud during this
period. The information collected by the UAV will be checked in two aspects to verify the
credibility of the sensor devices. The first is to check whether there is an abnormality in the
received and sent data packets of the sensing devices and an evaluation of the degree of
trust is given; the second is to compare the data packets submitted by the sensing devices to
MEUs with the data packets submitted by the MEUs to the platform to verify the credibility
of MEUs. Then, based on the verified trust value, an incentive mechanism is proposed to se‑
lect credible MEUs for data collection, so as to create a clean data collection sensor‑cloud
network. The simulation results show that the proposed UAV‑DT scheme can identify the
trust of sensing devices and MEUs well. As a result, the proportion of clean data collected is
greatly improved.
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user; unmanned aerial vehicle
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1 Introduction

With the development of techniques on microproces‑sor industry, sensing‑based devices are becoming
smaller while their computation and capacities are
strengthened gradually[1–3]. Therefore, sensing

technologies are widely deployed in areas with on‑demand
monitoring processes. According to a survey, there were more
than 20 billion devices connected to the Internet of Thing
(IoT) in 2020 and the number is growing at a faster rate[4–6].
These IoT devices are equipped with numerous sensing devic‑
es to realize the perception of the surroundings[9–10]. Thus, the
sensor‑cloud systems (SCS), within which the IoT devices and
cloud services are well combined, can be more productive and
effective on its functionality and solve such problems as the
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sharing of sensor nodes and large amounts of data analysis
due to memory and energy limitations[9]. In an SCS, a huge
number of sensing devices are deployed at the edge of the net‑
work to sense the surrounding environment[11–13], and then up‑
load the sensed data to the cloud. Due to the excellent com‑
puting power, cloud services can perform sophisticated compu‑
tation and analytics, as well as orchestrate various applica‑
tions. For example, the supervisory control and data acquisi‑
tion (SCADA) system is one of the SCS and composes of smart
sensing devices spreading over a wide area in order to remote‑
ly monitor physical phenomena[14]. These smart sensing devic‑
es can be deployed on demand in the areas that require tempo‑
rary testing, and then collect data into the cloud in various
ways to initiate and build up various applications[15–16]. The
method of data collection has also changed a lot from the tradi‑
tional methods in the past. In traditional wireless sensor net‑
works (WSNs), many nodes are deployed in specific areas and
self‑organize into a network. The sensed data is routed to a
specific node called sink through multi‑hop routing[17–18] and
the sink is connected to the Internet by a wired network; in
this way, the data are reported to the cloud. However, the
time and economic cost of deploying the network to establish
the connection with the sink will be relatively high, so this sys‑
tem is hardly used on some scenarios such as urgent events
and scenarios without complete infrastructure. Thus, many re‑
searchers have proposed more flexible and convenient data
collection schemes. For example, BONOLA et al. [19] proposed
a method of data collection using opportunistic routing
through mobile vehicles (MVs), and in this way, the roadside
is deployed with sensing devices to monitor the status of street
lights, smart trash cans, and roads and bridges on demand.
With this solution, the sensing hardware will be simple, only a
short‑distance wireless communication capability be required,
and installing expensive 5G communication hardware be not
necessary[19]. The reason is that, in a smart city, there are a
large number of MVs moving on the roads of the city, and
when the MVs pass through the communication range of sens‑
ing devices, they can collect data and transmit the data to the
cloud through 5G communications. In the research of
HUANG et al. [20], numerous deployed sensor nodes can also
self‑organize into a network; the nodes on both sides of a road
act as gateways, which are responsible for converging the en‑
tire network, and pass data to the cloud through MVs[21].
Therefore, this method may be widely used in smart cities.
More related studies have been conducted[22–24]. In fact, ex‑
cept MVs[25–27], smartphones, tablets and smart watches can al‑
so act as data collectors[28]. They are called mobile edge users
(MEUs) in the research of WANG et al. [28]. Because these
MEUs have 5G communication capabilities, they can commu‑
nicate directly with the cloud. The MVs are only on the road,
but there are multiple types of MEUs in the market[28] with a
wider moving range. When these MEUs pass through sensing
devices with weak communication capabilities, they can col‑

lect data from sensing devices within their communication
range and relay the data to the cloud. The use of MVs for data
collection[19] is also a form of data collection approaches using
MEUs. Therefore, in this paper, MEU is the general term for
the devices that have 5G communication capabilities to per‑
form data collection in a relay mode, and sensing devices or
sensing nodes refer to a type of simple hardware that can only
communicate over a short distance and needs to rely on MEUs
to relay data to the cloud.
In order to incentivize MEUs to collect data, the incentive

mechanism[29] is widely used, which enables cloud to initiate
data collection tasks, grant a reward for collecting data, and in‑
centivize MEUs to collect data[29]. This mechanism simplifies
the deployment requirements of sensing devices and many
sensor devices can be deployed on demand without 5G com‑
munication capabilities. Therefore, it facilitates a dramatic
cost reduction of numerous sensor devices[30]. Moreover, the
data collected by these sensing devices will be reported to the
cloud through a huge number of MEUs, rather than specifical‑
ly deploying a network for device connection. Such a system
based on the incentive mechanism has strong adaptability and
has been widely studied and used.
However, in such applications, the pivotal point is how to

ensure the security of data collection. The factors affecting the
security of data collection mainly come from MEUs and sens‑
ing devices[28, 30]. The impact of MEUs on the security of data
collection is mainly manifested in some MVs reporting false
data in order to obtain rewards, and there are even some mali‑
cious MVs that deliberately report offensive data, making
data‑based applications unusable[20–22]. For sensing devices,
due to their simple hardware design, they are vulnerable to
face attacks. Once these sensing devices are attacked, various
problems will occur. For example, a black hole drops the data
packets that are passing through it, so that the cloud platform
cannot receive data[30]. According to statistics, there are more
than 30 types of attacks on the sensing network, and these at‑
tacks will generate false data, tamper with data, or block the
collection of data to damage the network[30]. Therefore, how to
create a safe and clean environment of data collection as well
as collecting authentic and credible data is a challenge de‑
served to concern with.
Although the use of MEUs is a cost‑effective method[20], it is

more challenging to ensure the security of data collection in
such a data collection mode. In addition to the inherent unsafe
factors in sensing devices, the use of MEUs for data collection
may bring more threatening factors[15]. In particular, MEUs
participate in data collection voluntarily with no identifica‑
tion, so it is difficult to ensure that MEUs are trustworthy in
such an open‑ended network environment[24]. What is more se‑
rious is that it is incredibly hard to verify whether the data re‑
ported by MEUs are true, which is known as an information
elicitation without verification (IEWV) problem[31]. Due to the
IEWV problem, even if the MV report reports false data in or‑
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der to obtain rewards, it is difficult to verify the data.
Using a credibility mechanism to choose trustable MVs for

data collection is a feasible method. Because credible MVs
will truthfully report the collected data, selecting credible
MVs for data collection can improve the authenticity of the da‑
ta[9, 15]. However, as mentioned earlier, it is difficult to verify
the authenticity of data reported by MVs[32]; similarly, it is also
difficult to identify the trustworthiness of MVs. In addition, for
the sensing network, it is a major challenge to identify the
credibility of these sensing devices[22, 24]. For a sensing network
far from the edge of the network, it is very difficult to detect
data attack[32]. Thus, we make the first attempt to deal with this
challenge. In this paper, we propose a novel scheme that uses
unmanned aerial vehicles (UAV) to detect the trust of sensing
devices and MEUs (UAV‑DT) to construct a clean data collec‑
tion platform for SCS. The main contributions of this article
are as follows:
1) We propose a framework using UAV to detect the trust of

sensing devices and MEUs. In the proposed framework, the
UAV is sent to the sensing network, deliver check codes to
some selected sensing devices, and is required to route the
code to the designated destination node. At the same time, the
UAV collects information about data packets sent from sens‑
ing devices within a time span when passing through the sens‑
ing network. In this scheme, the checking code can act as a
base truth indicator. If the UAV or cloud does not receive the
verification code on the time that it should receive it, it can in‑
dicate that the verification code has been attacked during the
data collection process. In this way, the IEWV problem that
exists in this type of network can be effectively solved.
2) We propose an effective approach to sensing devices and

MVs credibility computation. This method can construct a
trusted data collection network environment. The information
collected by the UAV will be checked by the cloud platform in
two aspects to verify the credibility of sensor devices. On the
one hand, the platform will check whether there is an anomaly
in the data packet routing process for trust evaluation. It main‑
ly checks whether the upstream and downstream nodes of the
sensing devices receive and send data packets abnormally and
therefore provide a performance evaluation about the trustwor‑
thiness. Besides, the data packets submitted by the sensing
devices to the MEUs and those submitted by the MEUs to the
platform will be checked and compared to verify the trustwor‑
thiness of the MEUs. On the other hand, according to the de‑
signed routing path of the verification code, it checks whether
the verification code is successfully routed from the originated
nodes to the MVs, and then submits the message to the cloud,
which improves the trust of these sensing devices and MVs.
The credibility computation method proposed in this paper en‑
ables accurate verification.
3) Based on the proposed framework, we propose a data col‑

lection strategy based on credibility magnitude and incentiva‑
tion mechanism. The simulation results show that the pro‑

posed UAV‑DT scheme can identify the credibility magnitude
of sensing devices and MEUs, and the amount of clean data
collected has been proportionally incremented. The classifica‑
tion rate for trusted sensing devices is as high as 98.9%.
Meanwhile, a data collection rate of 89.9% on average can be
achieved.

2 Related Work
To protect the security of networks in smart cities, various

safety mechanisms, e. g., cryptographic schemes, authentica‑
tion mechanisms and secure storage, were proposed in the
past. However, using a trust‑based model, the trust evaluation
mechanism has the advantages of efficiency, lightweight and
low overheads. The trust models that have been proposed pro‑
vide a better choice in terms of network security and safety.
In general, the trust‑based evaluation mechanisms for net‑

work security can be classified into two categories: the central‑
ized and distributed. For the former, the trust value of nodes
can be calculated by themselves. KIM and SEO[33] have pro‑
posed a trust computation method using fuzzy logic (TCFL) for
WSN. They suggest a trust model using fuzzy logic in sensor
network, in which trust is an aggregation of consensus given a
set of past interaction among sensors. They calculate the trust
value of the path through the trust of the nodes, then the path
with the highest trust value is selected to transmit data pack‑
ets[33]. However, in the great majority of applications, smart
network system is distributed with a large number of nodes
and a node in the system only focuses on the trustworthiness
of its neighbor nodes. Besides, centralized approaches always
make high energy consumption.
A distributed mechanism, the beta‑based trust and reputa‑

tion evaluation system for wireless sensor networks (BTRES),
is proposed in Ref. [34]. BTRES is based on monitoring
nodes’behavior and beta distribution is used to describe the
distribution of nodes’credibility. Another distributed trust
computation scheme, the parameterized and localized trust
management scheme (PLUS), is proposed by YAO et al. [35]. In
PLUS, each sensor node maintains highly abstracted parame‑
ters, and rates the trustworthiness of its interested neighbors
to adopt appropriate cryptographic methods, identifing the ma‑
licious nodes and sharing the opinion locally. Distributed
mechanisms have obvious disadvantages as well, which in‑
clude the excess energy node and time costs due to the cooper‑
ation and communication with neighbors and increasing mem‑
ory costs with the increase of network density caused by the
lack of centralized management.
To overcome the defects above, WANG et al. [28] propose a

crowdsourcing mechanism for trust evaluation based on mo‑
bile edge computing. In this mechanism, through close access
to end nodes, mobile edge users can obtain various types of in‑
formation of the end nodes and determine whether the node is
trustworthy. HUANG et al. [20] propose a novel baseline data
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based verifiable trust evaluation scheme, called BD‑VTE, sim‑
ilar to the scheme in Ref. [28]. In BD‑VTE, the trust of MVs is
evaluated by sending UAVs to perceive IoT devices data as
baseline data.

3 System Model and Problem Statement

3.1 System Model
Fig. 1 shows the SCS network model used in this paper. Our

model includes sensing devices, MEUs and UAVs. The follow‑
ing is the description and symbol definition of each role.
1) Sensing devices
As shown in Fig. 1, the SCS, the IoT devices are treated as

sensor nodes and constitute the sensor network. There are N
sensor nodes deployed in the network. The set of nodes is rep‑
resented by V = {1,2,...,N }, and the sensor nodes perceive the
environment in the city, output data and transmit them to the
outside. A small number of nodes may be attacked and be‑
come malicious nodes, which is manifested as deliberate pack‑
et loss during data transmission. Suppose the number of mali‑
cious nodes is K and the set of malicious nodes is represented
by M = {1,2,...,K }.
2) Unmanned aerial vehicles
The role of the UAVs is a bridge between the sensor net‑

work and the external network and they can communicate di‑
rectly with the data center in the cloud. The UAVs can distrib‑
ute the verification packets generated by the data center to the
sensor nodes for transmission and directly check the transmis‑
sion status of the nodes. In the scenario shown in Fig. 1, the
UAVs pass the verification packet with a check code to a start‑
ing node, and then the node transmits it according to a certain
routing rule.
3) Mobile edge users

The number of MEUs with strong communication and stor‑
age capabilities distributed in the city far exceeds sensing de‑
vices. The MEU acts as a data collector in the system model
and can directly communicate with the sensor node to obtain
the data packet transmitted to the node. There is a total of L
MEUs in the system, and their set is represented by U =
{1,2,...,L }. Each MEU has its own active range, which is ab‑
stracted as a circle whose radius is ri, and the abstract modelof MEU is widely used by many researchers[28–29]. Within a
certain period of time, the MEU can collect the data of all
nodes covered in its active range, which means that the active
range of the MEU indirectly refers to its ability to perform data
collection tasks.
4) Transmission model
Considering communications between sender node n1 andreceiver node n2, let pn1 denote the transmitting power of n1,and hn1,n2 denote the channel gain between n1 and n2. Thechannel gain follows the Rayleigh distribution. The distance

between n1 and n2 is denoted by dn1,n2, and the channel attenu‑ation factor and Gaussian channel coefficient are donated by
ϑ and h0, respectively. Therefore, the channel gain holds as:
hn1,n2 = h0d-ϑ n1,n2 . (1)

And the transmission rate between the sender node n1 and re‑ceiver node n2 can be denoted according to Shannon equation:
rn1,n2 = Blogs2 (1 +

pn1 × hn1,n2
p0 + N0

), (2)
where B denotes the bandwidth, N0 denotes the power spectraldensity of additive Gaussian white noise, and p0 denotes theinterference caused by reusing identical spectrum resources.
3.2 Problem Statement and Relevant Definition
The previous study has shown that using MEU can infer the

trust value of the node according to its various states, e.g., the
communication behavior, remaining battery, data content of
target node, and so on[28]. In practice, it is difficult to obtain
such information directly through the MEU, while obtaining
data indirectly by monitoring neighbor nodes will add addi‑
tional communication burden to each node, which will greatly
reduce the life of the entire network. Due to the above limita‑
tions, it is unrealistic to directly or indirectly obtain the status
of a node. Another problem that needs to be solved is the lack
of an effective mechanism to ensure the authenticity of the da‑
ta uploaded by MEUs. Therefore, we need to distinguish trust‑
ed nodes from malicious nodes in the network in an effective
and realistic way. In general, when the nodes in the sensor net‑
work transmit data packets, trusted nodes can complete the da‑
ta transmission task well. Occasionally, packet loss will occur
when the network fluctuates greatly and the integrity of the da‑
ta will not change significantly. However, malicious nodes will▲Figure 1. Sensor‑cloud system model

MEU: mobile edge user UAV: unmanned aerial vehicle

UAV
Sensing device
MEU
Data cloud

Collect data
Send checkcode

Upload data
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frequently drop packets or tamper with data, which will com‑
promise the validity of the data. Meanwhile, as the third‑party
data collector, the credibility of MEU also needs investigating.
It is also necessary to distinguish between trusted and mali‑
cious MEUs and hire trusted users to complete data collection
tasks, thereby ensuring the quality of the collected data by
MEUs. Thus, in this paper, the MEU that plays the role of data
collector is regarded as a mobile node and it is referred to as a
node with sensing devices when there is no special distinc‑
tion. We also need to minimize the cost of evaluating and clas‑
sifying nodes. Hiring MEUs for data collection is the main
cost of the system. Therefore, the data center should adopt an
efficient MEU incentive mechanism to hire a set of trusted
MEUs to complete data collection tasks with high quality.
This paper reflects the performance of system through the fol‑
lowing trust indicators and overall costs:
1) Difference of trust values between normal and malicious
nodes D，which is defined as
D = - ---σnor - - ---σmal , (3)

where - ---σnor is the average trust value of normal nodes and - ---σmal
is the average trust value of malicious nodes. The difference D
between the two averages can show the difference of benefits
to the network. When D is large, it means that the distinction
between the two is obvious. Therefore, one of the goals of our
strategy is Max (D) = max ( - ---σnor - - ---σmal ).
2) The discrimination rate of trusted nodes R t and discrimina‑tion rate of malicious nodes Rm are defined as
R t = numt̄

numt , (4)

Rm = numm̄

numm

. (5)
These two indicators refer to the ratio of the correct number

of nodes judged to be trusted numt̄ and the total number oftrusted nodes numt, and the ratio of the correct number ofnodes judged to be malicious numm̄ and the total number ofmalicious nodes numm. Both R t and Rm reflect the system’s
ability to classify nodes. Then, the goals of our strategy in‑
clude Max (R t) = max ( numt̄

numt

) and Max (Rm) = max ( numm̄

numm

)
as well.
3) Total cost of system Ρ is defined as
P =∑i = 1

R ∑j = 1
L fi,j × pi,j +∑i = 1

R L i × υ , (6)
where fi,j indicates whether the user labeled j in the data col‑lector set U in the ith round participates in the data collection
task; fi,j = 1 indicates that the user participated in the data col‑

lection task, otherwise fi,j = 0 means not; pi,j represents the re‑muneration received by the user labeled as j in the data collec‑
tor set U in the ith round; L i represents the number of nodesthat need UAVs to inspect in the ith round and v represents the
cost of UAV verification of one node. Therefore, one of the pur‑
poses of our strategy is Min (P) = min (∑i = 1

R ∑j = 1
L fi,j × pi,j +∑i = 1

R L i × υ ).
In summary, all objectives in this paper are shown in Eqs.

(7)–(10).
Max (D) = max (- ---σnor - - ---σmal) , (7)

Max (R t) = max ( numt̂

numt
) , (8)

Max (Rm) = max ( numm̄

numm
) , (9)

Min (P) = min (∑i = 1
R ∑j = 1

L fi,j*pi,j +∑i = 1
R L i*υ . (10)

The notation of parameters in the model and for problem
statement is shown in Table 1.

4 Proposed UAV‑DT System
In this part, we present our UAV‑DT scheme. The proposed

scheme is divided into three parts: the UAV‑assisted trust ver‑
ification mechanism, trust reasoning mechanism based on
communication behavior, and incentive mechanism based on
cost performance and trust.
4.1 UAV‑Assisted Trust Verification Mechanism
The most critical part of our scheme is to evaluate the trust

value of nodes in the SCS, thereby distinguishing between
trusted and malicious nodes. We propose a UAV‑assisted trust
verification mechanism to determine whether the communica‑
tion behavior of the node is normal.
The mechanism is divided into four stages: generation and

distribution of verification packets, result gathering of the tail
node, review of data collection tasks, and verification of a sus‑
pect path. In each stage, UAVs play an important role.
At the beginning, the sensor network shown in Fig. 2(a) is

untested. The following is an introduction to the four steps:
1) Generation and distribution of detection packets
At this stage, the UAV selects a certain number of source

nodes in the network as the start of data packet delivery. Our
trust evaluation is conducted in multiple rounds, so the trust
value of a node will change after each round of calculation. In
this process, when the trust value of the node is higher than
σmax, the node is judged to be trusted. On the contrary, when
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the trust value of the node is lower than σmin, the node is con‑sidered untrusted. Therefore, our criterion for selecting a
source node is the node whose trust value is between σmin andσmax in the suspicious state.As Fig. 2(b) shows, after a source node is selected, it is nec‑
essary to determine the route of the detection data packet
transmission. We use the low‑trust node diffusion strategy
shown in Fig. 3 to generate the transmission path of the data
packet. Starting from the source node, when determining the
next hop node, the current trust value of each neighboring
node is considered; the node that is closest to the initial trust
value σ0 is selected and the task is refused to repeat. It will beensured that each node in the network receives a certain num‑

ber of inspections.
The generation and distribution process of the verification

data packet can be summarized in Algorithm 1.
Algorithm 1. Generation of detection packet algorithm
Input: R, T, σmax, σmin, σ0, V
Output: S
1: Initialize iterout = 0, S = ∅2:While iterout < RDo3: ρ = ∅
4: Randomly choose source node n in V and

σn < σmax andσn > σmin5: ρ = ρ ∪ n
6: node cur = n7: nodesource = n8: iterin = 09: While iterin < T Do
10: Choose nxt in neb (nodecur)

min |σnxt – σ0| and nxt ∉ ρ11: ρ = ρ ∪ nxt

▼Table 1. Parameters in System Model and Problem Statement
Parameter

V

U

M

T

R

D

P
- ---σnor
- -----σmal
R t

Rm

numt̄

numt

numm̄

numm

fi,j
Bi,j
pi,j
L i
υ

N

K

L

σ0
σmax,σmin
σcomi

σrec (i, j )
σreci

σinti

bidi
bi
PoIi
α1,α2
ω1,ω2

Meaning
Collection of sensor nodes

Collection of mobile edge users
Collection of malicious nodes

Number of verification tasks per round
Number of rounds of a verification task

Difference of trust values between normal and malicious nodes
Total cost of system

Average trust of normal nodes
Average trust of malicious nodes
Discrimination rate of trusted nodes
Discrimination rate of malicious nodes
Number of nodes judged to be trusted
Total number of trusted nodes

Number of nodes judged to be malicious
Total number of malicious nodes

Participation flag for user labelled as j in the ith round
Result flag for node labelled as j in the ith task
Payment for user labelled as j in the ith round

Number of nodes that need UAVs to inspect in the ith round
Cost of UAV verification of one node

Number of sensor nodes
Number of malicious nodes
Number of mobile edge users

Initial trust value
Trust value threshold

Communication trust value
Cooperative recommendation coefficient between nodes labeled as i and j

Cooperative recommendation trust value
Comprehensive trust value
Bid of mobile edge user

Expected reward of mobile edge user
Number of task nodes in the active range

Weight coefficient of winning bids set selection algorithm
Weight coefficient of comprehensive trust

UAV: unmanned aerial vehicle

MEU: mobile edge user UAV: unmanned aerial vehicle
▲Figure 2. Using UAV to detect the trust of sensing devices and MEUs
(UAV‑DT)

▲Figure 3. Route generation strategy

Untested nodes
(a) Preparation (b) UAVs release detection packages

(d) UAVs check for suspicious route(c) MEUs collect detection packagesfrom end node

MEUs Track of UAVs

Source node

End node Nodes covered by pack‑et routing path

0. 80
0. 75

0. 90 0. 65

Data transfer

Source node Candidate node Node covered by task Untested node
(a) Obtain the trust value of neighbor nodes (b) Select next node from candidate nodes

Untested node Node covered by task Source node End node
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12: nodecur = nxt13: iterin = iterin + 114: EndWhile
15: nodeend = nodecur16: Generate check packet p = (nodesource, nodeend, ρ )
17: S = S ∪ p
18: iterout = iterout + 119: EndWhile
20: Return S
Algorithm 1 shows the process of multiple rounds of verifica‑

tion data packet generation and routing distribution. The input
of the algorithm includes the number of verification task rounds
R, the number of verification data packets in each round T,
three constants related to trust value and node sets V. The outer
loop (Lines 2–19) represents each round of verification tasks,
and at the beginning of each mission, the system randomly
chooses source node n in V. Then, the system generates a route
for each verification task in the inner loop (Lines 9–14). Final‑
ly, the verification task set S is output.
2) Result gathering of the tail node
When the route of the verification packets is determined,

the UAV distributes the data packets to the source node, and
the packets are transmitted to the tail node in turn according
to the routing path.
Then, we only need to collect the delivered data packets at

the tail node to confirm whether there is any node loss behavior
on the delivery path of the data packets. As shown in Fig. 2(c),
MEUs are hired as data collectors to perform data collection
tasks at the end nodes and hand data over to the data center in
the cloud for further processing.
3) Review of data collection tasks
Since the data collector is not necessarily credible, we still

need to further verify the validity and completeness of the data
collector’s collection results.
Obviously, not all collected results need to be verified.

When issuing data collection tasks, the system clarifies which
data packets at the sensing devices need to be collected, and
the data collector does not know the
content of the data packet and its
check code in advance. Therefore,
in the case that the verification pack‑
et is normally delivered to the tail
node, we can consider that the result
of this collection must be credible
and no further confirmation is re‑
quired if the submitted by the data
collector is consistent with the origi‑
nal packet and is accompanied by a
true verification code.
If a data package uploaded by the

data collector is inconsistent with
the original package distributed by
the UAV, it is necessary to rely on

the UAV to recollect the data at the tail node to make a judg‑
ment on the communication behavior between the data collec‑
tor and the sensing devices on the routing path. The UAV com‑
pares the original verification packet with the data collected
by itself to determine whether the data collector has performed
the data collection task honestly, or the verification packet has
been modified by one or more malicious nodes during the
transmission process.
4) Verification of a suspect path
Through the previous stage, the system knows which verifi‑

cation packets have been modified during the transmission
process, and defines such a routing path as a suspected path;
that is, malicious nodes may appear on this path. In our sys‑
tem, the UAV checks the communication records of each node
along the path, and judges the node(s) where the packet loss
has occurred in the transmission process based on these re‑
cords.
Then, we specifically describe the processing of nodes on

the successful transmission path and the verification of sus‑
pected path (Fig. 4).
As shown in Fig. 4, in route path A, the verification packet

is successfully transmitted to the tail node, and then collected
by the MEUs faithfully, which means a successful transmis‑
sion path. In this case, all the nodes on the transmission path
honestly transmit the verification data packet to the next hop
node. The system records the successful communication be‑
havior once for Nodes a, b, c, and d. Since Node e is the tail
node, it does not participate in the transmission process, so
this verification task cannot perform trust evaluation on it.
On the contrary, after system verification in route path B,

the verification data packet collected at the tail node has
changed compared with the original data packet, which indi‑
cates that there is packet loss behavior by one or more nodes.
In the figure, the node marked in orange is the node that has
lost packets during transmission. Considering that there are
network fluctuations, trusted nodes may also lose packets due
to poor network communications, so the system cannot directly

▲Figure 4. Successful transmission and suspect paths
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a b c d e

a b c d e

Packet transmission route path A

Packet transmission route path B
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determine whether the node that has lost the packet during the
data packet transmission is a malicious node, but can only de‑
fine its communication behavior this time is malicious. Ac‑
cording to the transmission result of the data packet, the sys‑
tem records the successful communication behavior for Nodes
a, b, and d once, and correspondingly, it records the malicious
communication behavior for Node c once. As mentioned
above, Node e is the tail node and does not participate in the
transmission of data packets.
When the MEU collects data packets at the tail node and

uploads them to the data center in the cloud, it may also mis‑
represent the data. The system will also check the communica‑
tion behavior of its uploaded data, and record the number of
honest uploads and false uploads. As shown in Fig. 5, the real
active range of an MEU is a light area with a radius of R1, butit lies to the cloud data center that its active range is the dark
area with a radius of R2. Then the system assigns data collec‑tion tasks at four tail nodes, but the MEU only completes three
collection tasks. The data at the node at the bottom right is not
collected by the MEU because it exceeds its active range and
at the same time it lies about a false result. Based on the
above, the system will record the honest upload and false up‑
load of the MEU.
After the above four steps finish, one round of a verification

task is completed. With the obtained communication behav‑
iors of the nodes and data collector, we can use various trust
evaluation methods to calculate their trust values. The next
section will focus on describing the trust reasoning mecha‑
nism used in our scheme.
4.2 Trust Reasoning Mechanism Based on Communica‑

tion Behavior
The proposed trust reasoning mechanism in this paper is di‑

vided into three parts: the trust value initialization, trust evalu‑
ation, and trust state determination (Fig. 6).
4.2.1 Trust Value Initialization
At the beginning, when all nodes

and MEUs have not been fully
checked, we cannot judge whether
they are malicious or not, so we give
each node the same initial trust val‑
ue σ0 and record it as a suspectstate. After multiple rounds of trust
inspection, the trust value of the
nodes or MEUs participating in the
transmission and collection of verifi‑
cation data packets will change
through the trust reasoning mecha‑
nism and their status will increase
or decrease accordingly.
4.2.2 Trust Evaluation
The trust value is the direct basis

for judging whether the nodes and MEUs are malicious or not
in our scheme. In our trust reasoning mechanism, two calcula‑
tion methods are mainly used for trust value evaluation: com‑
munication behavior trust and collaborative recommendation
trust.
1) Communication behavior trust
In each round of a trust verification task, the transmission

of the verification data packet by the participating nodes is a
communication behavior, and we can obtain the number of
successful and malicious communication behaviors respective‑
ly. Similarly, we can also acquire two types of behaviors (hon‑
est upload behavior and false upload behavior) of MEUs par‑
ticipating in the data collection task. We can accordingly cal‑
culate the communication trust between the sensor nodes par‑
ticipating in the transmission task and the MEUs participating
in the collection task, and mark them as (σcomi

)wsn and (σcomj
)meu

respectively, in which i refers to the label of a sensor node in
the node set V and and j refers to the label of an MEU in the
user set U.

▲Figure 5. Mobile edge user (MEU) collects data package

Mobile edge user

Sensing device

Real active area

Active area of false
reports

R1
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▲Figure 6. Trust reasoning mechanism based on communication behavior
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We then record successful communication behaviors of the
sensor node and honest upload behaviors of the MEU as posi‑
tive communication behaviors, and the malicious communica‑
tion behaviors of the sensor node and the false reports upload‑
ed by the MEU as negative communication behaviors. We use
a subjective logic framework (SLF)[36] to describe communica‑
tion behavior trust and the formula for calculating the trust val‑
ue is as follows:
σcomi

= 2A + B2 , (11)
where A = p ( p + n + 1), B = 1 ( p + n + 1), p is the num‑
ber of positive communication behaviors of node i, and n is
the number of negative communication behaviors of node i.
2) Collaborative recommendation trust
As shown in Fig. 7, the transmission and collection of a verifi‑

cation data packet involves multiple sensor nodes and multiple
MEUs (MEU is regarded as mobile nodes), and these nodes coor‑
dinate to complete this verification task. With the packet as an
intermediary, a virtual connection is created between the nodes,
which is called collaborative recommendation in our scheme.
In our example, the nodes labeled a, b, e and f and the MEUs

labeled B and C perform their task honestly, and then there is a
positive virtual connection between them. However, the nodes
labeled c, d and the MEU labeled A do not complete the task
faithfully, so there is a negative virtual connection between
them. Similar to the communication behavior trust, the subjec‑
tive logic framework is used in the collaborative recommenda‑
tion value calculation, and the formula is as follows:
σrec (i,j) = 2A + B2 , (12)

where A = p ( p + n + 1) ,B = 1 ( p + n + 1), p is the num‑
ber of positive virtual connections established by nodes i and j

in multiple rounds of verification and connection tasks, and n
is the number of negative virtual connections.
The collaborative recommendation trust coefficient between

nodes i and j is σrec (i,j ), but if we want to calculate the recom‑mendation trust value of node i, we need to synthesize the col‑
laborative recommendation trust coefficients of all the nodes
that have virtual connections with it. What’s more, in order to
ensure the reliability of recommendation, it is essential to con‑
sider the trust of the recommender’s own communication be‑
havior trust. In summary, the calculation formula of the node’
s collaborative recommendation trust is as follows:

σreci
=∑j

Ii,j (σrec ( j,i ) )2σcomj∑
j
Ii,jσrec ( j,i ) ,

(13)
where Ii,j is a status indicating whether there is a connectionbetween nodes i and j. When Ii,j = 1, there is a connection be‑tween the two nodes, otherwise not; σcomj

represents the com‑
munication behavior trust of node j and takes its own commu‑
nication behavior trust as the weighting coefficient when node
j recommends node i.

Algorithm 2. Algorithm of trust value evaluation (AoTVE)
based on communication behavior
Input: ρ I, V, U, T
Output: V̂, Û
1: Initialize V̂ = V, Û = U
2: For each ρI, j ∈ ρI Do3: Detection packets are transmitted on the router ρI, j4: End For
5: For each nodei ∈ (Vmod ∪ Umod )Do
6: Calculate h, m of nodei by using the data collector and UAV7: Calculateσcomi

using h,m in Eq. (11)
8: Let xi be a collection which node all in router path ρI

9: Q = ∅
10: For each j, i. e., nodej ∈ xi Do
11: If σintj

≠ σ0 and∑k = 0
T |Bk,i +

Bk,j| ≥ 2Do12: Calculate p, n between no⁃
dei and nodej13: Calculate σrec(i, j) using p,
n in Eq. (12)
14: Q = Q ∪{ σrec (i, j ) }
15: End If
16: End For
17: Calculate σreci

using Q in Eq. (13)
18: Calculate σinti

using σreci
, σcomi

in Eq. (14)
19: If nodei in V Do▲Figure 7. Trust reasoning mechanism based on communication behavior

Data packet transmission and collection process

The connection between the nodeand the data packet

Normal node
Packet loss node
Normal mobile edge user (MEU)
Malicious MEU
Detection data packet
Transmission path of data packet
Data collection behavior
Honest virtual connection
False virtual connection
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20: V̂ (i) = nodei
21: Else If nodei inU Do22: Û (i) = nodei
23: End If
24: End For
25: Return V̂, Û
Algorithm 2 is the algorithm of trust value evaluation

(AoTV) based on communication behavior for two trust val‑
ues in the trust reasoning mechanism. Line 11 (If σintj

≠ σ0
and ∑k = 0

T |Bk,i + Bk,j| ≥ 2 Do) restricts the conditions for
node j to recommend node i. The restriction conditions re‑
quire that node j has participated in the verification task be‑
fore, that is, the comprehensive trust value is not the initial
value (σintj

≠ σ0), and node j has a virtual connection with
node i. For example, suppose that node i and node j perform
the task labeled 1 in this round and complete honestly, then
B1,i = B2,j = 1. If they do not complete the task honestly,then B1,i = B2,j = -1. In both cases,∑k = 0

T |Bk,i + Bk,j| ≥ 2 is
established, then node i and node j form a recommendation
relationship with each other. After calculating the communi‑
cation behavior trust and collaborative recommendation
trust, the comprehensive trust of the node is obtained by the
following formula:
σinti

= ω1*σcomi
+ ω2*σreci

, (14)
where ω1 and ω2 are aggregation constants and the best combi‑nation is found by subsequent experiments.
4.2.3 Trust State Determination
After each round of trust evaluation, the nodes participating

in the task will update the trust value once. We take the com‑
prehensive trust value of the node as the basis for its state judg‑
ment and use two constants σmax and σmin to divide the node intothree states. When the comprehensive trust value of the node is
greater than σmax, the node is judged to be trusted. When thecomprehensive trust value of the
node is less than σmin, the node isjudged to be malicious state, and the
node is classified as suspicious when
it is in between σmax and σmin.When a node is classified as a
trusted state and a malicious state,
for the sensor node, it no longer
needs to be verified, but for the
MEU, we should continuously verify
its credibility because of its strong
subjectivity. Besides, the higher the
MEU’s comprehensive trust, the
higher the probability and rewards
that it will be selected for the task.

4.3 Incentive Mechanism Based on Cost Performance
and Trust
In our scheme, the final result of the data packet transmit‑

ted via the sensor node is to be collected by third‑party users
to reduce the flying distance of the UAV and improve the effi‑
ciency of the system. We use mobile crowdsourcing
(MCS)‑based data collection scheme and complete the task of
data collection by hiring a large number of MEUs distributed
in the city. The MEUs have strong data storage capacity, com‑
puting power and high mobility. They can complete multiple
data collection tasks in a short time and make full use of the
idle computing power of the equipment.
However, hiring MEUs needs to consider two aspects. On

the one hand, it is impossible for MEUs to unconditionally par‑
ticipate in data collection tasks. Participants hope to get actu‑
al rewards from providing data, rather than volunteering to pro‑
vide data for free. Because the perception of data needs to con‑
sume resources such as battery power, computing resources
and data flow of participants’mobile devices, the participants
in this process also need to pay time and labor. Without prop‑
er return, participants are not interested in staying active in
the MCS‑based network for a long time. On the other hand, we
need to select MEUs to participate in the task reasonably and
give them appropriate remuneration to make full use of the re‑
muneration budget. In other words, we need to focus on the se‑
lection criteria of participants.
Therefore, we propose an incentive mechanism based on

cost performance and trust. Our incentive mechanism uses a
reverse auction framework to describe the relationship be‑
tween data centers and MEUs. Our mechanism is divided into
five steps (Fig. 8). At first, the system selects all tail nodes,
and sends data collection tasks to idle MEUs according to
each round of verification data packets. Then, the MEUs
whose active scopes cover the target node give their own
quotes and, after the system receives the quotation from the
MEUs, it uses Algorithm 3 to select a set of suitable bids,
which is recorded as the winning bids set, and determines the

▲Figure 8. Reverse auction framework

Cloud MEUs

Allocate tasks
Bids

Select winning bids set
Perform task
Payment

MEU: mobile edge user
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reward based on its performance. Subsequently, the selected
MEUs perform data collection tasks within the scope of their
activities and upload the collected results to the data center.
When we design the winning bids set selection algorithm, we
consider two selection criteria:
1) The ratio of an MEU’s expected revenue to its data col‑

lection capacity. The quotes of an MEU can be expressed as a
two‑tuple bidi = (bi,PoIi), in which bi is the expected reward
of the MEU labeled as i, while PoIi represents the number oftask nodes covered in the active range of the MEU labeled as
i. This ratio can directly reflect the cost‑effectiveness of the
data benefits we can obtain by providing remuneration to us‑
ers.
2) The comprehensive trust value of an MEU. Not all MEUs

are authentic and the data they submit may be biased. We can
divide untrusted MEUs into two categories:“Greedy Users”
who may report falsehood by exaggerating their scope of activi‑
ties for their own benefit and“Real Malicious Users”who de‑
liberately misrepresent data, thus affecting the true collection
of data packets, and have a certain strategy.
Based on the above two criteria, we designed Algorithm 3.

The input of the algorithm includes the MEU bid set BID and
node set V. The output of the algorithm is the winner set S and
their payment set P. Then the algorithm uses the greedy meth‑
od to find the MEU with the maximum sensing
performance‑price ratio and their trust value in first loop
(Lines 3–11). In second loop (Lines 13–26), for each MEU
in the winner set S, the algorithm removes the MEU from S
and continues to select other MEUs in - -----BID to join S̄ until all
the nodes can be accessed. Finally, according to the element
in S̄, the algorithm gets the payment of each MEU.

Algorithm 3. Winning bids set selection and payment de‑
termination
Input: BID,V
Output: S,P
1: S,P = ∅
2: - -----BID = BID
3:While PoI (S ) is not contain all node of V Do
4: Select participant u from - -----BID by using Eq. (15)
5: If PoI ({u} ) ⊆ PoI (S ) Then
6: - -----BID = - -----BID \ u
7: Else
8: S = S ∪{ u }
9: BID = BID \ u
10: End If
11: EndWhile
12: -S = ∅
13: For each u ∈ S do
14: -S = S \ u
15: While PoI ( -S ) is not contain all node of V Do
16: Select participant ū from - -----BID by using Eq. (15)

17: If PoI ( { ū }) ⊆ PoI (-S)Then
18: - -----BID = - -----BID \ ū
19: Else
20: S' = S' ∪ { ū }
21: BID = BID \ ū
22: End If
23: EndWhile
24: Calculate pb by using Eq. (16)25: P = P ∪{ pb}26: End for
27: Return S,P
Our incentive mechanism uses the following formula to se‑

lect the current best participant:

u = max i ∈ BID (α1* bi
PoIi

+ α2*σcomi) , (15)
where bi PoIi is the ratio of MEU’s expected revenue to its
data collection capacity and σcomi

is comprehensive trust value
of the participant labeled as i. We use proportional coeffi‑
cients α1 and α2 to aggregate the participants’bid scores.Algorithm 3 uses the ratio of the best data benefit in the al‑
ternative set S' to calculate the participant’s payment (Lines
12–24). The calculation formula is:

pb = max j ∈ S' ( rbrj *PoIj ) , (16)
where rb is expected revenue of participant ub, rj is revenue ofparticipant of uj, and PoIj is the number of task nodes in theactive area of uj.

5 Performance Analysis

5.1 Experiment Setup
We realized the UAV‑DT scheme in Python 3.7 and ran a

simulation experiment on IdeaPad Air 14 with 16 GB 2 133
MHz LPDDR4 RAM, whose CPU parameters is 2.10 GHz
AMD Ryzen 5 4600U with Radeon Graphics.
The important parameters used in our experiments are list‑

ed in Table 2. Each experiment was carried out in a network
area of 100×100 m2, where 1 000 smart devices and 500 ME‑
▼Table 2. Experimental parameters

Parameter
Size of area/m2

Number of sensor nodes
Number of MEUs

Active radius of MEU/m
Payment of hiring MEU

Value
100 ×100
1000
500
[ 5, 10 ]
[10, 25 ]

MEU: mobile edge user
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Us were randomly deployed. We randomly created 20 differ‑
ent network scenarios in total and ran them once in each ex‑
periment. The results were averaged to ensure the robustness
of our strategy in different network scenarios.
For a normal sensor device, there was a small probability of

packet loss in the process of transmitting data packets due to
network fluctuations. However, a malicious sensor device
would deliberately discard a part of the data packet with a
greater probability. We gave 5% and 20% probabilities for
two different packet loss situations, which were reflected in
the form of random functions in the simulation experiments. In
the simulation, the data MEU reported had a 10%–40% prob‑
ability of being false.
In the experiments, 70 rounds of verification tasks were car‑

ried out in each scenario, and in each round, we used the
drone to release 30 data packets starting with random sensor
device. The length of the routing path of each packet was fixed
to 10 nodes.
5.2 Discrepancy of Trust Values
In our scheme, the communication behavior trust and col‑

laborative recommendation trust are aggregated into integra‑
tion trust, then whether a behavior is malicious or not is deter‑
mined by setting two thresholds (σmax and σmin), which in‑volves two aggregation coefficients ω1 and ω2.In the discrepancy experiments, we
set five sets of coefficients to test the
effect of different coefficients on the
discrepancy of trust values. We set
ω̂1 = (0.5, 0.5), ω̂2 = (0.6, 0.4), ω̂3 =
(0.7, 0.3), ω̂4 = (0.4, 0.6), and ω̂5 =(0.3, 0.7), and guaranteed ω1 + ω2 =1. Besides, since the optimal classifi‑
cation threshold has not been deter‑
mined, so our experiments did not
classify nodes.
Fig. 9(a) shows that after 70 rounds

of verification tasks are completed,
the values of discrepancy between
normal and malicious nodes in each
set of experiments are in the interval
between 0.5672 and 0.5916. Obvious‑
ly, when we set ω̂ = ω̂3 = (0.7, 0.3),
the discrepancy reaches a peak, equal
to 0.5916. The result shows that our
scheme has a high degree of discrimi‑
nation between normal and malicious
nodes and the discrepancy between
the two reaches a high value. Thus,
we still use this set of aggregation co‑
efficients in subsequent experiments.
We continue to advance the dis‑

crepancy experiment subsequently

and Figs. 9(b), 9(c) and 9(d) show the discrepancy of communi‑
cation behavior trust, collaborative recommendation trust, and
integration trust between normal and malicious nodes. The
three trust values of normal nodes are 0.916, 0.735 and 0.864
after 70 rounds of verification tasks, and the three trust values
of malicious nodes are 0.684, 0.513 and 0.633. Compared
with collaborative recommendation trust, the curve of commu‑
nication behavior trust is smoother and the convergence speed
is faster. After 20 rounds, the average of discrepancy in com‑
munication behavior trust has reached a high level. In terms of
collaborative recommendation trust, the numerical curve has
fluctuations in 70 rounds. As shown in Fig. 9(c), the average
trust of normal nodes is not high enough so that the distinction
between the two is not obvious.
The following is the conclusions of this group of experi‑

ments:
1) It is reasonable to trust a higher aggregation coefficient

for communication behavior trust, and when the classification
thresholds (σmax andσmin) are not set, we use the communica‑tion behavior trust to distinguish normal nodes from malicious
nodes clearly.
2) The verification effect of communication behavior trust

and collaborative recommendation trust can still be further op‑
timized. We set classification thresholds σmax and σmin, andthe system excludes the nodes that can be clearly identified as

▲Figure 9. Influence of different parameters on the average trust between normal and malicious nodes

(a) Polymerization parameters (b) Average of communication behavior trust

(c) Average of collaborative recommendation trust (d) Average of integration trust
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the trustworthy or malicious from subsequent tasks, so that the
left nodes with doubtful status (that is σmin < σinti

< σmax) can
get a chance to be verified.
From Fig. 9(d), we can clearly see the average integration

trust of normal nodes is 0.864 and has a slight upward trend.
The average integration trust of malicious nodes is 0.231 and
has a downward trend stably. Then we use 0.85 and 0.25 as
the central values to find the best classification thresholds.
5.3 Discriminant Rate of Normal and Malicious Nodes
In this section, we set two groups of thresholds to conduct

classification discrimination rate experiments. We use 0.85
and 0.25 as the central values of two groups (- -----σmax = 0.85,
- ---σmin = 0.25), and find the best value in the interval between
the upper and lower domains is 0.1. Then the interval of σmax
is (- -----σmax - 0.05,- -----σmax + 0.05 ) and the interval of σmin is (- ---σmin -
0.05, - ---σmin + 0.05).
As shown in Fig. 10, in the first three sets of experiments,

the discrimination rates of trusted nodes converge quickly and
the final result is around 0.988, which means the correct dis‑
crimination rate of trustworthy results reaches 98.8%. Even if
the result of the last set in more stringent conditions reaches
0.930, the correct discrimination rate can reach up to 93%.
The results of the experiments on the discrimination rate of
malicious nodes are shown in Fig. 11. The discrimination ef‑
fect of groups 2–5 is better and the final discrimination rate
is between 0.821 and 0.933. Under the most stringent thresh‑
old conditions, when σmin = 0.20 in the experiment, the dis‑crimination rat is still higher than 65%.
From the experimental results, it can be seen that our

scheme has excellent effect and robustness on the recognition
ability of trusted and malicious nodes, and can obtain a high
recognition rate even after 20 rounds. Then we choose σmax =0.85 and σmin = 0.30 as the best thresholds for our system toclassify nodes. The node labeled as i will be treated as a trust‑
ed node when σinti

> (σmax = 0.85) and a malicious node when

σinti
< (σmin = 0.30).

Under the best classification threshold, the classification re‑
sults are shown in Fig. 12. Trusted and malicious nodes are
thoroughly classified after 30 rounds. Finally, the classifica‑
tion rate of trusted nodes is as high as 98.9%, while the classi‑
fication rate of malicious nodes also reaches 94.2%. In other
words, only 15 nodes are still in doubt status after 70 rounds
in our simulation environment.
After the best classification thresholds (σmax = 0.85 and

σmin = 0.30) are set, we repeat the experiment in Section 5.2with ω1 = 0.7 and ω2 = 0.3. As shown in Figs. 13(a), 13(b)and 13(c), our scheme has a good improvement on the trust
evaluation ability of nodes after setting the classification
thresholds.
In terms of communication behavior trust, the average trust

of normal nodes, the average trust of malicious nodes and the
discrepancy between normal and malicious nodes are 0.929,
0.241, 0.688 respectively, which are slightly improved. In
terms of collaborative recommendation trust, the average trust
of normal nodes, the average trust of malicious nodes and the
discrepancy between normal and malicious nodes have
changed from 0.735, 0.222, and 0.513 to 0.890, 0.282 and
0.608, respectively. The discrepancy has increased by 18.5%,
which means that the evaluation effect of collaborative recom‑
mendation trust has been improved. Combining the above two
types of trust, the result of discrepancy in integration trust has
increased by 4.8%.
Based on the experiments, we determine the classification

thresholds for node classification in our scheme, and the re‑
sults prove that the node classification ability of the system is
very significant.
5.4 Collection Rate
In our network scenario, there are some malicious nodes,

which randomly discard some data packets passing through it
with a certain probability. In this section, we generate the same
number of regular data packets as the verification data packets,
transmit them on the network, and hand them over to the MEU

▲Figure 10. Discrimination rate of trusted nodes
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▲Figure 11. Discrimination rate of malicious nodes
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▲Figure 12. Discriminative ability under the op‑
timal classification threshold
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for collection. In contrast, we also simulated the collection of
regular data packets in the original network scenario without
our scheme, which is usually called unverified network.
The results are shown in Figs. 14 and 15. In our scheme,

the collection rate curve first rises quickly and stabilizes in a
very high value range, while the collection rate curve fluctu‑
ates at a relatively low position in the unverified network. Af‑
ter 14 rounds (when the most nodes in the network are classi‑
fied), the collection rate of our scheme stays within the range
0.88 to 0.92, and the collection rate of unverified network
maintains between 0.78 and 0.82. The average of the former is
0.899, while that of the latter is 0.808, that is, our scheme im‑
proves 11.2% compared with the unverified network.
From another perspective, in our network scenario, there

are two main reasons for packet loss: network fluctuations and
the malicious node that deliberately loses packets. We also
conducted two comparative experiments on the causes of pack‑

et loss.
As shown in Fig. 15, the proportions of the packet loss ratio

caused by network fluctuations and malicious nodes are rela‑
tively stable in multiple rounds of experiments in the unveri‑
fied network. The former is 26.6% in average and the latter is
73.4% correspondingly. In our scheme, the proportions of the
two keep changing with the increase of rounds and the propor‑
tion of malicious nodes intentionally losing packets is slowly
decreasing from 0.638 to 0.468.
From the above experimental results, it can be seen that our

scheme effectively detects a large number of trusted nodes
and malicious nodes in the network, thereby avoiding mali‑
cious nodes during data packet transmission and improving
the collection rate of data packets.
5.5 Cost
In this section, our experiments compare the winning bids

(a) Communication behavior trust (b) collaborative recommendation trust (c) Integration trust
▲Figure 13. Trust evaluation capability under the optimal threshold
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▲Figure 14. Collection rate

UAV‑DT: UAV to detect the trust of sensing devices and mobile edge users
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set selection algorithm in our scheme with the conventional
greedy algorithm (Fig. 16). The total cost of our system is di‑
vided into two parts: the cost of hiring MEUs and additional
costs (the cost of sending drones for additional verification).
We assume that the cost of each additional verification by the
drone is as five times much as the cost of hiring an MEU.
According to the experimental results, the cost of hiring

MEU in each round is much higher than the cost of additional
verification of drones. The reason is: in our network scenario,
there are more normal IoT devices than malicious ones and
the frequency of transmission errors is relatively low com‑
pared to the total number of transmissions. Therefore, the cost
of the system is mainly focused on hiring MEUs. In addition, it
is obvious that the cost of our scheme for hiring MEUs is lower
than that of the greedy strategy, with an average reduction of
23.4%. Although the additional costs are slightly higher, our
scheme is still the best in terms of total cost, with an average
reduction of 10.7%. Our UAV‑DT scheme spends significant‑
ly less on employment than the greedy strategy. The greedy
strategy does not consider the trust value in the selection
range when selecting MEUs to participate in the data collec‑
tion, which causes the suspected path shown in Fig. 4. This
will inevitably lead to an increase in the cost of using UAV for
review. On the contrary, UAV‑DT uses the trust value of ME‑
Us as the selection criterion shown in Algorithm 2.

6 Conclusions
In this paper, we propose a low‑cost and efficient UAV‑DT

security scheme, including the UAV‑assisted trust verification
mechanism, incentive mechanism based on cost performance
and trust, and trust reasoning mechanism based on communi‑
cation behavior. By continuously verifying the trust of the
nodes in the network, the trusted and malicious nodes can be
quickly distinguished by comparing their trust values.
Our experimental results show that our security scheme has

high discrimination for malicious nodes, and provides an effec‑
tive solution to efficient and safe data collection in the city.

However, we did not use a good path planning scheme in
the UAV broadcast verification packet stage and the UAV sec‑
ondary inspection stage. Further studies are needed in future
and we will focus on how to develop an efficient UAV flight
path in the future research.
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