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Abstract: With the rapid development of 5G technology, more and more attention has been
attracted to mmWave sensing. As an emerging sensing medium, mmWave has the advantag‑
es of both high sensitivity and precision. Different from its networking applications, the core
method of mmWave sensing is to analyze the reflected signal changes containing the rele‑
vant information of different surrounding environments. In this paper, we conduct a systemic
review for mmWave sensing. We first summarize the prior works on environmental sensing
with different signal analysis methods. Then, we classify and discuss the work of sensing hu‑
mans, including their behavior and gestures. Finally, we discuss and put forward more possi‑
bilities of mmWave human perception.
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1 Introduction

Millimeter wave (mmWave) communications are con‑
sidered an essential component of 5G-and-beyond
ultra-dense wireless networks, and the 5G breakout
brings development opportunities to the study of

mmWave sensing. Compared with traditional sound waves, ul‑
trasonic waves and WiFi signals, mmWave sensing has great
advantages, such as fine-grained resolution and the ability to
detect subtle movements. Compared with camera-based sen‑
sors (such as visible light and infrared 3D structured light),
mmWave can penetrate a few non-conductive objects includ‑

ing plastic, paper, glass, cloth, rain, and fog. Therefore, the
unique sensing feature of mmWave has attracted more and
more attention.
We, according to the different application scenarios, divide

the existing methods into two categories.
1) Static indoor environment. The indoor structure being

sensed is often utilized in robot vision and environment map‑
ping, reacting upon indoor mmWave Wi-Fi networking. De‑
pending on the capability of the equipment, we regroup the re‑
lated work from a technology implementation perspective. We
believe that such a classification is beneficial for researchers
to quickly grasp not merely the cutting-edge works but also
the technical details. In the beginning, this task is utilized for
robot vision, i. e., help the robots discover obstacles in their
routes[1]. Inspired by this application, researchers manage to

“see” and build the surrounding construction through
mmWave signals[2]. Utilizing the acquired surrounding spatial
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structure, researchers further facilitate the popularity of the
mmWave Wi-Fi networking.
2) Dynamic human movements. Since mmWave signals

have a short wavelength, it is sufficient to detect centimeter-
level distance and sensitive to capture the millimeter-level mo‑
tions around. Based on this knowledge, many researchers uti‑
lize mmWave signals to identify people through their gait[3],
recognize several predefined hand gestures[4–5], and track
someone’s fingers[6]. More subtlely, the vital signs (such as re‑
spiratory and heart rates) can also be extracted by changes in
reflected mmWave signals.
The core method of mmWave sensing is to analyze the sig‑

nal changes reflected on the surrounding environment, so as to
obtain its state. Therefore, in a practical operation process, we
first need to use the transmitter module to transmit the signal
and then receive the signal reflected and“modulated”by the
surrounding environment.
The information of the target is contained in these signals,

so the sensing systems then use different methods to“demodu‑
late”the information of the surroundings, which will be pro‑
cessed and counted to get an overall message of the surround‑
ing environment. However, there are two methods to perform
the“demodulation”: the traditional signal analysis and the AI-
based learning. The former analyzes the angle and orientation
of the reflection object by analyzing the changes in the com‑
munication information of the signal after reflection. The latter
uses black-box machine learning methods to comprehend
more complex human movements.
Interestingly, most studies on dynamic human movements

rely on artificial intelligence (AI) technology because the fea‑
tures extracted from human movements are very complicated.
These features include a great many reflection points with dif‑
ferent distances, angles, speeds, and energy intensities. There‑
fore, the AI tool, originally designed for image learning, can
discover the underlying relationship across such massive and
complex feature information, so as to help the system sense hu‑
man movements. Inversely, only a few studies on static indoor
environments rely on AI. For the reader’s convenience, we
categorize these existing applications based on whether using
AI and sensing scenarios. Based on this analysis, we explore
each of the sensing scenarios in terms of breadth and depth
and also put forward the prospect of mmWave sensing in fu‑
ture applications.

2 Sensing Indoor Environment
When networking in an indoor scenario, the available

mmWave links often include multiple paths reflecting off the
surrounding wall, in addition to the LoS path, as shown in
Fig. 1. Different surrounding walls have different effects on
the information of received signal strength (RSS) and phase of
the mmWave link paths. Then by analyzing these effects, re‑
searchers can extract relevant information about the paths,

such as the time of flight, transmission length, or reflection an‑
gle. Using such information of paths, researchers construct the
surrounding environment. Otherwise, researchers have fo‑
cused on how to perceive the indoor environment to improve
the efficiency and stability of 5G mmWave indoor networking.
The radar system, using frequency modulated continuous

wave (FMCW) mmWave signals, is easy to identify the sur‑
rounding environment because it has the advantages of ro‑
bustness, low computational complexity, strong penetration,
etc. However, the current work is often done by reusing low-
cost and ubiquitous 5G mmWave communication devices.
Compared with radar devices, this device is difficult to iden‑
tify the surrounding environment and thus is unable to han‑
dle complex environments. Therefore, how to reuse 5G sig‑
nals to obtain the surrounding environment has become the
key to the problem. According to the limitations of different
devices and the way they use signals, we categorize the relat‑
ed works into threefold implemental technologies (catego‑
rized in Table 1).
2.1 Utilizing Both Phase and RSS
During the process of device localization for mmWave, we

normally have the problem of knowing nothing about the ini‑
tial surrounding environment. To solve this, PALACIOS et al.
design JADE[2], which can estimate the location of a mobile us‑
er in indoor space without any prior knowledge. The JADE al‑
gorithm can be directly combined with a commercial device to
extract information using the angle of arrival (AoA) of signals,
so as to obtain the location of users. Then, they propose
CLAM[7] to localize the mobile user, estimate the position of
access points, and finally form a map of the environment. Us‑
ing these two algorithms, they realize the localization and map‑
ping of the mmWave network without knowledge of the initial
environment.

▲Figure 1. Indoor environment is inferred by concatenating the reflec⁃
tion points
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CLAM combines experiments with simulation because
JADE is entirely dependent on simulation results. Thus, the
above two works are too dependent on the simulation experi‑
ments, which theoretically discuss the possibility of indoor en‑
vironment perception. E-Mi[8] achieves the same function ex‑
perimentally. Specifically, E-Mi proposes a multi-path analy‑
sis framework, using a customized 360◦ omnidirectional anten‑
na to obtain the information of the <angle, length> of all reflec‑
tion links through the RSS and phase information of the sig‑
nal, so as to infer the surrounding environment according to
the geometric relationship. Based on E-Mi’s equipment and
method, Beam-Forcast[9] makes a reverse engineering, i. e.,
how to accelerate the alignment of network link for a mobile
client through the angle change of the client in a given envi‑
ronment.
2.2 Utilizing Only RSS
The above methods can acquire the AoA information direct‑

ly, but commercial off-the-shelf (COTS) mmWave nodes in dai‑
ly life cannot accurately extract phase information. This is be‑
cause the daily mmWave nodes use ideal laser-like beams,
which are generated by horn antennas. Due to its lack of ability
to maintain the phase offset between the transmitter (Tx) and
the receiver (Rx), a lot of small phase jitters may cause a large
error in practical applications. To solve this question, research‑
ers try to determine the AoAs of the link by adjusting the Rx’s
orientation (i.e., the receiving direction with the largest RSS).
ZHU et al. design RSA[1] which moves radio antennas while

collecting reflection signals to create a synthetic aperture ra‑
dar (SAR) to infer the object’s boundaries, curvature, and sur‑
face material. Specifically, RSA fixes the Tx, a commodity
HXI Gigalink 6 541 board, and moves the Rx with a deliber‑
ately designed path collecting reflection signals. In this pro‑
cess, RSA can extract the detected object’s status including
both its curve direction (by aligning its receiver orientation to‑
wards the strongest one) and its material according to the sig‑
nal strength. Furthermore, Ulysses[10] binds Tx and Rx (the
same as that used by RSA) together and moves them at the
same time. According to this, the system can prevent collision
in motion, which can be used in future scenarios, e.g., the un‑

manned driving and robot movement.
Uniquely, utilizing RSS of the reflected signals, RadarCat[11]

can identify different materials of plenty of static objects, such
as glasses, water, metals, and mobile phones. Specifically, Ra‑
darCat is based on a principle that the signals reflected from
different materials are highly characteristic because the thick‑
ness and geometry of the object will scatter, refract and reflect
the radar signals differently. Therefore, RadarCat feeds the 8-
channel radar signal RSS and their statistics into a well-
trained classifier to distinguish the different objects.
2.3 Utilizing RSS with a Programmable Robot
All of the above indoor environment mapping works (except

RadarCat) need to manually adjust the position and orienta‑
tion of the devices, so researchers try to automate the task of
collecting signals with the help of a programmable sweeping
robot as shown in Fig. 2, which is precise to position, steer
and track. With the help of this robot, mmRanger[12] can use
the commercial mmWave network cards to achieve the con‑
struction of and indoor environment by only utilizing the corre‑
lation between AoA and RSS. Specifically, mmRanger carries
two mmWave cards on a commercial cleaning robot to make
all of them as a whole, i. e., a smart mobile environment sen‑

▼Table 1. Comparison of the state-of-the-art works on sensing static indoor environment
Citation
JADE
CLAM
E-Mi

Beam-Forcast
RSA
Ulysses
RadarCat
mmRanger
miDroid

Usage
Position the client
Map the environment
Boost the indoor network
Improve the mobile links

Position object & identify materials
Image environment

Identify plenty of materials
Sense environment
Improve mobile links

Technology
An iterative algorithm

A distributed localization algorithm
A multi-path analysis framework
Reverse engineering of E-Mi

Move Rx along trajectory while collecting
Bind Tx & Rx together to collect reflection signals
Classification by learning on the radar signals

Automatically collect signals
Set a network relay piggybacked on the robot

Method
Both phase and RSS
Both phase and RSS
Both phase and RSS
Both phase and RSS

Only RSS
Only RSS
Only RSS

RSS with a robot
RSS with a robot

RSS: received signal strength Rx: receiver Tx: transmitter

▲Figure 2. A programmable sweeping robot that works precisely to po⁃
sition, steer, and track
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sor. The robot can sense the environment by exchanging
mmWave signals between the two cards when it moves and ro‑
tates freely inside the target room. Upon this process, the ge‑
ometry of the multiple reflection paths can be extracted by
mmRanger from their RSS sequence, and then the environ‑
ment layout can be reconstructed.
Actually, smart robots will eventually become a part of the

home and enterprise environment to help automate our daily
lives and improve productivity. Based on this vision,
miDroid[13] binds the same network card node to the same ro‑
bot, turning the robot into an indoor mmWave Wi-Fi relay and
thereby achieving faster mobile client network optimization.
More specifically, miDroid firstly analyzes the series of access
point (AP) beacons to extract spatial factors and then finds out
the AoA/angle of departure (AoD) of signal transmission
paths, so as to map the environment. Then, miDroid proposes
a real-time and adaptive path planning algorithm to instruct
the navigation of the robot relay, thus improving the perfor‑
mance during the client’s blockage when he changes orienta‑
tion rapidly.

3 Sensing Human
Different from the last section, human movements simulta‑

neously generate multiple reflection points each with different
position, velocity, reflection intensity, etc. Therefore, two re‑
search methods are adopted according to the complex degree
of the sensing movements (categorized in Table 2).
3.1 Human Movement Tracking
Several works are aimed only at small, uniform movements

on a certain part of the human body, such as vertical finger
tracking, regular breathing, and heartbeat. Specifically, re‑
searchers utilize horn antennas to focus on the detected target,

thereby eliminating the interference of unrelated motions
around, as shown in Fig. 3. In this way, any variation in the re‑
flection signal represents the change of the target to sense
changes in the target part of the human body.
To focus on a periodic movement, e.g., human chest varia‑

tion caused by the breath and heartbeats, YANG et al. [14] pro‑
pose mmVital, a system using 60 GHz mmWave signals for vi‑
tal sign monitoring. In this system, they utilize two horn anten‑
nas fixing their orientation to continuously capture the subtle
variation of the skin on one’s chest by analyzing the signal
modulation caused by the skin fluctuation. Specifically, they
extract the periodic changes within the signal RSS to acquire
the frequency of breath and heartbeat and filter the raw sig‑
nals through the suited band-pass filter to achieve better accu‑
racy. As a result, mmVital provides a mean estimation error of
0.43 breaths and 2.15 breaths per minute within 100 ms of
dwell time on reflection.
On the other hand, for the non-periodic movement, e. g.,

tracking a finger, the horn antenna needs to determine the di‑
rection of the finger movement by analyzing the signal chang‑
es to realize finger tracking. WEI et al.[6] trace a rectangle area
as the tracking region in their proposed tracking system
mTrack. Then, they place a quasi-omni-directional
(180° beamwidth) transmitter on one of the rectangle vertexes
and two horn-antenna receivers on the adjacent sides facing
the region respectively. In this region, finger movements in
any direction will be transformed into two relative movements:
approaching or moving away from the two receivers. Fortunate‑
ly, these two movements can be detected by the phase changes
of the signal thank to the small wavelength of 60 GHz
mmWave. As a result, mTrack can track a vertical finger with
a 90th percentile error below 8 mm which is sufficient for a vir‑
tual trackpad.
In addition to the above work on sensing a certain part of

▼Table 2. Comparison of the state-of-the-art works on sensing dynamic human movements
Citation
Deep-soli
Ubi-soli
HCI

MengZhenGait
MmVital
MTrack
MmSense
MID

LowCostGes
MmASL
MHomeGes
MTranseSee
Pantomime
MmMesh

Usage
Gesture recognition
Gesture recognition

Vehicular gesture recognition
Identify different users
Monitor vital signs
Track a vertical finger
Multi-human detection
Gesture recognition
Detect gesture

Home-assistant system
Smart home-usage
User recognition
Gesture recognition

Human mesh construction

Equipment
Soli
Soli
Soli

TI-IWR1443&6843
Horn antennas
Horn antennas

Free
Free
RIC60a
Free

TI-IWR1443
Free

Pantomime
Free

Technology
Range-Doppler images

Multiple abstract representations
Several physical features
Three spatial features
Extract periodic changes

Combine target’s angle and phase change
Features of 60 GHz signal

MmWave sensing
Extract power profile and AoA
Features of 60 GHz signal

MmWave sensing
MmWave radar
MmWave sensing

Deep learning framework

Whether AI
Customized CNN
Random forest
Random forest
MmGaitNet

No
No
No
No
No
No
No
No
No
No

AI: artificial intelligence AoA: angle of arrival CNN: convolutional neural network HCI: human computer interface
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the human body, there are also some work on human detec‑
tion. For example, GU et al. [15] propose mmSense, a device-
free multi-person detection framework. During this work,
they use the properties of 60 GHz signal for human bodies
and objects to fingerprint the environments including and
excluding humans. Then based on the monitored 60 GHz
signals and generated fingerprints of environments,
mmSense can simultaneously detect the presence and loca‑
tions of multiple persons. Furthermore, by correlating the
60 GHz RSS series with the measurement of different peo‑
ple’s outlines and vital signs, they propose a new method to
identify multi-person. Finally, they demonstrate the effec‑
tiveness and low cost of this method through experiments.
Besides, in the domain of user recognition, LIU et al.[16] pro‑
pose mID, the first user identification approaches that uti‑
lize mmWave signals.
3.2 Complicated Behavior Sensing
As aforementioned, the movement of the human body cre‑

ates a large number of reflection points with different spatial
features, as shown in Fig. 4. So we have to treat the human
body as a soft body instead of a rigid body (e.g., a wall). In or‑
der to obtain the position-scattering points, all of the work uti‑
lizes FMCW，which can separate the reflection points with
their spatial features, i.e., distance, velocity, and angle. With
the different features of the points on a human body, his/her
movements can be recorded in detail. However, it is too com‑

plex to recognize human movements by analyzing different
changing features with simple geometrical relationships.
Therefore, the AI tool acting as a black box is utilized to help
the system sense human movements.
To recognize gestures, WANG et al. [4] directly utilize a ma‑

ture method, Range Doppler (RD), in the FMCW signal pro‑
cessing field for each fleeting period slice of a gesture. Then,
to classify these RD sequences, they input the RD image of
each slice into a customized convolutional neural network
(CNN) and put the discrete recognition results from each slice
into a recurrent neural network (RNN). As a result, this work
achieved 87% accuracy on 11 gestures. Crucially, the hard‑
ware in this work is the first small-size mmWave radar called

“soli”[5], which transmits omni-directional FMCW signals to
sense the gesture of the nearby environment. To verify its ges‑
ture sensing ability, the researchers, in addition to the above
RD metrics, also introduce two series of features, i. e., in-
phase/quadrature (I/Q) statistics, and some tracking informa‑
tion. In particular, the former is useful for detecting micro mo‑
tions and the latter is beneficial for recording the moving
trend of the gesturing hand. Then, these features are fed into a
random forest (RF) classifier due to its computational speed,
low memory consumption, and generalization ability.
Totally, this work is sufficient to recognize four gestures

with 92.10% accuracy. Furthermore, using the same chip,
SMITH et al. [17] implement the gesture recognition into a hu‑
man-car interface with also an RF classifier. Based on the
above solutions, PATRA et al. [18] present a low-cost mmwave
radar-based system to save the computation resource. They de‑
tect gestures only by the AoA and the power profile extracted
from the measured signal. Specifically, they use two low-com‑
plexity classification algorithms: unsupervised self-organiza‑
tion mapping (SOM) and supervised learning vector quantiza‑
tion (LVQ). With these methods, gesture recognition can reach
87% accuracy for some gestures.
Gesture recognition can be applied to home assistants. For

example, the user can wave one’s hand at a distance to turn
on a TV. To achieve gesture recognition in such home scenari‑
os, there are several vital challenges: 1) With the increase of
the detection range, the details of gestures will become diffi‑
cult to be captured due to the severe attenuation of the
mmWave transmission in the air. In this case, the reflection
points will be sparser when the user is standing at a distance.
2) There are also plenty of non-target movements, i.e., they are
not predefined gestures but are performed in our daily life. In
this case, the points, which are generated by reflection on the
non-target movements or even by the multipath reflection on
the user’s ambient appliances, will interfere with the original
recognition.
To solve the problem, LIU et al.[19] propose mHomeGes, a re‑

al-time smart home gesture recognition system completely us‑
ing mmWave. First, they obtain the position and dynamic vari‑
ation of the gesture. Then they recognize fine-grained gestures

▲Figure 3. Detecting simple human movements

Finger trackingBreath testing

▲Figure 4. Detecting compound human movements

Gesture recognition Gait recognition
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by using a lightweight CNN. Next, they propose a user-discov‑
ery approach to focus on target human gestures, eliminating
the adverse effects of surrounding interference. Finally, they
realize the continuous gesture recognition in real time. In the
end, mHomeGes achieved more than 95.30% of high-precision
recognition in real-time smart home scenarios, successfully
solving these problems. On the other hand, PALIPANA et al.[20]
use a Pointnet++ and LSTM combination to extract the spatio-
temporal feature of point clouds. In this case, they build a 4D
point cloud classification architecture that feeds on the point
clouds directly to recognize the gestures. SANTHALINGAM et
al. [21] also try to recognize the movements (e.g., American sign
language recognition for the deaf and hard-of-hearing people) at
a distance, but they highly rely on cumbersome devices. Based
on the home-scenario gesture recognition, LIU et al. further pro‑
pose mTranSee[22] to largely reduce the adaptation effort in a
smart home scenario via transfer learning, which promotes the
practicability of mmWave gesture sensing.
Based on the similar inspiration of the point cloud, MENG et

al.[3] utilize FMCW mmWave signals to realize the gait identifi‑
cation by three spatial features, i.e., three-dimensional (3D) co‑
ordinates in space, speed relative to the radar, and the energy
intensity of each reflection point on a human body, respectively.
In order to adapt these three features, they also design a novel
AI algorithm, i. e., GaitNet, which concatenates five separated
attribute networks (the first three are for the 3D coordinates)
and feeds them into a fusion network. As a result, mmGaitNet
achieves 90% and 88% accuracy for single person and five co-
existing person scenarios, respectively.
Since point clouds reflect the movement of the human body,

and millimeter waves can detect tiny movements, can we con‑
struct the human body through millimeter wave signals? For
this, XUE et al. [23] propose mmMesh, a real-time 3D human
mesh estimation system. This system can accurately align the
3D points with the corresponding body segments. With this ap‑
proach, the lost part due to the sparsity of mmWave point
cloud is introduced from the information of the previous frame
so that a dynamic human mesh is completed.

4 Discussion
According to different sensing tasks (environment/human

body) and core methods (AI/non-AI), we cross-classify the ex‑
isting methods across application scenarios (categorized in Ta‑
ble 3). Next, we will discuss the deficiency of mmWave sens‑
ing-related work and look forward to the other perception ap‑
plications.

4.1 Deficiencies of State-of-the-Art Work
Deficiencies of the state-of-the-art work are introduced in

the following scenes.
1) Sensing the indoor environment
For environment construction, the current work lacks the

ability of complex environment construction, i.e., it is limit‑
ed to smaller indoor environments. Moreover, the current
work can only identify simple construction, i.e., it is difficult
to distinguish the details of the surroundings (e.g., a safe in
the corner), so the challenge is to study how to accurately
sense the details. None of the methods have ever tried to
combine efficient AI tools with indoor environment construc‑
tion. There is only one work[11] that uses the AI method to
perceive the materials. For material reflected, though
mmWave-based material recognition is currently used in se‑
curity inspections, there are still problems like the bulky
and inefficient machines.
2) Sensing human dynamics
Gestures are currently sensed only in an ideal environ‑

ment, i.e., the researchers only allow the user to perform the
gestures in several fixed positions. For monitoring vital
signs, current work only extracts the frequency of a person’s
breath rate and heartbeat in calm status. Therefore, when the
solution is applied at home, it is difficult to track a moving
human body. Moreover, the current work only determines the
breath and heartbeat rates approximately through the period‑
icity of the signal. However, compared with more accurate
medical devices upon bioelectric signals, it greatly lacks ac‑
curacy and credibility.
4.2 Future Outlook on Novel Applications
We also look into the future of novel applications as follows.
1) Sensing indoor environment
For environment sensing, since the current work has

achieved the ability of simple indoor environment construc‑
tion, in the future the same method will meet new challenges
when applied to a wider space (e.g., larger office space). Fur‑
thermore, to improve the accuracy of recognition of the sur‑
rounding environment, smaller FMCW radars can be used to
achieve the same ability. However, FMCW radars are sensi‑
tive to minor moving variations which may affect the detection
ability of small metal objects. Moreover, since mmWave can‑
not finely image the sensing objects, it may provide important
assistance for the vision of some certain unmanned systems
like domestic robots which need to protect user’s privacy se‑
curity.
2) Sensing human dynamics
For human dynamics sensing, everyone making the same

gesture will have slight differences in the motion habits, so we
can also use the same gesture to authenticate different users.
But it is important to extract the unique information differenti‑
ating host gestures from others. For monitoring vital signs,
since the current work of measuring heartbeat or breath re‑

▼Table 3. Existing work and prospect for the future

Human dynamics
Indoor environment

AI
2,3,5,6
8

Non-AI
1,7,16,20,21,22,23

9,11,12,13,14,15,17,18,19
AI: artificial intelligence
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quires the person to be still, one can explore how to measure
these vital signs in a dynamic process. In the future, once im‑
plementing the mobile tracking monitoring method, we can al‑
so track the user’s living habits and real-time health condi‑
tions, so as to better help people improve their living quality.
Moreover, the data collected by medical devices can supervise
the mmWave signal training on the AI algorithm, thereby judg‑
ing the breath and heart rates more precisely, reliably and au‑
tomatically.
As can be seen from Table 3, only Ref. [11] is based on the

AI method and explores the indoor environment. Based on Ra‑
darCat’s inspiration, we can also learn about changes in sig‑
nal strength to detect changes in the body’s blood sugar con‑
centration“in air”, therefore reducing the pain of patients.
Similarly, this approach could be applied to screening passen‑
gers for sensitive metal objects at security checkpoints, reduc‑
ing the work of staff. Furthermore, researchers can further ex‑
plore this direction, e. g., AI algorithm can learn the changes
in a signal state to judge the tendency of users to move in dif‑
ferent positions in the room, so as to improve the performance
of the mmWave network more quickly instead of the tradition‑
al iterative algorithms.
Besides, there are only two existing tasks based on non-AI

and human dynamics, so researchers can design more target‑
ed and simple algorithms, e.g., tracking the angle of the swip‑
ing hand to determine its direction and speed. Furthermore,
the hand location in space can be obtained by using the
range and angle information of its reflection point cloud to re‑
alize hand tracking. Based on this, researchers can also real‑
ize a low-power virtual reality (VR) game sensor based on
mmWave.

5 Conclusions
The state-of-the-art mmWave sensing solutions have per‑

formed basic functions: constructing the general indoor envi‑
ronment and recognizing the dynamics of the human body. We
classify the existing work according to their sensing tasks, i.e.,
static indoor environment and dynamic human movements,
and then introduce the characteristics and advantages sepa‑
rately. Finally, we use a table to further classify the work and
present a forward look at future work in this field.
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