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Abstract: With the emergence of mobile crowdsensing (MCS), merchants can use their mo⁃
bile devices to collect data that customers are interested in. Now there are many mobile
crowdsensing platforms in the market, such as Gigwalk, Uber and Checkpoint, which pub⁃
lish and select the right workers to complete the task of some specific locations (for example,
taking photos to collect the price of goods in a shopping mall). In mobile crowdsensing, in or⁃
der to select the right workers, the platform needs the actual location information of workers
and tasks, which poses a risk to the location privacy of workers and tasks. In this paper, we
study privacy protection in MCS. The main challenge is to assign the most suitable worker to
a task without knowing the task and the actual location of the worker. We propose a bilateral
privacy protection framework based on matrix multiplication, which can protect the location
privacy between the task and the worker, and keep their relative distance unchanged.
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1 Introduction

Mobile crowdsensing (MCS), as a critical component
of the Internet of Things (IoT) [1], relies on various
sensors in mobile devices to collect and transmit
data through a wireless network. Nowadays, mo⁃

bile devices are essential for our daily activities, including
businesses, communications, and entertainments. According
to Gartner statistics, the number of worldwide smartphones
sales in 2018 was 1. 55 billion. Anyone with a smartphone
can become a participant in the MCS system with wide cover⁃
age, which has gained popularity in recent years and become
an appealing paradigm for sensing and collecting data[2].
In the traditional mobile crowdsensing, there are three enti⁃

ties: the crowdsensing platform, the worker, and the task re⁃
quester. The task requester has some tasks to be completed in

some places and is willing to pay for the task, the worker is
the person who registers on the mobile crowdsensing platform
to get the reward for completing the task, and the crowdsens⁃
ing platform provides services for the task requester. The pur⁃
pose of the platform is to recruit suitable workers for the task
requester to complete the task under the condition of the mini⁃
mum compensation. The distance between workers and tasks
is highly related to the cost of workers who complete tasks.
Most of the existing recruitment mechanisms take the distance
between tasks and workers as the cost of workers completing
tasks. Therefore, the total distance between workers and tasks
is taken as the optimization objective of the algorithm in hope
of minimizing the total cost of workers.
In order to recruit suitable workers for the task, the platform

needs the location information of the task and workers. If us⁃
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ers upload their actual location, it will bring danger to the us⁃
er’s privacy and eliminate the user’s enthusiasm to partici⁃
pate in mobile crowdsensing activities. The invasion of the pri⁃
vacy of workers may occur when a worker uploads his or her
actual location information on the platform, which may infer
the worker’s identity and preference based on the worker’s lo⁃
cation information, and disclose the privacy information to a
third party for profit. On the other hand, to select the right
worker, the task requester publishes the task information on
the platform, and the platform and all workers can see the in⁃
formation, which poses a risk to the privacy of the task re⁃
quester, because in certain cases the location and content of
the task needs to be protected for the requester. For example,
people with health problems at home can seek help through
mobile crowdsensing, but publishing her health problems and
her home address clearly violates her privacy.
Therefore, many privacy protection methods have been pro⁃

posed to deal with the problem of privacy leakage in mobile
crowdsensing，such as anonymity, obfuscation and encryp⁃
tion[3]. By adding noise to the user’s actual location and con⁃
fusing it with other locations[4], the secret sharing technology is
used to encrypt the privacy information[5], and k-anonymity is
used to cluster a group of users to protect the user’s privacy
information[6]. However, most of the existing privacy protection
work mainly focuses on the privacy protection of workers with
little consideration of task privacy protection. Some works[7]
consider the privacy of both workers and tasks, but they need
an online trusted third party (TTP) to assist in the task alloca⁃
tion phase, which undoubtedly leads to high communication
overhead and unnecessary delay in the task allocation phase.
Inspired by the privacy protection problem, we focus on de⁃

signing a bilateral privacy protection framework, which choos⁃
es the right worker to minimize the total moving distance
while protecting the location information of workers and tasks
without an online TTP in the task allocation phase. Specifical⁃
ly, the whole geographic space is divided into several sub-re⁃
gions. The task requester maps the location of the task to the
sub-region, uses a matrix to transfer the location information,
then hides the actual location matrix, and uploads the confus⁃
ing location matrix. Similarly, workers also map their positions
to their sub-regions, use a matrix to transfer the position infor⁃
mation, hide the actual location matrix，and upload the con⁃
fusing location matrix. After receiving the confusing location
matrix from the task requester and the worker, the platform us⁃
es the confusing location information instead of the actual lo⁃
cation information to select the appropriate worker.
Obviously, if the location of the task and the location of the

worker are both confusing, it is difficult for the platform to
choose the right worker. Therefore, the first challenge of the
bilateral privacy protection framework is to solve this problem:
how to protect the location information of tasks and workers
while keeping the relative distance constant. In this regard, we
design a novel privacy protection method based on matrix mul⁃

tiplication, with which we can protect not only the location pri⁃
vacy of workers, but also the location privacy of tasks. At the
same time, we can ensure that the platform can accurately
measure the relative distance between tasks and workers
through the confusing location matrix, so that the platform can
select the right workers to minimize the total moving distance.
The contributions of our work are summarized as follows:
1) We propose a privacy protection framework to protect the

location privacy of tasks and workers without an online TTP in
the task allocation phase.
2) We design a novel location privacy protection method

based on matrix multiplication, which can protect the location
privacy of tasks and workers at the same time and retain the
relative distance information after confusing the location, so
that the platform can quantify the relative distance between
workers and tasks through the confused location.
3) We have done a lot of experiments on real datasets to ver⁃

ify our proposed method. The experimental results show that
our method outperforms the state-of-the-art method.

2 Related Work
In this section, we briefly introduce the related work of task

allocation optimization and privacy protection.
2.1 Task Allocation Optimization
Task allocation aims to allocate appropriate workers to

tasks based on some optimization objectives, such as the cost
of recruiting tasks on the platform, the task coverage, and the
quality of task completion. In Ref. [8], the authors take the
number of recruited workers as the optimization objective in
the task allocation stage. The fewer the number of workers, the
less the recruitment cost. The platform focuses on selecting a
minimum number of workers and ensures that tasks can be
covered. In Ref. [9], the authors propose a task coverage ori⁃
ented assignment method based on the worker analysis and
worker attribute model. They propose to migrate certain quali⁃
fied workers to the less popular tasks for increasing the task
coverage, and meanwhile optimize other performance factors.
In Ref. [10], the authors take the quality of task completion as
the optimization objective of task allocation.
In the location-based mobile crowdsensing task allocation,

the recruited workers often need to move from their current lo⁃
cation to the task location to complete the data collection task.
Therefore, in this kind of mobile sensing, the cost of workers
completing the task is closely related to the workers’moving
distance. Therefore, in order to minimize the recruitment cost,
the platform often takes minimizing the total moving distance
as the priority of task allocation. In Ref. [11], the authors pro⁃
pose a tabu search algorithm to select workers, considering
various task requirements (sensors, location accessibility and
reliability) and work specifications (available sensor set and
speed) as well as task completion sequence, and the total mov⁃
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ing distance of all workers is minimized. In Ref. [12], the au⁃
thors study two kinds of multi-task assignment schemes which
make the number of completed tasks the most and the total
moving distance the shortest. In Ref. [13], the authors propose
ActiveCrowd, a worker selection framework for multitask MCS
environments under two situations, for time-sensitive tasks.
Workers are required to move to the task venue intentionally,
and the goal is to minimize the total distance moved. For de⁃
lay-tolerant tasks, the goal is to minimize the total number of
workers. None of the above work has considered the issue of
privacy protection.
2.2 Privacy-Preserving Task allocation
The problem of privacy protection has attracted more and

more attention. Until now, many privacy protection technologies
have been used in MCS, such as anonymization, obfuscation,
encryption, and authentication[3]，for the location-based mobile
crowdsensing. In Ref. [14], the authors formulate a mixed-inte⁃
ger nonlinear programming problem to minimize the expected
travel distance of the selected workers under the constraints of
differential and distortion privacy. WANG et al. [15] propose a
probabilistic winner selection mechanism (PWSM) to mini⁃
mize the total travel distance with the obfuscated information
from workers, by allocating each task to the worker most like⁃
ly to be closest to it. The location privacy of workers is pro⁃
tected by adding Laplace noise to the distance between tasks
and workers. WANG et al. [16] propose a location aggregation
method, which groups users into a group to realize k-anonym⁃
ity. However, all the above work only considers the location
privacy of workers, while ignores the location privacy of
tasks. Recently, there have been some works that consider
both tasks’and workers’location privacy. For example, NI
et al. [17] propose SPOON, a strong privacy-preserving mobile
crowdsensing scheme supporting accurate task allocation
based on geographic information and credit points of mobile
users. Although this scheme protects the location privacy of
workers and tasks, it can only determine whether the tasks
and workers are in the same grid. In general, if there is no
worker in the grid where a task is located, the platform needs
to recruit workers from the nearby grid. This scheme is not
suitable for this situation. YUAN et al.[18] devise a grid-based
location protection method, which can protect the locations
of workers and tasks. However, this method requires the task
requester to calculate the neighbor grid code in a certain
range in advance. If the workers in the range cannot meet the
requirements of the task, the platform may need to recruit
from outside the range. This method is not suitable for this
situation. ZENG et al. [7] utilize the multi-secret sharing
scheme to preserve location privacy in the MCS task assign⁃
ment. However, this scheme is only suitable for edge comput⁃
ing environments with fog nodes, but not universal for tradi⁃
tional mobile crowdsensing. Different from the above work,
the bilateral privacy-preserving framework (BPPF) in this pa⁃

per can protect the location privacy of tasks and workers, and
it is convenient for the platform to measure the relative dis⁃
tance between tasks and workers in any range at the same
time. Our proposed BPPF has universality, which is suitable
for most mobile sensing scenarios.

3 Preliminaries
In this section, we briefly introduce the models of the sys⁃

tem including the threat model and the privacy model, and the
design purpose. Table 1 lists the notations frequently used in
this paper.
3.1 System Model
Our system mainly includes four entities: task requesters,

workers, crowdsensing platform and offline TTP.
1) Task requesters: Task requesters can be individuals,

groups and organizations. They have some location-based data
collection tasks, such as collecting traffic flow data of a cer⁃
tain road section, monitoring air pollution of a certain area,
and taking photos to investigate commodity prices of a super⁃
market. They do not have the resources to complete the task,
so task requesters pay a certain amount of reward to upload
the task to the platform for crowdsensing services.
2) Workers: Workers are users with mobile smart devices

(such as mobile phones, tablets and smart-watches). They reg⁃
ister as workers on the mobile sensing platform in advance,
and use their own devices to complete the tasks assigned by
the platform and get paid.
3) Crowdsensing platforms: They have enough computing re⁃

sources and storage resources to provide mobile sensing ser⁃
vices for task requesters. They receive some location-based
task requests from task requesters and assign appropriate
workers to the task. When a worker completes a task, the plat⁃
form receives the data uploaded by the worker and sends it to
the task requester.
4) Offline-TTP: The offline-TTP is responsible for generat⁃

ing the user’s secret key, which is used to encrypt and de⁃
crypt the content of the task, as well as the disturbance matrix.
Definition 1 (location matrix): In this paper, we use a k ×k

▼Table 1. Notation List
Notations

w

t

Lw

Lt

Rw

RT

k

α

K#
SOD (R)

Description
A worker
A task

A matrix to represent the current location of a user
A matrix to represent the sensing area of a task

Confusion matrix of workers
Confusion matrix of task requester
The size of the location matrix
The matrix assignment variable

Task encryption key
Sum of diagonal elements of matrix R
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matrix to represent the grid of locations of tasks and workers.
The platform divides the whole geographic space covered

by its services into k × k grids according to a certain granulari⁃
ty[19]. It is represented by a matrix L = { ψ ij∣0 ≤ i ≤ k - 1, 0 ≤
j ≤ k - 1} . Each element in the matrix corresponds to the di⁃
vided grid in the actual geographic space. Therefore, the task
requester uses a location matrix Lt to represent the location ofthe task. If the task is located in the i-th row and the j-th col⁃
umn of the grid space, the element corresponding to the task
location matrix is represented by a large number, and the far⁃
ther the elements of other positions in the position matrix are
from the task, the smaller the number is. Similarly, workers
use the same method to generate the location matrix Lw.Definition 2 (travel distance): In the location-based MCS
task, we need the worker’s current location and the task’s lo⁃
cation for task allocation. Because the worker needs to cross
the city block to reach the task’s location, we use Manhattan
distance as the travel distance between the worker and the
task, i.e, if the location index of a task in the grid space is (i, j)
and the worker’s location index is (m, n), the travel distance
between tasks and workers is shown as Eq. (1):
d(t,w) =| i − m | + | j − n |. (1)

3.2 Threat Model
The danger in MCS mainly comes from two aspects: exter⁃

nal threats and internal threats[20]. External threats come from
the outside of the MCS system and are initiated by external en⁃
tities that have no contact with the MCS system. The main way
is to steal the communication information of internal entities
in the MCS system by monitoring the communication channel
of entities in the MCS system, thus threatening the privacy of
users. In this paper, the encryption technology is used to pre⁃
vent such attacks. Internal threats come from the inside of the
MCS system and are initiated by entities participating in MCS
system activities. In this paper, we only consider privacy
threats from the platform. We assume that offline-TTP is com⁃
pletely trusted, and similar to the traditional MCS privacy pro⁃
tection mechanism[7, 18, 21], we assume that the platform is hon⁃
est-but-curious, which means that they are not only honest
with the pre-defined protocol, but also curious about the priva⁃
cy of the requester and worker.
3.3 Privacy Model
We divide the privacy model into two categories as follows:
1) Bilateral location privacy: The location of workers and

tasks needs to be protected. In this paper, the location of tasks
and workers is represented by a matrix L, so we need to con⁃
fuse the matrix L to protect the location privacy of workers and
tasks.
2) Task content privacy: The task content may be sensitive

to task requesters in some cases, so we need to protect task
content from the platform.

3.4 Problem Formulation
Then, our problem has emerged as follows:
Bilateral privacy-preserving task allocation problem: In

MCS, there is a set of tasks distributed in different locations
T = {t1, t2,...,tm}, and a set of workers distributed in different lo⁃cations W = {w1, w2,...,wn}. The honest-but-curious platform se⁃lects a set of workers based on the confusing information of
tasks and workers. As shown in Eq. (2), the objective is to min⁃
imize the total travel distance of selected workers, where
(tj,wj) represents an assignment.

∑
j = 1

|T| d ( tj,wj ) . (2)
4 Overview of BPPF
In this section, we show the details of BPPF, a novel bilater⁃

al privacy protection framework, which can protect the loca⁃
tion privacy of tasks and workers, as well as the content of
tasks, while the task allocation phase does not need the partic⁃
ipation of online TTP.
4.1 Service Setup
In order to build the MCS service, the platform first divides

the whole geographic space into k × k grid space (for example,
longitude and latitude), and uses the matrix Lk × k to indicatethat each element in the matrix corresponds to a grid area in
the grid space, and randomly selects value α∈(k2,+∞).
4.2 User Registration
In order to participate in MCS activities and prove that they

are legal users, task requesters and workers must register in of⁃
fline TTP in advance and generate authenticated ID: SignSK(ID), where SK is the authenticated private key of offline-TTP,
SignSK(ID) can be verified by the corresponding authenticationpublic key of the offline-TTP, i.e., if VerifyPK(SignSK(ID)) = ID,then the user is legal, and the signature of the TTP can pre⁃
vent malicious attacks from simply forging ID to participate in
MCS activities. At the same time, offline-TTP generates two
matrices randomly, namely RT, RW (RT × RW = E) , and sym⁃
metric key K#, where K# is used to encrypt and decrypt thetask content, and RT, RW is the confusion matrix of task re⁃quester and worker to protect their location privacy.
4.3 Generation and Confusion of Location Matrix
Firstly, the whole geographic space is represented by a k × k

matrix, and each element in the matrix represents a small grid
in the grid space. In order to retain the relative distance infor⁃
mation between the task and the worker after confusion, a nov⁃
el assignment rule of location matrix is designed in this paper.
The specific details are shown in Algorithm 1. If the task re⁃
quester has a task in one of the small grids, the elements in
the corresponding location matrix are represented by a maxi⁃
mum number, and the farther the other elements are from the
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task location, the smaller the assignment is. That is, if the task
is located in the position with the matrix index of (i, j), then
the position element ψx,y is assigned the value of α2k−2. The far⁃ther the other positions are from (i, j), the smaller the element
ψ assignment is. An example is shown in Fig. 1. After the task
requester and the worker generate the corresponding location
matrix L, in order to protect the location privacy of the task
and the worker, they need to transform the actual location ma⁃
trix L into the privacy-protected location matrix L *. Finally,
the worker and the task requester upload the confusing loca⁃
tion matrix to the platform.
Algorithm 1. Generating privacy-preserving location matrix
Input: task Location index (i,j) , worker Location index

(m,n)
Output: task confusion location matrix L *t , user confusion lo⁃cation matrix L *

w1: Initialization: L t← 0, Lw← 0
2: for each ψ( )x,y ∈ L t do
3: ψx,y= α2k - 2 - |i - x| - |j - y|4: end for
5: for each ψ( )x,y ∈ Lw do
6: ψx,y= α2k - 2 - |m - x| - |n - y|7: end for
8: L *

w= Lw × RW9: L *
t = RT × L T

t10: Return L*w, L*t
4.4 Privacy-Preserving Task Submission and Worker

Participation
The task requester submits an encrypted task to the plat⁃

form. For a task, the task requester submits its verifiable ID,
the encrypted task content Enc(K#, t), and the location matrixafter confusion L *

T, i. e., task ≤ t, St, Enc(K#, t), L *
t > , where

St denotes verifiable ID, Enc(K#, t) represents the task contentencrypted with symmetric secret key, and L*T represents the lo⁃cation matrix of the task after confusion. After the task re⁃
quester submits the task to the platform, the platform first
passes the verification St to check whether the task requesteris a legal user, and then the platform assigns the right worker
to the task. In order to participate in MCS activities, workers
registered on the platform need to upload their verifiable ID
and the confusing location matrix L *

w to the platform, i.e, user =
< w, Sw, L *

w > , where Sw denotes verifiable ID, and L *
w repre⁃sents the location matrix of the task after the confusion. After

receiving the worker’s information, the platform first checks
whether the worker is legal, then stores the user’s information
locally and adds it to the candidate worker set.
4.5 Privacy-Preserving Task Matching and Distribution
After receiving the messages from the task and the worker,

the platform allocates workers based on the confusion location
matrix of task and worker L *

t , L *
w. First, the platform computes

R = L *
t × L *

w , and then takes the sum of diagonal elements ofresult matrix R, SOD (R) as the standard to measure the dis⁃
tance between a pair of tasks and workers. The larger the val⁃
ue of SOD (R), the shorter the actual distance. The details will
be explained in Theorem 1.
Each task needs one worker to complete, and the purpose of

the platform is to minimize the total moving distance of the as⁃
signed workers. Because the relative distance SOD (R) ob⁃
tained by the platform is inversely proportional to the actual
distance, we can transform the problem into a maximum
weight bipartite graph matching problem. The task and the
worker are two disjoint point sets in the bipartite graph. The
relative distance between the task and the worker SOD (R) is
used as the weight of the edge between the task and the work⁃
er. Our goal is to find a set of edge sets to maximize the total
weight, that is, the total moving distance of assigned workers
is the minimum.
Theorem 1. The actual distance d between workers and

tasks is inversely proportional to the relative distance SOD
(R). That is, if d1 < d2, then SOD1(R) > SOD2(R).
Proof.Assume the task’s location is (i, j), the corresponding

location matrix is Lt, the worker’s location is (m,n ), the corre⁃
sponding location matrix is Lw, R = L *

t × L *
w, and SOD (R) is thesum of diagonal elements of matrix R. The formulas are:

d1 < d2 , (3)

▲Figure 1. An example of generating privacy-preserving location matrix
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SOD1 (R) > SOD2 (R) , (4)
where d1 is the Manhattan distance between task 1 and worker1 and d2 is the Manhattan distance between task 2 and worker2. Formulas (3) and (4) can be transformed into the following
form:
| i1 - m1 | + | j1 - n1 | < | i2 - m2 | + | j2 - n2 |. (5)

∑
x = 0

k - 1 ∑
y = 0

k - 1 α4k - 4 - ( )|
|

|
| i1 - x + |

|
|
| j1 - y + |

|
|
|m1 - x + |

|
|
| n1 - y >

∑
x = 0

k - 1 ∑
y = 0

k - 1
α
4k - 4 - ( )|

|
|
| i2 - x + |

|
|
| j2 - y + |

|
|
|m2 - x + |

|
|
| n2 - y . (6)

The expansion of SOD(R) is the accumulation of k2 items,
which is recorded as ζ. For the next proof, first of all, we want
to get the value range of ζ. According to the properties of the
exponential function, the minimum value of ζ is not less than
0. When the index number is the largest, the value of ζ is the
largest. Therefore, the problem of finding the maximum value
of ζ is to find a point (x, y) in the two-dimensional space of {(x,
y) | 0 ≤ x ≤ k−1, 0 ≤ y ≤ k−1} so that the sum of the Manhattan
distance from this point to point (i, j ) plus the Manhattan dis⁃
tance to point (m, n ) is the minimum. According to the image,
the minimum value of |i - x| + |j -y| + |m - x| + |n - y| is |i -
m| + |j - n| = d, so the maximum value of ζ is α4k−4−d, and fi⁃
nally the value range of ζ is (0, α4k−4−d]. So formula (6) can be
transformed into formula (7).
α4k - 4 - d1 + ζ1 + ζ2 + … + ζk2 - 1 >

α4k - 4 - d2 + ζ,1 + ζ,2 + … + ζk2 - 1 . (7)

By narrowing the left side of inequality (7) and enlarging
the right side, we get inequality (8):

α4k - 4 - d1 > k2*α4k - 4 - d2. (8)
We divide both sides of inequality (8) by α4k−4−d2, and then

the inequality (9) is obtained.
αd2 - d1 > k2, (9)

where d1 and d2 is the Manhattan distance in the grid spaceand the minimum value of d2 is d1+1. From inequality (9), wecan draw the following conclusion: if α > k2 and d1 < d2, SOD1(R) > SOD2(R) must be true.
4.6 Task Extraction and Execution
After receiving the task assigned by the platform, the work⁃

er first performs the decryption operation to obtain the task
content Dec(K#, Enc(K#, t)). Only authenticated legitimate us⁃ers have the secret K#. After the worker completes the task,the collected data is encrypted with the secret key and upload⁃
ed to the platform < w, Sw, Enc(K#, date) >. After receiving theinformation forwarded by the platform, the task requester first
verifies whether w is a legitimate user and then decrypts the
sensor data with the secret key.

5 Experimental Evaluation
In this section, we evaluate the performance of BPPF by the⁃

oretical analysis and extensive experiments based on real⁃
world datasets.
5.1 Experimental Setup
1) Datasets. In the simulations, we adopt two widely used

real-world datasets: Feeder[22] and GeoLife[23]. Feeder con⁃
tains four kinds of data, i.e., the cellphone call detail records
data, smartcard data, taxicab GPS data, and bus GPS data
collected from Shenzhen. GeoLife is from the user’s mobile
phone data which records the user’s mobile trajectory data.
For the Feeder dataset, we preserve the tax ID, the latitude,
and the the longitude to construct the worker’s attributes.
The selected users locate in the area with a latitude ranging
from 22.488899 to 22.7491, and a longitude ranging from
113.801048 to 114.241135. For the GeoLife dataset, we con⁃
struct workers’attributes by extracting the user ID, the lati⁃
tude and longitude. The selected users locate in the area
with a latitude ranging from 40.013225 to 40.424714, and a
longitude ranging from 116.327406 to 116.655039. We split
the urban area of Feeder and GeoLife into 40 × 40 grids,
each with the size of 1 km × 1 km.
2) Baseline approaches. In this paper, we compare our strat⁃

egy with the following benchmarks: No-privacy, the strategy
which is the no-privacy-version of our strategy without the con⁃
fusion strategies; PriRadar[18], a grid-based bilateral privacy
protection framework. For the convenience of comparison, we
set the hash table H(t) = 1, H(w) = 1. This means that a task
needs to be completed by one worker, and a worker can only
complete one task, meanwhile we do not set the noise hash
code.
3) Evaluation metrics. We use the following metrics to eval⁃

uate the compared algorithms: the number of completed tasks
and the travel distance, which are the main metrics to evaluate
our strategy.
4) Setting. All the algorithms were implemented in Java. All

the experiments were evaluated on a notebook with Intel Core
i7-4720HQ central processing unit (CPU), of which the clock
rate is 2.60 GHz and the memory is 8.00 GB. The operation
system is 64-bit Windows 10.
5.2 Number of Completed Tasks Evaluation
We first compare the performance of No-privacy, BPPF,
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and Pripadar in the number of tasks completed. In the specific
experiment, we randomly select the user information from the
dataset to construct the worker attributes. As shown in Fig. 2,
we can see the No-privacy method and our BPPF method can
allocate all tasks by changing the number of tasks from 50 to
130, because both methods can find a maximum matching
scheme in task allocation, while the number of tasks complet⁃
ed by Pripadar method increases with the increase of search
distance under the same number of tasks. This is because the
effect of Pripadar is related to the search distance (d). With
the increase of search distance, the platform has more workers
to choose and a task is more likely to be assigned to a worker.
Then we compare the numbers of completed tasks with differ⁃
ent algorithms with respect to different numbers of workers,
and we change the number of workers from 50 to 130. As
shown in Fig. 3, we can see that the No-privacy and BPPF
methods can assign all tasks even when the number of workers
is equal to the number of tasks. While in the case of the same
search distance, the number of tasks completed by Pripadar
method increases with the increase of the number of workers,
because with the increase of the number of workers, there are
more workers to choose within the search distance of a task.
5.3 Travel Distance Evaluation
We then evaluate the travel distance. The travel distance is

defined as the sum of the Manhattan distances between all as⁃
signed workers and task pairs. For consistency, we set the
search distance (d) of Pripadar so that all tasks can be as⁃

signed. As shown in Fig. 4, the moving distances of the three
methods increase with the number of tasks. We can observe
that the No-privacy method and our BPPF method are always
better than Pripadar. As shown in Fig. 5, the travel distance of
the three methods decreases with the increase of the number
of workers. This is because with the increase of the number of
workers, a task is more likely to be assigned to a closer work⁃
er. The result of GeoLife dataset does not change obviously.
Because the user location distribution of GeoLife dataset is rel⁃
atively concentrated, while the user location distribution of
Feeder is relatively scattered, the workers assigned by Geo⁃
Life dataset are already the optimal workers when the number
of workers is small. Even if the number of workers increases,
the change of moving distance will not be greatly reduced.
From Figs. 4 and 5, we can observe that the No-privacy meth⁃
od and our BPPF method are always better than Pripadar, and
our BPPF method has almost no difference with No-privacy,
which indicates that our method can achieve accurate task al⁃
location under the condition of protecting tasks’and workers’
positions.
5.4 Location Privacy
We also do experiments to verify our proposed bilateral pri⁃

vacy protection mechanism based on the matrix. We set the
task location as (0, 0), then 100 workers are set in different
grids, and the relative distance SOD (R) calculated by the plat⁃
form is shown in Fig. 6. We can observe that the farther the
worker is from the task, the smaller the relative distance is,
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which also proves Theorem 1 mentioned in Section 4.
The sensing region of a task is represented by a matrix Lt,which is randomized by a confusing matrix RT to generate theprivacy preserving location matrix L *

t , and the worker’s loca⁃tion is also replaced by a privacy preserving location matrix
L *
w. The platform can not know any location information of
tasks or workers through these two matrices L *

t and L *
w. The ele⁃ments and location mapping rules of the actual location matrix

are changed by matrix multiplication L t × RT, and this changevaries with the confusion matrix RT, so the platform cannot
find the information of the actual location matrix from the pri⁃
vacy protected location matrix. After the platform receives the
privacy protection location mentioned above, the user’s actual
location is hidden in the grid. Even if the user’s actual grid is
obtained, it can protect the user’s location privacy to a certain
extent.
5.5 Computational Overhead
Finally, we discuss the computation cost of our method. Be⁃

cause our privacy-preserving method is based on matrix multi⁃
plication, the computation cost in BPPF depends on the di⁃
mension of the matrix, such as the granularity of the grid. The
smaller the granularity, the larger the precision and the size of
the matrix. For task requesters and workers, the computation
cost is Mk × k × Mk × k, which means one matrix multiplicationoperation. For the platform, in order to allocate tasks, the plat⁃
form needs to calculate the sum of diagonal elements of two
matrix multiplication result matrices, so the platform can only
calculate diagonal elements, and the computation cost is 1/k ×
(Mk × k × Mk × k) + O (n3), where O(n3) means the time complex⁃
ity of the weighted bipartite graph matching algorithm. The
time taken by a user to generate the privacy protection loca⁃
tion matrix in the case of different size matrices is shown in
Fig. 7. It is acceptable for users to spend such computing re⁃
sources to ensure privacy. Finally, Fig. 7 shows the running
time of the whole framework with a fixed number of tasks of 50.

6 Conclusions
In this paper, we study the problem of bilateral privacy pro⁃

tection in mobile sensing. We map the location of workers and
tasks to the grid, use a novel location matrix generation meth⁃
od to represent the user’s location information, and propose a
location matrix obfuscation method based on matrix multipli⁃
cation, which can preserve the relative distance information
between tasks and workers while protecting their location pri⁃
vacy. Finally, extensive simulations based on real world datas⁃
ets verify the performance of our method.

References

[1] LUO T, HUANG J W, KANHERE S S, et al. Improving IoT data quality in mo⁃
bile crowd sensing: a cross validation approach [J]. IEEE Internet of Things
journal, 2019, 6(3): 5651–5664. DOI: 10.1109/JIOT.2019.2904704

[2] GANTI R K, YE F, LEI H. Mobile crowdsensing: current state and future chal⁃
lenges [J]. IEEE communications magazine, 2011, 49(11): 32 – 39. DOI:
10.1109/MCOM.2011.6069707

[3] LIU Y T, KONG L H, CHEN G H. Data⁃oriented mobile crowdsensing: A com⁃
prehensive survey [J]. IEEE communications surveys & tutorials, 2019, 21(3):
2849–2885. DOI: 10.1109/COMST.2019.2910855

[4] WANG L Y, ZHANG D Q, YANG D Q, et al. Sparse mobile crowdsensing with
differential and distortion location privacy [J]. IEEE transactions on information
forensics and security, 2020, 15: 2735 – 2749. DOI: 10.1109/
TIFS.2020.2975925

[5] XIAO M J, GAO G J, WU J, et al. Privacy⁃preserving user recruitment protocol
for mobile crowdsensing [J]. IEEE/ACM transactions on networking, 2020, 28
(2): 519–532. DOI: 10.1109/TNET.2019.2962362

[6] ZHANG Y H, LI M, YANG D J, et al. Tradeoff between location quality and pri⁃
vacy in crowdsensing: An optimization perspective [J]. IEEE Internet of Things
journal, 2020, 7(4): 3535–3544. DOI: 10.1109/JIOT.2020.2972555

[7] ZENG B, YAN X F, ZHANG X L, et al. BRAKE: bilateral privacy⁃preserving
and accurate task assignment in fog⁃assisted mobile crowdsensing [J]. IEEE sys⁃
tems journal, 9278, (99): 1–12. DOI: 10.1109/JSYST.2020.3009278

[8] GAO G J, XIAO M J, WU J, et al. DPDT: A differentially private crowd⁃sensed
data trading mechanism [J]. IEEE Internet of Things journal, 2020, 7(1): 751–
762. DOI: 10.1109/JIOT.2019.2944107

[9] SONG S W, LIU Z D, LI Z J, et al. Coverage⁃oriented task assignment for mo⁃
bile crowdsensing [J]. IEEE Internet of Things journal, 2020, 7(8): 7407–7418.
DOI: 10.1109/JIOT.2020.2984826

▲Figure 6. Sum of diagonal elements of result matrix R

Figure 7. Time vs. dimension of the matrix and number of workers

9
8
7
6
5
4
3
2
1
0

Y

0 1 2 3 4 5 6 7 8 9
X

1.0×1072
4.7×1069
1.0×1065
2.2×1060
4.7×1055
1.0×1051
2.2×1046
4.6×1041
1037

Matrix dimension
(a) Dimension of the matrix (b) Number of workers

Number of workers
50 70 90 110 130

Tim
e/m
s

8×104
7×104
6×104
5×104
4×104
3×104

1614121086420

Tim
e/m
s

0 5 10 15 20 25 30 35 40 45

27



Special Topic BPPF: Bilateral Privacy-Preserving Framework for Mobile Crowdsensing

LIU Junyu, YANG Yongjian, WANG En

ZTE COMMUNICATIONS
June 2021 Vol. 19 No. 2

[10] WANG T, XIE X K, CAO X, et al. On efficient and scalable time⁃continuous
spatial crowdsourcing: full version [EB/OL]. (2020⁃10⁃29) [2021⁃01⁃25]. https:
//arxiv.org/abs/2010.15404

[11] AKTER S, YOON S. Location ⁃ aware task assignment and routing in mobile
crowd sensing [C]//2020 International Conference on Information and Communi⁃
cation Technology Convergence (ICTC). Jeju, Korea (South): IEEE, 2020: 51–
53. DOI: 10.1109/ICTC49870.2020.9289316

[12] LIU Y, GUO B, WANG Y, et al. TaskMe: multi ⁃ task allocation in mobile
crowd sensing[C]//Proceedings of the 2016 ACM International Joint Confer⁃
ence on Pervasive and Ubiquitous Computing. Heidelberg, Germany: ACM,
2016: 403–414. DOI: 10.1145/2971648.2971709

[13] GUO B, LIU Y, WU W L, et al. ActiveCrowd: A framework for optimized multi⁃
task allocation in mobile crowdsensing systems [J]. IEEE transactions on hu⁃
man ⁃ machine systems, 2017, 47(3): 392 – 403. DOI: 10.1109/
THMS.2016.2599489

[14] WANG L Y, YANG D Q, HAN X, et al. Mobile crowdsourcing task allocation
with differential ⁃ and ⁃ distortion geoobfuscation [J]. IEEE transactions on de⁃
pendable and secure computing, 2021, 18(2): 967– 981. DOI: 10.1109/TD⁃
SC.2019.2912886

[15] WANG Z B, HU J H, LV R, et al. Personalized privacy⁃preserving task alloca⁃
tion for mobile crowdsensing [J]. IEEE transactions on mobile computing,
2019, 18(6): 1330–1341. DOI: 10.1109/TMC.2018.2861393

[16] WANG X, LIU Z, TIAN X H, et al. Incentivizing crowdsensing with location⁃
privacy preserving [J]. IEEE transactions on wireless communications, 2017,
16(10): 6940–6952. DOI: 10.1109/TWC.2017.2734758

[17] NI J B, ZHANG K, XIA Q, et al. Enabling strong privacy preservation and ac⁃
curate task allocation for mobile crowdsensing [J]. IEEE transactions on mo⁃
bile computing, 2020, 19(6): 1317–1331. DOI: 10.1109/TMC.2019.2908638

[18] YUAN D, LI Q, LI G L, et al. PriRadar: A privacy⁃preserving framework for
spatial crowdsourcing [J]. IEEE transactions on information forensics and secu⁃
rity, 2020, 15: 299–314. DOI: 10.1109/TIFS.2019.2913232

[19] YAN K, LUO G C, ZHENG X, et al. A comprehensive location⁃privacy⁃aware⁃
ness task selection mechanism in mobile crowd ⁃ sensing [J]. IEEE access,
2019, 7: 77541–77554. DOI: 10.1109/ACCESS.2019.2921274

[20] GISDAKIS S, GIANNETSOS T, PAPADIMITRATOS P. Security, privacy, and
incentive provision for mobile crowd sensing systems [J]. IEEE Internet of
Things journal, 2016, 3(5): 839–853. DOI: 10.1109/JIOT.2016.2560768

[21] ZHUO G Q, JIA Q, GUO L K, et al. Privacy⁃preserving verifiable data aggrega⁃
tion and analysis for cloud ⁃ assisted mobile crowdsourcing[C]//IEEE INFO⁃
COM 2016 ⁃ The 35th Annual IEEE International Conference on Computer
Communications. San Francisco, USA: IEEE, 2016: 1–9. DOI: 10.1109/IN⁃
FOCOM.2016.7524547

[22] ZHANG D S, ZHAO J J, ZHANG F, et al. Feeder: supporting last⁃mile transit
with extreme⁃scale urban infrastructure data [C]//Proceedings of the 14th Inter⁃
national Conference on Information Processing in Sensor Networks. Seattle,
USA: IPSN, 2015: 226–237. DOI: 10.1145/2737095.2737121

[23] ZHENG Y, ZHANG L Z, XIE X, et al. Mining interesting locations and travel
sequences from GPS trajectories [C]//Proceedings of the 18th international con⁃
ference on World Wide Web. Madrid, Spain: ACM, 2009: 791– 800. DOI:
10.1145/1526709.1526816

Biographies
LIU Junyu received his bachelor’s degree in computer science and technology
from Jilin University, China in 2019. Currently, he is pursuing for the master’s
degree in computer science and technology at Jilin University. His current re⁃
search interests include mobile crowdsensing and privacy preserving in mobile
computing.

YANG Yongjian received his B.E. degree in automatization from Jilin Univer⁃
sity of Technology, China in 1983, M. E. degree in computer communication
from Beijing University of Post and Telecommunications, China in 1991, and
Ph.D. in software and theory of computer from Jilin University, China in 2005.
He is currently a professor and a Ph.D. supervisor at Jilin University, Director
of Key lab under the Ministry of Information Industry, and Standing Director of
the Communication Academy. His research interests include network intelli⁃
gence management, wireless mobile communication and services, and wireless
mobile communication.

WANG En (wangen@jlu.edu.cn) received his B.E. degree in software engineer⁃
ing from Jilin University, China in 2011, and his M.E. degree and Ph.D. in com⁃
puter science and technology from Jilin University in 2013 and 2016. He is cur⁃
rently an associate professor in the Department of Computer Science and Tech⁃
nology, Jilin University. His current research interests include the efficient utili⁃
zation of network resources, scheduling and drop strategy in terms of buffer-
management, energy-efficient communication between human-carried devices,
and mobile crowdsensing.

28


