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Abstract: Person identification is the key to enable personalized services in smart homes, in‑
cluding the smart voice assistant, augmented reality, and targeted advertisement. Although re‑
search in the past decades in person identification has brought technologies with high accura‑
cy, existing solutions either require explicit user interaction or rely on images and video pro‑
cessing, and thus suffer from cost and privacy limitations. In this paper, we introduce a device-
free personal identification system–HiddenTag, which utilizes smartphones to identify differ‑
ent users via profiling indoor activities with inaudible sound and channel state information
(CSI). HiddenTag sends inaudible sound and senses its diffraction and multi-path reflection
using smartphones. Based upon the multi-path effects and human body absorption, we de‑
sign suitable sound signals and acoustic features for constructing the human body signa‑
tures. In addition, we use CSI to trigger the system of acoustic sensing. Extensive experi‑
ments indicate that HiddenTag can distinguish multi-person in 10–15 s with 95.1% accura‑
cy. We implement a prototype of HiddenTag with an online system by Android smartphones
and maintain 84%–90% online accuracy.
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1 Introduction

Numerous applications are enabled with the realizationof smart living environments and Internet of Things
(IoT). Person identification is essential for smart home
services, such as real-time recommendations on TV

and human-machine interactions in video games[1–2]. Based on
the personalized applications, users can obtain desirable servic‑
es pervasively[3–5]. Therefore, an accurate, light-training and re‑
al-time person identification approach is needed.
Existing person identification mechanisms have many limi‑

tations that prevent them from being adopted pervasively. One
of the biggest limitations is that they are often intrusive to us‑

ers’privacy. Camera and computer vision based solutions can
recognize different persons effectively, but unfortunately us‑
ers’faces, gestures and other information may be exposed to
others[6–8]. For example, monitoring a person’s face when she/
he is sitting on the sofa and walking in the hallway may cause
privacy concerns.
Moreover, many person identification methods need a user

to do extra work to help recognize the user. For example,
smart speakers such as Amazon Echo and Google Home can
identify users by their voiceprints. This approach requires us‑
ers to speak to trigger recognition[9], which is a reactive solu‑
tion. We therefore ask the question: can we identify users with‑
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out asking them to do any additional work and preserve their
privacy?
To this end, we introduce HiddenTag, a new device-free

person recognition system without pre-installed infrastructure
or additional sensors. Only with the built-in smartphone, as
shown in Fig. 1, the acoustic sender provides the high frequen‑
cy sound (18–21 kHz) from which people cannot hear. When
a user enters the smart environment, the user can keep the
normal activities, such as walking, standing, and other types
of human activities, and all these can be profiled by an acous‑
tic receiver on off-the-shelf mobile devices. Based on the
multi-path effects and bodies absorption in experimental sce‑
narios, HiddenTag constructs the acoustic signatures for differ‑
ent persons. We design high frequency based features and en‑
rich these features by utilizing sweeping and multi-tone tech‑
niques. Besides, we explore channel state information (CSI) to
detect the human body and trigger the person identification ap‑
proach. By leveraging machine learning models, our system
recognizes different users efficiently in smart home environ‑
ments. Case studies show the online identification can reach
90.2% accuracy and the corresponding offline group achieves
96.0% accuracy.
In addition, we pre-trained some common types of noises

in the learning model and made HiddenTag more robust to
noises. According to the collected historical data and tempo‑
ral correlation feature, our system further calibrates some er‑
rors by using the proposed prediction model. Related
SmartThings such as smart LED bulbs and media players are
able to provide personalized services based on classification
results. This paper makes the following contributions: 1) To
the best of our knowledge, HiddenTag is the first high fre‑
quency (18– 21 kHz) acoustic sensing solution for person
identification; 2) HiddenTag has introduced sweeping and
multi-tone techniques to enrich feature spaces. Adding com‑
mon types of noises makes HiddenTag robust to real environ‑
ment noises; 3) HiddenTag is implemented both online and

offline. The proposed offline system achieves 96.2% accura‑
cy with four users and the corresponding online system reach‑
es 90.2% accuracy.
The rest of the paper is organized as follows. Section 2 intro‑

duces the system design. Experiments and simulations are
shown in Section 3. Section 4 further discusses the evalua‑
tions. We provide related work and comparison in Section 5.
Conclusions and future work are in Section 6.

2 System Design

2.1 Overview of Our Approach
• HiddenTag employs existing smartphones without com‑

plex hardware modifications. The procedure of HiddenTag is
illustrated in Fig. 2, where HiddenTag is a device-free system
based on acoustic sensing. Off-the-shelf smartphones send
high frequency (18–21 kHz) sound signals via speakers. The
sound emitter can select one from the following three models:
single-tone model, multi-tone model, and sweeping model. Af‑

▲Figure 1. Concept view of HiddenTag

CSI: channel state information
1. Sound generation 2. Acoustic and CSI sensing 3. Person identification

▲Figure 2. Signal variations after band-pass filter in preliminary experiments
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fected by the user’s indoor activities, the acoustic signals are
changed in the propagation channels. Receivers of HiddenTag
sense the varied acoustic information by microphones. By le‑
veraging a band-pass filter, our system only processes the
sound in the frequency range of 18 kHz and 21 kHz, which
cannot be heard by human beings.
• In the training phase, based on feature engineering, the

system trains different users and labels corresponding data. In
the testing phase, HiddenTag adopts a band-pass filter to re‑
duce noises. Classifiers based on the machine learning model
are built to identify different users in smart home environ‑
ments. Further, HiddenTag implements various personalized
services (smart LED, music, smart TV, etc.) relying on the re‑
sults of person identification.
2.2 Preliminaries
The fundamental idea of HiddenTag is that users can be

recognized by their acoustic signatures. When the recorder re‑
ceives acoustic signals, different degradations occur at differ‑
ent frequencies due to frequency selective fading. Additional‑
ly, multi-path effects, diffraction, and reflection also impact
the acoustic signals. Once users walk in an indoor environ‑
ment, walking activities and human bodies cause unique
multi-path effects and body absorption. Fig. 3 illustrates the
causes of such attenuation.
To verify this perspective, we conduct preliminary experi‑

ments in an empty room, the size of which is 5 m×5 m. We em‑
ploy two Huawei Mate 30 smartphones as the acoustic sender
and the receiver. The heights of the sender and receiver are
75 cm. The acoustic sender generates sounds frequencies from
18 kHz to 21 kHz. The sampling frequency is 48 kHz. In
sweeping mode, the sweeping period is 0.02 s.
We record acoustic data for three control groups. In the be‑

ginning, the experimental room is empty. In the following two
groups, User 1 and User 2 enter the room and walk around the
sender and receiver.
As shown in Fig. 4, the x-axis indicates the time of the ex‑

periment and the y axis refers to the range of sound frequency.
We conclude that for each control group, the power distribu‑
tions on the different spectrums are different, and less power
is distributed on the spectrum when there are users compared
with the empty group.
Therefore we design an approach that leverages the differ‑

ent signatures to identify users in the following.
2.3 Sending Inaudible Sound
As we explore the inaudible sound that can be generated

from built-in smartphones, choosing parameters for sound gen‑
eration is a challenge. According to our experimental results
and literature, only generating single-tone acoustic signals be‑
tween 18 kHz and 21 kHz is difficult to support accurate per‑
son identification because of the limited information. The fea‑
ture space is constrained by a fixed sending frequency.

S (t) = A∙ sin (2πf0 ( t )∙t ) . (1)
As shown in Eq. (1), S(t) is the amplitude value of the sin

wave, and f0 is the frequency of the sound wave that we send.If f0 is a fixed value, the value of S(t) can only reflect the waveat a certain frequency, which means that we do not utilize the
inaudible sound on smartphones efficiently. Therefore, we in‑
troduce two other models, namely the sweeping model and the
multi-tone model, to improve the identification accuracy by en‑
riching feature space.
1) Sweeping model: We propose periodic frequency sweeping

from 18 kHz to 21 kHz and set sampling frequency as 48 kHz.
Consequently, the frequencies change quickly and cover all the
frequencies from 18 kHz to 21 kHz in a short time period. This
selection makes the generated sound inaudible for most people,
but enriching the feature space for acoustic sensing.
f0 (t) = fl + (fu - fl) × Δt/td . (2)
Different from Eq. (1) where f0 is a fixed value, the value of

f0 is determined by Eq. (2) in the sweeping model. fu and fl in‑dicate the upper bound and lower bound of the sweeping
range. td is the duration of each sweeping period. ∆t is the in‑crement of the current time. As a result, the feature space of
sweeping mode includes the data information from different

▲Figure 4. Time-spectral comparison for different ambient mediums
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frequencies.
2) Multi-tone model: Even though the sweeping model in‑

cludes different sound frequencies in a certain time period, for
a specific time point, it can only emit a fixed frequency. In
this subsection, we propose a multi-tone model. The sender
provides more than one sound wave at the same time. The
sender emits inaudible sound waves composed of multiple fre‑
quencies. Each component of the synthetic sound represents
one sound wave at the designed frequency. Consequently, the
multi-tone model enables the opportunity to cover more fre‑
quencies simultaneously. However, if HiddenTag emits sound
at different frequencies, the distributed power on each fre‑
quency will decrease. We will apply the three models and
compare the results in the section of performance evaluation.
In general, the multi-tone model can enrich feature space

by increasing the number of tones. However, the increasing
number of tones will reduce the power assigned to each tone.
If the power distributed on each tone is too low, the identifica‑
tion results will decrease when we apply support vector ma‑
chine (SVM) classification. Fig. 5 shows the result of FFT for
the 3 sound generation models.
2.4 Receiving Sound
The process of receiving sounds is introduced as follows.
1) Sensing trigger: In HiddenTag, a sensing trigger is need‑

ed for person identification. Sensing trigger in our system de‑
tects users in a certain area rather than the whole home space.
That is, HiddenTag should not recognize users everywhere ex‑
cept for the targeted sensing areas in the smart home. When a
user enters the targeted area, HiddenTag will be turned on to
collect acoustic data. Otherwise, the HiddenTag remains inac‑

tive. This switch can save the energy of smartphones and
avoid high frequency acoustic signals when they are unneces‑
sary. In our system, we adopt WiFi CSI signals[10–11], which
are accurate and pervasive RF signals in smart homes, as the
sensing trigger. Once our system detects CSI variations be‑
tween wireless routers and receivers, HiddenTag will start
acoustic sensing in the experimental area where the receiver
locates.
2) Fast Fourier transform (FFT): Modern smartphones are

able to generate sound waves with frequencies from 20 kHz to
22 kHz. There is an interesting phenomenon: most people can‑
not hear the sound between 18 kHz and 22 kHz. Considering
that the users in the smart home do not suffer from the hear‑
able noises, we can leverage such sound to identify different
users. We use two smartphones in which the FFT converts
time domain signals into representation in the frequency do‑
main. That is, the FFT takes a block of time-domain data and
returns the frequency spectrum of the data. Based on applying
FFT and inverse fast Fourier transform (IFFT), we obtain data
from both the time domain and frequency domain.
3) Band-pass filtering: In order to reduce the noises from

the background and focus on the high acoustic frequency
range, we adopt a band-pass filter. A band-pass filter passes
signals with frequencies in a certain range and attenuates sig‑
nals with frequencies out of that range. We keep the sound sig‑
nals in the frequency range between 18 kHz and 21 kHz. The
order of the band-pass filter is 9.
2.5 Launch Machine Learning Engine
1) Constructing acoustic features: Designing suitable fea‑

ture space is important and challenging for high frequency

▲Figure 5. Three models of sound generation
FFT: fast Fourier transform
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sound. Different from most speech recognition works, classical
features such Mel frequency cepstral coefficient (MFCC) [12]
and AFTE[13] do not work well in our system. In HiddenTag,
we explore classical features in statistics and extract them
from both the time domain and frequency domain.
The features are calculated for a time window, the size of

which can be adjusted based on the system’s recommenda‑
tions. In each time window, Table 1 shows the main features
adopted in our system.
Specifically, we introduce power spectral entropy and crest

factor in detail. In specific, entropy is a common measurement
of disorder within a macroscopic system. In HiddenTag, spec‑
tral entropy is defined as following steps. First, we compute
the spectrum X(ωi) of the received signal. Next, we calculatethe power spectral density (PSD) of the received signal via
squaring its amplitude and normalizing it by the number of
bins.
P (ωi) = 1N |Xwi|2 . (3)
Then, we normalize the calculated PSD so that it can be

viewed as a probability density function (PDF).
pi = P (ωi )∑i

P (ωi ) . (4)
The power spectral entropy can be now calculated using a

standard formula for an entropy calculation.
PSE = -∑i = 1

n pi lnpi . (5)
Crest factor is a feature indicating the ratio of peak values

to the effective value for a waveform. For example, crest factor
1 indicates no peaks and higher crest factors indicate peaks.
In our system, as shown in Eq. (6), the crest factor refers to the
peak amplitude (xpeak) of the waveform divided by the root
mean square (RMS) value (xRMS) of the waveform. Let CdB de‑note the crest factor and RMS denote the square root of mean

square (the arithmetic mean of the squares of a set of num‑
bers), we have:
CdB = 20log10 xpeakxRMS . (6)
2) Handling noises: Although we have used band-pass fil‑

ters to reduce the noises which are not in the target range,
there are other noises distributed on the frequency area from
18–21 kHz. These noise samples may reduce the classifica‑
tion accuracy of HiddenTag. Considering common noises in
smart home environments include speaking, clapping, and
some background noises, our system can add to or remove four
types of noises (background, clapping, speaking and door
knocking) from the dataset automatically when we train classi‑
fication models. Besides, we can assign different ingredients
to each type of noise. Once the noises occur in the testing
phase, since the training model includes common noises, our
system is confident in handling such a problem.
3) Classification: HiddenTag leverages SVM as the classifi‑

cation algorithm. Before implementing SVM in the proposed
system, we should consider two problems. Which type of ker‑
nel shall be adopted? How to set the value of the penalty pa‑
rameter? In our datasets, since the number of features is larger
than that of observations, according to characterizations of
common kernels, we select linear kernels for our SVM ap‑
proach. Additionally, a low-value penalty parameter in SVM
tends to make the decision surface smooth, while a high penal‑
ty parameter tries to train all samples correctly by giving the
model freedom to select more samples as support vectors. We
need to select the penalty parameter in SVM to achieve opti‑
mal results. HiddenTag adopts grid search to choose the penal‑
ty parameter. Besides, since our system aims to identify users
in a short time period, the observation samples are limited. Ac‑
cording to the features of common kernels used in SVM (linear
kernel, radial basis function (RBF) kernel, etc.), we adopt lin‑
ear kernels to obtain the optimized classification results.
4) Calibrate exceptions by prediction: Even if HiddenTag is

able to identify different users, there still exists the probability
of recognizing users incorrectly. Based on our observations, if
the proposed system identifies users successfully for most cas‑
es, when some exceptions happen, we can calibrate the errors
by historic information. In our system, as shown in Algorithm
1, we introduce an approach to avoid exceptions by leveraging
the historical information. In each round, when we identify a
user, our system not only counts the classification result from
SVM in the current round, but also adds the previous results
with a certain proportion (α). The parameter α can be adjusted
according to the feedback of test cases.
Algorithm 1. Calibration algorithm for exceptions in HiddenTag
Require: α– between 0 and 1; P'i ( j )– classification result

▼Table 1. Main features extracted in HiddenTag
Features

Crest factor
Energy

Entropy of energy
Spectral centroid
Spectral spread
Spectral roll-off
Spectral flux
Spectral entropy
Spectral flatness
Zero crossing rate

Explanation

The value indicates how extreme the peaks are in a waveform
The energy of the signal in the time domain
The entropy of energy in the time domain

The center of the gravity of the frequency domain spectra
The average spread of the spectrum in relation to its centroid
The frequency below 90% of the magnitude distribution of the

spectrum is concentrated
The squared difference between two successive spectral frames

The entropy of the spectral energies
The ratio of the geometric mean to the arithmetic means of a

power spectrum
The rate of sign-changes along with a signal
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of user i in time period j before calibration
Ensure: Umax –the user with maximal prediction probability(identification result); n is the number of users, m is the num‑
ber of time rounds
for int i = 0; i < n; i++ do
for int j = 0; j < m; j++ do

predict user by current round result and historic data
Pi (j) = Pi (j - 1) × α + P'i ( j )

end for
end for
Umax is the user with maximal prediction probabilityselect the user with the highest confidence in SVM
Return Umax

2.6 Applications of Personal Identification at Smart
Home
Because HiddenTag can distinguish users in a smart home

with convincing accuracy, we implement more applications
via SmartHome Hub to provide personalized services. Our sys‑
tem integrates smart LED and speakers to show the identifica‑
tion results. For the installed smart LED, it will be assigned
with different colors to different users. Once the user is identi‑
fied, the corresponding color will be shown on the bulbs. The
speaker can play personalized music for different users. If the
user’s web account is associated with HiddenTag, the prefer‑
ence music will be played on the smart speaker once the user
is recognized. The system does not require explicit user inter‑
actions, such as login to an account, recognizing, recalling, or
executing users’preferences. More applications can be inte‑
grated through SmartHome Hub based on the results of person
identification.

3 Evaluation

3.1 Experiment Setup
HiddenTag includes an Android application and a module-

view-control (MVC) based website to process acoustic data
and recognize users. All the devices are deployed in a smart

home environment. We use a Huawei Mate 30 smartphone as
the controller, sender, and receiver. A proposed mobile appli‑
cation plays inaudible sound (18– 21 kHz) on senders. It
supports three models: single-tone, multi-tone, and sweeping
frequency. Initially, we choose a multi-tone model for our ex‑
periments. Our system has generated 15 tones which are dis‑
tributed from 18–21 kHz uniformly. The speaker’s volume
is set to 100%. The distance between the sender and receiver
is 3 m. The area between the sender and receiver is empty.
The sender and receiver are placed 75 cm above the floor.
After receiving the varied acoustic signals by human activi‑
ties, received acoustic data will be transmitted to the Dell
T3640 server via WiFi. Based on the Python Scikit-Learn li‑
brary, HiddenTag classifies different users via SVM. The c
(penalty parameter) value is selected by grid search.
In our evaluation, we seek to answer three questions: Does

HiddenTag identify different users successfully? Since there
are often more than 3 family members living in a home envi‑
ronment, how many distinct users that our system can identi‑
fy? What factors can affect the experimental results?
3.2 Evaluation Metrics
In the offline analysis, we use accuracy in a confusion matrix

to describe person identification results. For online test results,
we define that accuracy is the success rate for our recognition.
3.3 Case Study
We divide the case study into two phases: the training

phase and the testing phase.
In the training phase, when each user enters the experimen‑

tal environment, our system will detect user activities and
start to profile the user. A user walks normally between the
sender and the receiver. The user can also turn around and
stand shortly. This training procedure lasts for 60 s. After the
training procedure, the user leaves the experimental room.
When the user returns to the room, once she/he walks into

the same experimental area, HiddenTag starts to recognize the
user and shows the confidence of user recognition. This step is
the testing phase. Fig. 6 illustrates the experimental environ‑

▲Figure 6. Experimental scenario and case study

(a) Experimental scenario (b) Photo of training procedure (c) Photo of tresting procedure

Sound generator

Active area
Normal walking Normal walking
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ment and corresponding case study.
In this subsection, we observe the group with four users as

shown in Table 2. Four users participated in the experiment.
Each user was trained and tested separately. Table 3 is the
confusion matrix for the classification. As shown in Fig. 7 (a),
testing accuracy can achieve 96.1%. We thus conclude that
the time length of training influences the accuracy. The longer
time of training obtains better results. However, considering
our application scenario should limit training procedure to a
certain time length, we choose 60 s in our implementation.
Then, we focus on the number of users in our case study.

We extend our experiments from 4 users to 10 users. After
changing the number of users, based on Fig. 7 (b), we notice
our system still achieves an accuracy of more than 90%. Al‑
though the system performs better when the system includes
fewer users, HiddenTag can still process 10 users with accept‑

able accuracy.
Different volumes of the sender sound will change the

sound signal strength and identification accuracy. We did the
control group experiments to detect which percentage is the
best volume for our experiment. Fig. 7 (c) shows the improve‑
ment with increasing volume.
Additionally, the distance between the sender and receiver is

another factor that affects recognition results. According to ex‑
isting experimental settings, we only adjust the distance be‑
tween the sender and receiver. Fig. 7 (d) shows that with closer
distance, the group achieves better accuracies. Only when the
distance is too short to profile walking activities (within 1 m),
the accuracy will decrease.
Then, we compare three sound generation models and dis‑

cuss which one is the best model for the proposed system. In
Fig. 7 (e), we conduct other two control groups by using a sin‑
gle-tone model and a sweeping model. For the single-tone
model, we set the frequency of the sound to 20 kHz. For the
sweeping model, we sweep frequency from 18 kHz to 21 kHz
once per second. We compare the three techniques in differ‑
ent scenarios (smart homes, offices and open halls), and come
to the conclusion that sweeping and multi-tone models outper‑
form single-tone models. Because multi-tone and sweeping
models increase accuracies by enriching feature space. The
multi-tone model is subjected to power decrease and thus
needs a power amplifier to improve performance.
Additionally, based on our observations, the errors of the

proposed system mainly occur in the first or second frame.
Within the time increasing, the errors will decrease sharply.
This phenomenon is caused by two reasons. First, the acoustic
signature of each user cannot form in a very short time period.

▼Table 3. Confusion matrix of four-volunteer experiment
Actual/Classified

A
B
C
D

A
93.0%
1.0%
0.0%
5.0%

B
1.0%
98.0%
0.0%
16.0%

C
0.0%
0.0%
96.0%
0.0%

D
6.0%
1.0%
4.0%
79.0%

▲Figure 7. Experimental results of evaluations
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▼Table 2. Information of four volunteers
User

Height/cm
Weight/kg
Age
Gender

A
176
65
25
M

B
177
80
31
M

C
174
70
33
F

D
163
55
40
F
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Once a user has walked 3–5 gait cycles, our system can rec‑
ognize the user based on the acoustic signature. Second, as il‑
lustrated in Algorithm 1, the results will be calibrated by his‑
torical data. The beginning frames do not have the capability
of enhancing accuracies by counting the results in previous
rounds.

4 Diving into Depth
In this section, we further analyze HiddenTag based on

these factors: online performance, experimental environment,
and noise handling.
4.1 Pushing Offline to Online
In order to deploy HiddenTag in a real platform, we develop

an online system to show the real-time identification results.
HiddenTag adopts Node.js and Python Flask to display the re‑
al-time accuracies. The time delay of classification results can
be controlled from 2 s to 5 s. Table 4 illustrates the compari‑
son between online and offline results in the same experimen‑
tal scenario. As shown in Eq. (7), for a certain user, the online
accuracy is the ratio that times of successful identifications
(Ns) divided by the total times of identifications (Nt).
Acc0 = Ns

Nt

× 100% . (7)
Although online accuracy is lower than offline accuracy, it

still reaches 85.0%–90.0%. Next, we extend the online ex‑
periments from a room to other scenarios with different layouts
and materials. We test HiddenTag in a conference room and a
coffee room. The two experiments have achieved online accu‑
racies of 87.5% and 90.5%. The case studies have proved Hid‑
denTag can work normally in different environments.
There are two reasons that the accuracy is lower in the on‑

line system. First, in offline classification, SVM is able to
choose optimal parameters by brute-force searching. However,
it is difficult to optimize all the parameters in a short time peri‑
od due to computational limitations in an online system. Sec‑
ond, the experimental environment is changing between on‑
line training and online testing. We discuss this issue in the
following subsection.
4.2 Environment Changing
Our experiments are conducted in the same environment.

Unfortunately, the same experiment scenario is always chang‑
ing due to variations of environmental factors, such as temper‑
ature and humidity. To assess its impact, a user walked in the
experimental scenario by a five-minute interval. Table 5
shows that the same user is classified by HiddenTag for four
times in different time slots. Even if one user enters the room
for four times, each event can be identified as different users
with 62.25% accuracy. To eliminate the environmental chang‑
ing, the system needs to continuously collect long-term train‑

ing data implicitly. Relying on a larger dataset that includes
more environments variations, we can identify people even if
the environment changes sharply.
4.3 Noise Handling
We simulate typical noises when conducting HiddenTag in

an experimental scenario. In this experiment, we use a Huawei
Mate 30 smartphone to play 3 audio files including a song
named“Amazing Grace”, the trailer of Game of Throne 8, and
a lecture talk of a machine learning class on Coursera. The
playing smartphone is close to the receiver (30 cm). By adopt‑
ing the proposed noise handling method introduced in Section
2.5, Fig. 7 (f) shows that our system still reaches acceptable ac‑
curacies even if it encounters different types of noises. Hidden‑
Tag can work normally under some types of noises, but the ac‑
curacies decrease when it encounters some noises, such as the
noises made by the working elevator and starting of the heater.

5 Related Work and Comparison
Existing person identification approaches broadly rely on

computer vision and image techniques. By analyzing users’
faces and fingerprints, researchers and engineers have provid‑
ed numerous solutions to user recognition. As a classical face
recognition approach, Turk and Pentlend leverage Eigenfaces
to define the face space and identify people[14]. Recent re‑
searchers use the deep network to enhance recognition accura‑
cy[6, 15–16]. DeepID3[6] designs a high-performance deep convo‑
lution network and adds supervision to early convolutional lay‑
ers, and it represents the state-of-the-art technology on You‑
Tube Faces benchmarks. Voice recognition is another type of
common approach to identify a user. MUDA et al. [17] explore
MFCC and dynamic time warping (DTW) techniques to recog‑
nize users. In addition, biometrics techniques, such as finger‑
print and retina, are other common types of person identifica‑
tion[18–21]. Unfortunately, all of these methods face privacy con‑
cerns. Although these approaches can recognize users by bio‑
metric information, the key personal and private information
has to be exposed.
Recently, some alternative methods have been proposed to

▼Table 4. Comparison between online and offline results

Offline
Online

Sweeping
95.2%
90.0%

Single-Tone
91.0%
80.0%

Multi-Tone
93.1%
85.0%

▼Table 5. Confusion matrix of identifying the same user in different
time periods

Actual

Classified

1st
2nd
3rd
4th

1st
48.0%
11.0%
1.0%
40.0%

2nd
6.0%
74.0%
5.0%
0.0%

3rd
3.0%
8.0%
74.0%
7.0%

4th
43.0%
7.0%
20.0%
53.0%
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identify persons. Researchers adopt wireless sensing to identi‑
fy persons, gestures, and even micro-activities[22–23]. By classi‑
fying variations of WiFi signals, WiWho[23] leverages CSI to de‑
scribe the user’s walking behaviors and identify users in WiFi
environments. However, wireless sensing methods often need
specific devices, such as the emitter and the receiver with CSI
drivers, which are not common in smart home environments.
Acoustic sensing has been a hot topic recently, and lots of

corresponding applications, such as speech recognition, in‑
door localization are implemented in smart homes[24–27]. GEI‑
GER et al. [28] presented a system for identifying humans by
their walking sound, by leveraging MFCC and Hidden Markov
Model, which has reached the offline identification rate of
65.5% for 155 subjects. This approach depends on the sounds
of footsteps. Once the shoes and floors are changed, the sys‑
tem might not work normally. This method does not consider
noise handling and online accuracies in a real environment.
Actually, there is no solution for person identification area by
acoustic sensing without human voice or step sound.
As shown in Table 6, different from the existing solutions,

HiddenTag is a device-free and highly accurate person identi‑
fication approach. By using built-in smartphones, we can rec‑
ognize users only by profiling the common indoor activities at
home and in office environments.

6 Conclusions and Future Work
HiddenTag represents the first device-free system that em‑

ploys inaudible acoustic sensing to achieve accurate person
identification. Through this process without any hardware
modification, we gain important insights: 1) acoustic informa‑
tion with frequencies from 18–21 kHz can profile human in‑
door activities and recognize users in smart home environ‑
ments; 2) sweeping frequency and multi-tone models can im‑
prove SVM classification for acoustic datasets by enriching
features; 3) online and offline identification accuracy can
reach more than 90% in simplified testing and training proce‑
dures which are close to normal activities in the environments
similar to smart homes. We believe HiddenTag’s salient ad‑
vantages will enable a myriad of personalized services in
smart homes, including smart voice assistants, augmented real‑
ity, energy saving, and various pervasive applications.
Moving forward, we are aiming to further improve the identi‑

fication accuracies by leveraging other machine learning tech‑

niques such as recurrent neural networks and generative ad‑
versarial networks and enrich the acoustic features by leverag‑
ing transfer learning. In addition, we aim to extend single per‑
son identification to multi-person with more walking patterns.
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