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Abstract: Collaborative cross-edge analytics is a new computing paradigm in which Inter⁃
net of Things (IoT) data analytics is performed across multiple geographically dispersed
edge clouds. Existing work on collaborative cross-edge analytics mostly focuses on reduc⁃
ing either analytics response time or wide-area network (WAN) traffic volume. In this
work, we empirically demonstrate that reducing either analytics response time or network
traffic volume does not necessarily minimize the WAN traffic cost, due to the price hetero⁃
geneity of WAN links. To explicitly leverage the price heterogeneity for WAN cost minimi⁃
zation, we propose to schedule analytic tasks based on both price and bandwidth heteroge⁃
neities. Unfortunately, the problem of WAN cost minimization underperformance con⁃
straint is shown non-deterministic polynomial (NP)-hard and thus computationally intrac⁃
table for large inputs. To address this challenge, we propose price- and performance-
aware geo-distributed analytics (PPGA) , an efficient task scheduling heuristic that im⁃
proves the cost-efficiency of IoT data analytic jobs across edge datacenters. We imple⁃
ment PPGA based on Apache Spark and conduct extensive experiments on Amazon EC2
to verify the efficacy of PPGA.
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1 Introduction

With the fast burgeoning as well as accelerating
convergence of artificial intelligence (AI) and the
Internet of Things (IoT), unprecedented prosperi⁃
ty of AI of Things or AI-empowered IoT applica⁃

tions has emerged recently. This new trend is coined as
AIoT, which pushes the frontier of AI from the centralized

cloud to the ubiquitous IoT devices, paving the last mile de⁃
livery of AI capabilities. Recently, AIoT has gained mount⁃
ing attention from industrial giants and boosted many intelli⁃
gent applications as exemplified by intelligent personal assis⁃
tants, personalized shopping recommendations, video surveil⁃
lance and smart home appliances, which are significantly
changing our daily life. For example, by bringing live video
analytics to urban traffic management, Microsoft[1], Baidu,
and Alibaba remarkably improve commuting efficiency and
safety in Bevellue (a city outside of Seattle), Beijing, and
Hangzhou, respectively.
Specifically, for many emerging collaborative AIoT appli⁃

DOI: 10.12142/ZTECOM.202102003

https://kns.cnki.net/kcms/detail/34.1294.
TN.20210607.1503.002.html, published
online June 9, 2021

Manuscript received: 2021-04-09

This work was supported in part by the National Natural Science Founda⁃
tion of China under Grant No.61802449 and the Guangdong Natural Sci⁃
ence Funds under Grant No. 2021A1515011912.

11



Special Topic Cost-Effective Task Scheduling for Collaborative Cross-Edge Analytics

ZHAO Kongyang, GAO Bin, ZHOU Zhi

ZTE COMMUNICATIONS
June 2021 Vol. 19 No. 2

cations spanning across multiple regions and edge datacen⁃
ters[2–3], the raw data generated at each datacenter can be
huge, redundant and unlabeled[4]. For example, for urban traf⁃
fic control and management, the raw data born at each edge
datacenter contains only the ID and timestamp of the vehi⁃
cles traversing this region, but not the global trajectory of
each vehicle, which can be used to learn the vehicle behav⁃
ior. While for the smart retail application, the raw data of
each unmanned store only contains the shopping record of
each user and item information of each good, rather than the
user preference and item popularity data that can be used to
learn the user’s shopping behavior. To extract the labeled
data (e.g., vehicle trajectory, user preference and item popu⁃
larity data over multiple stores) that can be used to train an
AI model in such collaborative cross-region scenarios, we
need to perform preprocessing to the raw data stored at cross-
region edge datacenters to obtain some statistical query re⁃
sults (i.e., labeled data, such as the item popularity over mul⁃
tiple stores), employing data-parallel frameworks such as
Map-Reduce, Spark and Flink.
In this paper, we propose to empower AIoT by optimizing

data preprocessing across multiple edge datacenters, which
is referred to as collaborative cross-edge analytics[5–6]. With
collaborative cross-edge analytics, we push the computation
tasks of both the input stage (e.g., Map) and the output stage
(e.g., Reduce) of the analytics framework (e.g., Map-Reduce)
to the widespread edge datacenters where the data was born,
instead of collecting raw data to the master datacenter as
shown in Fig. 1a. Fig. 1b shows an example of collaborative
cross-edge analytics, in which both Map and Reduce tasks
are moved to the place where the data is stored. Since in the

output stage tasks are distributed across edge datacenters,
the intermediate data after the input stage still needs to be
shuffled across edge datacenters for final analytic results.
Unfortunately, due to the aforementioned bandwidth hetero⁃
geneity of the cross-edge wide-area network (WAN) links,
the duration of different cross-edge shuffle transfers can be
greatly diverse. To cut down the finish time of the shuffle
phase by mitigating the stragglers (i. e., the slowest ones), a
WAN bandwidth-aware task placed for the output stage has
been proposed.
Apart from the performance, another primary objective for

collaborative cross-edge analytics is the WAN bandwidth
cost. Compared with the sufficient intra-edge network band⁃
width, cross-edge network bandwidth is far scarcer and more
expensive. Motivated by the exacerbating shortage of WAN
bandwidth, recent efforts have been made to minimize the
amount of data that traverses the expensive WAN. For exam⁃
ple, Pixida[7], Geode[8] and Iridium[6] reduce the WAN band⁃
width usage by cost-efficient task placement, i. e., placing
more tasks at datacenters with more input data. However, for
collaborative cross-edge analytics, is the reduction of WAN
bandwidth usage really translated into cost savings? The an⁃
swer is probably“No”, unfortunately. The rationale is that
the price of WAN bandwidth usage (in US dollar per GB, in
terms of the bill for one unit of data transfer) for different
WAN links also shows diversity. Currently, Infrastructure-as-
a-Service (IaaS) cloud service providers such as Amazon
EC2, Microsoft Azure and Google Cloud Engine charge out⁃
going bulk data transfer from different datacenters with vari⁃
ous prices, as illustrated in Table 1. The price diversity
clearly indicates that using less WAN bandwidth does not

DC: datacenter WAN: wide-area network
(a) Centralized Aggregation

▲Figure 1. Illustration of collaborative cross-edge analytics
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necessarily mean less usage cost. Even worse, our statistical
study on the Amazon AWS platform in Section 2 shows that,
for datacenters connected to faster WAN links, the WAN
bandwidth usage price is usually higher. Intuitively, with
such a performance-cost tradeoff, existing performance driv⁃
en task scheduling for collaborative cross-edge analytics
would greatly increase the usage cost of WAN bandwidth.
Motivated by the price heterogeneity as well as the perfor⁃

mance-cost tradeoff for the WAN bandwidth, we argue that
price-awareness should be brought to task scheduling of col⁃
laborative cross-edge analytics. Given the non-coincidence
between performance and bandwidth usage cost, we propose
to minimize WAN bandwidth usage cost under performance
guarantee, i. e., response time constraint. This problem is
proven NP-hard, and we design PPGA, an efficient greedy-
based scheduler that explicitly leverages both price and
bandwidth heterogeneity, to place tasks across geo-distribut⁃
ed edge datacenters. PPGA is implemented based on Apache
Spark and deployed across five Amazon EC2 regions. Exten⁃
sive experiments using realistic benchmarks and workloads
have shown that PPGA can reduce the WAN cost of collabor⁃
ative cross-edge by up to 31.6%.

2 Background and Motivation

2.1 Collaborative Cross-Edge Analytics
We consider a cross-edge infrastructure, in which multiple

edge datacenters at different regions are interconnected by a
WAN and to host AIoT services locally. With such a setup,
data are naturally born at each edge cloud in a distributed
fashion, while a dataset (e.g., shopping records for a smart re⁃
tail service) generally contains multiple data partitions that
are originated across different edge datacenters. Traditional⁃

ly, to analyze such a dataset, the centralized aggregation ap⁃
proach is adopted as shown in Fig.1a, i.e., all the data parti⁃
tions are transferred to a master datacenter to be processed.
With collaborative cross-edge analytics[6], a job query

script is first converted into a direct acyclic graph (DAG) of
consecutive stages, each stage consisting of many parallel
tasks that can be executed at different DCs. For the example
of the Map-Reduce query illustrated in Fig. 1, the corre⁃
sponding DAG contains two stages: Map and Reduce. Tasks
of the input stages (Map in Fig. 1) are pushed to the place
where the data partitions are stored, so that data can be pro⁃
cessed locally. The output of input stages, called intermedi⁃
ate data, is then shuffled to output stages (e. g., Reduce in
Fig. 1) to compute the final query results. Since consecutive
stages are linked by data dependency, a stage (e.g., Reduce)
can be started only after it has received all the intermediate
data from parent stages (e.g., Map). For input stage tasks, the
commonly adopted approach is“site-locality”, i. e., their lo⁃
cations are the same as the locations of their input data. As a
result of data locality and in-memory caching, input stages
can be finished extremely quickly.
The scarcity of WAN bandwidth has resulted in the high

usage price of WAN bandwidth. Currently, IaaS cloud pro⁃
viders such as Amazon AWS, Microsoft Azure and Google
Cloud Engine charge the WAN bandwidth usage while
leave the intra-datacenter bandwidth usage for free. More⁃
over, the price of outgoing WAN bandwidth usage at differ⁃
ent datacenters also exhibits moderate diversity, due to vari⁃
ous capital expenditure (Cap. Ex) and operational expendi⁃
ture (Oper. Ex) at different regions. As illustrated in Table
1, for the case of Amazon EC2, the outgoing WAN band⁃
width usage price at different datacenters varies from $0.02
per GB to $0.16 per GB.
2.2 Motivation
The tradeoff between the performance and the cost is

shown in this section. The above example motivates us to
take advantage of the heterogeneities of usage price and
bandwidth of the WAN, and then further optimize the cost
and performance of the shuffle phase. Clearly, to minimize
the cost of WAN bandwidth usage, more Reduce tasks
should be placed at datacenters with higher usage cost of
out-going WAN bandwidth, so that more intermediate data
would be transferred out from datacenters with lower usage
price of WAN bandwidth. On the other hand, to minimize
the finish time of the shuffle phase, more Reduce tasks
should be placed at datacenters connected to faster inter-
datacenter WAN links. Thus, if it is the idle case that data⁃
centers with higher usage price of WAN bandwidth are con⁃
nected to faster WAN links, placing more Reduce tasks at
these datacenters optimizes the cost and performance simul⁃
taneously.
Unfortunately, however, our empirical measurements

▼Table 1. Price heterogeneity (in US dollar per GB) of outgoing WAN
bandwidth usage at different regions of Amazon EC2

Location
Frankfurt
Iceland
London

Northern California
Northern Virginia

Ontario
Oregon
Tokyo
Mumbai
Seoul

Singapore
Sydney
Sao Paulo

Price
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.086
0.09
0.09
0.09
0.16

WAN：wide-area network
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based on Amazon EC2 show that datacenters with higher us⁃
age price of WAN bandwidth are not necessarily connected
to faster WAN links. Specially, we first measure the avail⁃
able inter-datacenter WAN bandwidth between 5 regions of
Amazon EC2: Oregan (North America ), Singapore (Asia-Pa⁃
cific), Sao Paulo (South America), Sydney (Oceania) and
Mumbai (Asia-Pacific). We then plot the usage price of
WAN bandwidth, as well as the average bandwidth of the
WAN links connected to each region in Fig. 2. Interestingly,
we observe that there is an approximate negative correlation
between the average WAN bandwidth and the usage price.
Specifically, for the 4 locations of Mumbai, Singapore, Syd⁃
ney and Sao Paulo, there is a clear negative correlation be⁃
tween the average WAN bandwidth and the usage price. This
observation convincingly demonstrates the inherent tradeoff
between performance and cost of the shuffle phase.
To navigate the cost-performance tradeoff, we propose to

minimize the cost of WAN bandwidth usage while enforcing
the shuffle phase to be finished within a pre-defined dead⁃
line. The rationale of bounding the finish time rather than
minimizing it is that, for some realistic analytic jobs, the ana⁃
lytic result is used by a future event or decision making with
a time lag. Therefore, finishing the analytic job within the
time lag would not compromise future events or decision
making. Towards the goal of minimizing WAN bandwidth us⁃
age with bounded finish time of the shuffle phase, we pro⁃
pose PPGA, a task scheduler that leverages the heterogene⁃
ities of usage price as well as the bandwidth of the cross-
edge WAN, in the next section.

3 Model and Optimization for Collabora⁃
tive Cross-Edge Analytics
In this section, we present the formulation and optimiza⁃

tion for WAN price and performance-aware task scheduling

of collaborative cross-edge analytics.
3.1 Infrastructure
We consider an AIoT service provider running AIoT ser⁃

vices and originate data on a set of N geographically dis⁃
persed edge datacenters, denoted by D = {1, 2,...,N }. Here
each edge datacenter can be a private datacenter, a public
multi-tenant datacenter (e.g., Amazon EC2), or a public colo⁃
cation datacenter (e.g., Equinix). The computational capacity
of each datacenter i ∈ D is denoted as Ci, in terms of themaximal number of computational tasks that can be executed
in a parallel manner.
With collaborative cross-edge analytics, a job query script

is first converted into a direct acyclic graph (DAG) of consec⁃
utive stages[9]. Then, an intuition globally schedules the stag⁃
es in the DAG all together. However, such global scheduling
requires prior knowledge of the task characteristics of all
stages, as well as the long-term bandwidth availability.
Though they are predictable, an exact prediction without er⁃
ror is difficult. Therefore, scheduling the DAG is not practi⁃
cal[10]. Instead, we schedule tasks stage by stage in an online
fashion, i.e., we choose to schedule the tasks within the same
stage to geo-distributed datacenters, rather than considering
all the tasks in the DAG. Note that the default task scheduler
of Spark also adopts the stage⁃by⁃stage method. Though such
online scheduling may not be globally optimal, it enables ad⁃
justments that can be made on the fly to better cater to the
dynamic job progress and network environment.
For a given stage of the job DAG, we use J = {1, 2,...,M }

to denote the set of M Reduce tasks which can be scheduled
to different edge datacenters and executed in parallel. To de⁃
note the placement scheduling of those Reduce tasks, we in⁃
troduce binary variables xij ∈ { 0, 1 } , ∀i ∈ D =
{1, 2,...,N } , ∀j ∈ J = {1, 2,...,M }. Specifically, if the task
j ∈ J is allocated to edge datacenter i ∈ D, then xij = 1, oth⁃erwise xij = 0. Since each task j ∈ J can be scheduled to oneand only one edge datacenter, we have the following place⁃
ment constraint:
∑
i ∈ D
xij = 1,∀j ∈ J. (1)

Besides the above placement constraint, the task schedul⁃
ing is also constrained by the computational capacity of each
edge datacenter. That is, the number of Reduce tasks allocat⁃
ed to each edge datacenter i cannot exceed the computation⁃
al capacity Ci of datacenter i:
∑
j ∈ J
xij ≤ Ci,∀i ∈ D. (2)

For Reduce task j ∈ J, it has to gather intermediate data
from other edge datacenters to reduce operation. Here we use
Sij to denote the amount of intermediate data stored at data⁃

WAN: wide-area network
▲Figure 2. Usage price of outgoing WAN bandwidth versus the average
outgoing WAN bandwidth of 5 Amazon EC2 regions
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center i and to be collected by Reduce task j. For the shuffle
phase where intermediate data are transferred across edge
datacenters and given the source edge datacenter i and desti⁃
nation edge datacenter k, the amount of intermediate data
transferred from edge datacenter i to edge datacenter k can
be denoted as∑

j ∈ D
Sij xkj.

3.2 Performance of Shuffle Phase
Given the available pair-wise bandwidth of the WAN link

from edge datacenter i to edge datacenter k, Bik, and togetherwith the amount of intermediate data traversing this WAN
link, the duration of the corresponding intermediate data
transfer can be denoted as

∑
j ∈ D
Sij xkj

Bik
. Since the performance,

in terms of the finish time of the intermediate data shuffle
phase, is determined by the slowest intermediate data trans⁃
fer, it can be formulated as:

z = max
i ∈ D maxk ∈ D

∑
j ∈ D
Sij xkj

Bik . (3)
Here if i = k, it means that the corresponding intermediate

data transfer is an intra-edge transfer rather than a cross-
edge WAN transfer. Since the intra-edge network bandwidth
typically far more overweighs the cross-edge WAN band⁃
width, the former can be finished very soon.
If we enforce the shuffle phase to be finished before the

deadline W, each intermediate data transfered from edge
datacenter i to edge datacenter k should be finished within
this deadline W, that is:
∑
j ∈ D
Sij xkj

Bik
≤ W, ∀i,k ∈ D. (4)

3.3 Cost of WAN Bandwidth Usage
Unlike the moderately sufficient intra-edge bandwidth, the

cross-edge WAN bandwidth represents a scarce resource
that incurs high capital and operational expenditure. For this
reason, internet service providers (ISP) and IaaS edge cloud
providers typically charge WAN bandwidth usage according
to the bytes transferred, i. e., the amount of data transferred
across the WAN. Specifically, for IaaS edge cloud providers
such as Amazon AWS, Microsoft Azure and Google Cloud
Engine (GCE), the price for inter-datacenter WAN transfer is
dependent on the source datacenter of the transfer, and dif⁃
ferent source datacenters usually have various prices. Here
we use Pi to denote the WAN bandwidth usage price for traf⁃fic going out of datacenter i, and Pi exhibits geographical di⁃versity across datacenters. Given the amount of∑

j ∈ D
Sij xkj of in⁃

termediate data transferred from edge datacenter i to edge

datacenter k, the WAN bandwidth usage cost is given by
Pi∑

j ∈ D
Sij xkj. Considering all the inter-datacenter WAN trans⁃

fers, the total cost of WAN bandwidth usage can be comput⁃
ed by:
∑
i ∈ D
∑

k ∈ D, k ≠ i

Pi∑
j ∈ D

Sij xkj. (5)
3.4 Problem Formulation
The objective of optimizing the task scheduling of collabor⁃

ative cross-edge analytics is twofold: shortening the finish
time of the shuffle phase and reducing the cost of WAN band⁃
width usage. Here comes the question that whether the above
two objectives are coincident. To answer this question, we
first look at the performance formulation and cost formula⁃
tion. Intuitively, to reduce the finish time of the shuffle
phase, we should place more Reduce tasks at edge datacen⁃
ters connected to higher bandwidth (i.e., Bik) WAN links. Onthe other hand, to minimize the cost of WAN bandwidth us⁃
age, we should place more Reduce tasks at datacenters with
lower bandwidth usage prices (i.e., Pi). Unfortunately, as wehave empirically demonstrated in Section 2, the bandwidth
usage price at the datacenter with faster WAN links is typi⁃
cally higher and thus the performance goal is consequently
not aligned to the cost goal.
To address the challenge of contradictory performance and

cost objectives, we propose to minimize the cost of WAN
bandwidth usage while enforcinge the shuffle phase to be fin⁃
ished within a pre-defined deadline. Formally, such a perfor⁃
mance-cost tradeoff problem can be formulated as the follow⁃
ing integer programming (IP):
min ∑

i ∈ D
∑

k ∈ D, k ≠ i
∑
j ∈ D

PiSij xkj

s.t. ∑
k ∈ D
xkj = 1,∀j ∈ J

∑
j ∈ J
xkj ≤ Ck,∀k ∈ D

∑
j ∈ D
Sij xkj

Bik
≤ W,∀i,k ∈ D

xkj ∈ { 0,1 } ,∀k ∈ D,j ∈ J. (6)
Remark: A widely adopted alternative approach to navigat⁃

ing the performance-cost tradeoff is to transform the finish
time into monetary cost, and then minimize the total cost. It
is however nontrivial to precisely map the finish time of the
shuffle phase to economic cost. In contrast, our model is
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more amenable to practical implementation, since based on
the stringency of the job query it is ready to set a reasonable
deadline W to ensure moderate performance.
Theorem 1: The cost-performance tradeoff problem is

NP-hard.
Proof: We construct a polynomial-time reduction from the

cost-performance tradeoff problem to the Generalized Assign⁃
ment Problem (GAP), a classic combinatorial optimization
problem which is proven NP-hard:
min ∑

i = 1

m∑
j = 1

n

cij xij

s.t. ∑
i = 1

m

xij = 1,∀j = 1,...,n

∑
j = 1

n

wij xij ≤ ti,∀i = 1,...,m

xij ∈ { 0,1 } ,∀i = 1,...,m, j = 1,...,n. (7)
Given an instance A = (m,n,cij,wij,ti) of the GAP, we map it

to an instance of the cost-performance tradeoff problem with
A' = (|D | = m, |J | = n, cij = ∑

k ≠ i,k ∈ D
Pk Skj,wij = 1, ti = Ci,W =

+∞). Clearly, the above mapping can be done in polynomial
time. Then, if there exists an algorithm that solves the cost-
performance tradeoff problem A', it solves the corresponding
GAP A as well. As a result, the GAP can be treated as a spe⁃
cial case of the cost-performance tradeoff problem. Given the
NP-hardness of GAP, the cost-performance tradeoff problem
must be NP-hard as well.
Theorem 1 reveals that solving the cost-performance trad⁃

eoff problem is NP-hard and it is computationally infeasible
for large input. Thus, we propose to develop a heuristic that
seeks a good approximate solution to the cost-performance
tradeoff problem.
3.5 Greedy-Based Heuristic for Task Scheduling
Before deriving the heuristic for task scheduling, we first

rewrite the objective function of the cost-performance trad⁃
eoff problem as follows:
∑
i ∈ D
∑

k ∈ D,k ≠ i
∑
j ∈ D
PiSij xkj =∑

i ∈ D
∑
j ∈ J
PiSij ∑

k ∈ D,k ≠ i
xkj =

∑
i ∈ D
∑
j ∈ J
PiSij ( )1 - xij . (8)

The above equation indicates that, to minimize the cost of
WAN bandwidth usage, we need to maximize the term

∑
i ∈ D
∑
j ∈ J
PiSij ( )1 - xij . Intuitively then, task j ∈ D should be

scheduled to edge datacenters with a larger PiSij. With thisinsight, we first list the tasks in D in a non-increasing order
of the value ∑

j ∈ J
PiSij, and then the next task on the list is

scheduled to the available datacenter with the largest PiSijwithout exceeding the computing capacity or compromising
the performance goal. The detail is given in Algorithm 1.
Algorithm 1: Greedy-based heuristic for task scheduling

Input:
Edge datacenter capacity, Ck;WAN bandwidth, Bik;Price of WAN bandwidth, Pk;Deadline, W;
Amount of intermediate data, Skj;

Output:
Task placement, xkj;1: list the tasks in D in a non-increasing order of the value∑k ∈ DPkSkj;

2: Define ukj = maxi ∈ D
Sij
Bik
,Mk = ∅,∀k,j;

3: for j = 1,2,...,M do
4: k* = argmink ∈ D{PkSkj|∑l ∈M i

xkl ≤ Ck - 1,∑l ∈M i
xkl ukl ≤ W -

ukj}
5: xk* j = 1,Mk* =Mk* ∪ { j }
6: end for
7: return xkj;

4 Implementation and Performance Evalu⁃
ation

4.1 Implementation
The implementation of PPGA is on top of the Apache

Spark framework. We override Spark’s default scheduler
and build our existing solution together with the default
scheduler. When a taskset is submitted, we choose the sched⁃
uling method according to the dependency type of the task⁃
set. When the taskset has shuffle dependency, we try to use
PPGA to optimize the task placement. If PPGA is not suit⁃
able for the taskset, we choose default scheduler to finish
task scheduling.
4.2 Experimental Setup
1) Experimental platform: Our experiment cluster is de⁃

ployed on 5 datacenters with 10 instances. The 5 datacenters
we choose are Singapore, Mumbai, Sao Paulo, Oregon, and
Sydney. All instances used in our experiment are M4.4
XLARGE, which contains 16 vCPUs and 64 GB memory. We
choose the instance at the Singapore region as Spark’s master
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and Hadoop Distributed File System’s (HDFS) name node.
The pair-wise bandwidth between the different EC2 regions
is shown in Table 2. The price of outgoing WAN bandwidth
usage across geo-distributed datacenters is shown in Table 3.
2) Software Settings: Our instances are running on cen⁃

tOS 7. The Spark version number of our implementation sys⁃
tem is 2.1. We use HDFS from Apache Hadoop 2.7.1 as our
distributed file system and start all instances as data nodes
and worker nodes. The HDFS’s block size that we use is
128 MB. The replication of HDFS is 3. Spark runs in stand⁃
alone mode and does not require additional resource manag⁃
er intervention.
3) Workload Specifications: To evaluate the effectiveness

of our system to various kinds of computation tasks, we mea⁃
sure the performance metrics of three applications: Word⁃
Count, PageRank[11], and TeraSort[12]. Computation tasks can
be divided into two categories (i. e., computation intensive
and I/O intensive). In our benchmarks, WordCount is compu⁃
tation intensive while PageRank and TeraSort are I/O inten⁃
sive.
• WordCount: WordCount aims to calculate the number of

every single word in passages. WordCount first produces
map tasks to calculate the frequency of words in every parti⁃
tion. Then Reduce tasks will collect the results of map tasks
to get the final result. This application represents a typical
data processing job. We use 11 GB data from Wikipedia as
the input file.
• PageRank: PageRank computes the weights of the web⁃

site using the amount and quality of links. It is a fundamen⁃
tal data processing application. It is used to calculate Pag⁃
eRank for a website. Our experiment uses a dataset that has
1 632 803 nodes and 30 622 564 edges.
• TeraSort: TeraSort is also a benchmark that measures

computing ability of the big data framework. It is used to sort
the sequences of results in the distributed situation. We gen⁃
erate 1 GB raw data to TeraSort for measurement.
4) Baseline: We compare our scheduler with the situation

setting the price factor of each node to 1. According to the ob⁃
jective function of our problem, setting the price to 1 actually
minimizes the amount of bandwidth usage. In the case of
deadline insensitivity, we will contrast the different perfor⁃
mances between minimizing the cost of WAN Bandwidth us⁃
age and minimizing WAN bandwidth usage.
4.3 Evaluation Results
1) Cost of WAN bandwidth usage: The primary perfor⁃

mance metric is the cost of WAN Bandwidth usage. As we
can see in Fig. 3, PPGA reduces the cost of WAN Band⁃
width usage of WordCount, PageRank, and TeraSort by
30.26%, 25.82% and 31.60%, respectively. There are two
reasons behind the cost reduction. Firstly, PPGA mainly
considers minimizing the cost of WAN Bandwidth usage of
an application rather than the volume of the WAN band⁃

width usage. When the price is set to 1, the target of PPGA
transforms to minimize the bandwidth usage. The second
reason is that PPGA entirely considers all reduce tasks in a
taskset. When a taskset is submitted to the schedule, PPGA
makes a scheduling plan by analyzing overall tasks’distri⁃
bution, data transferred price and bandwidth speed factors.
So, we can get a smaller cost to complete the whole taskset.
Further, the cost of WAN bandwidth usage of the whole ap⁃
plication will be reduced.
2) Volume of data transferred across datacenters: Fig. 4

shows the results of bandwidth usage. It is clear that the
bandwidth usage minimization task scheduling incurs less
bandwidth usage. This corresponds to our model in which we
donot consider the price. At the same time, the results sug⁃
gest that PPGA has a larger bandwidth usage, but it has a
smaller data transfer cost, which also confirms our assump⁃
tions in Section 2.2.
3) Application completion times: Fig. 5 demonstrates that

all applications’completion time with different prices is in⁃
creased relative to the price situation (set to 1). This can be
seen as a tradeoff between bandwidth usage and the cost of
bandwidth usage. The price set to 1 just minimizes the
bandwidth usage. When PPGA considers the price and the

▼Table 2. Pair-wise bandwidth (in Mbit/s) between 5 different EC2 regions
City

Singapore
Oregon
Sydney
Sao Paulo
Mumbai

Singapore
46 028.8
123
144
66.6
390

Oregon
116

46 284.8
124
109
103

Sydney
140
137
46 592
74.5
106

Sao Paulo
63.5
110
69.0

46 899.2
73.7

Mumbai
390
100
106
79.3

46 694.4

▼Table 3. Price (in US dollar per GB) of outgoing WAN bandwidth usage
City
Price

Singapore
0.09

Oregon
0.02

Sydney
0.14

Sao Paulo
0.16

Mumbai
0.086

WAN: wide-area network

▲Figure 3. Data transfer costs of WordCount，PageRank and TeraSort

BUM: bandwidth usage minimizationPPGA: price- and performance-aware geo-distributed analytics
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bandwidth, a task may be scheduled to a datacenter with a
smaller cost, which needs more data transfer time. That is
why applications running with PPGA have longer comple⁃
tion time.

5 Related Work
Collaborative cross-edge analytics, also known as geo-dis⁃

tributed analytics, has received great attention recently, due
to the unprecedented increase in data volume. Most of the ex⁃
isting work focuses on optimizing a single objective of either
query response time or WAN bandwidth usage. For reducing
the usage of expensive WAN bandwidth, Pixida[7] works on
dividing the DAG graph of a job into several parts to be pro⁃
cessed in a datacenter. JetStream[13], a stream processing for
data structured as online analytical processing (OLAP)
cubes, relies entirely on aggregation and approximation to re⁃
duce bandwidth. However, JetStream does not optimize data
and task placement. Geode[8] jointly catches intermediate re⁃

sults and optimizes task placement for Structured Query Lan⁃
guage (SQL) queries. It optimizes WAN bandwidth usage but
may lead to a poor performance. Flutter[10] carefully orches⁃
trates task placement by exploiting bandwidth heterogeneity
of the WAN. Note that none of the above work considers the
cost of WAN bandwidth usage. On the other hand, Iridium[6]
and the most recent work[5] jointly optimize the task and in⁃
put data placement to reduce both response time and WAN
traffic. Our work is inherently different from them in at least
three important aspects. First, we leverage the heterogene⁃
ities of both the usage price and the bandwidth of the WAN,
while Iridium and the work in Ref. [5] only consider the
bandwidth diversity of the WAN. Second, rather than assum⁃
ing that the network bottleneck exists in the up/down links of
edge sites, we assume the cross-edge links as the bottleneck.
Third, Iridium places tasks via solving the NP-hard problem
with solvers like Gurobi, while we apply a simple heuristic
which has better computational efficiency and scalability.

6 Conclusions
In this paper, we study the task scheduling problem for

collaborative cross-edge analytics to jointly optimize cost
and performance. We first demonstrate that, the commonly
adopted approach of WAN bandwidth usage does not neces⁃
sarily minimize the cost of WAN bandwidth usage, due to
the price heterogeneity of WAN bandwidth usage. To fully
explicit the price heterogeneity, we propose PPGA, a price
and performance-aware task scheduler for collaborative
cross-edge analytics. Unfortunately, the problem of WAN
cost minimization under performance constraint is shown to
be NP-hard, and thus computationally intractable for large
inputs. To address this challenge, we propose an efficient
greedy-based heuristic to improve the cost-efficiency of col⁃
laborative cross-edge analytics. The implementation of PP⁃
GA is based on Apache Spark, and extensive experiments
across 5 Amazon EC2 regions demonstrate the cost-efficien⁃
cy of PPGA.
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