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Abstract: Edge caching is an emerging technology for supporting massive content access in
mobile edge networks to address rapidly growing Internet of Things (IoT) services and con⁃
tent applications. However, the edge server is limited with the computation/storage capacity,
which causes a low cache hit. Cooperative edge caching jointing neighbor edge servers is re⁃
garded as a promising technique to improve cache hit and reduce congestion of the net⁃
works. Further, recommender systems can provide personalized content services to meet us⁃
er’s requirements in the entertainment-oriented mobile networks. Therefore, we investigate
the issue of joint cooperative edge caching and recommender systems to achieve additional
cache gains by the soft caching framework. To measure the cache profits, the optimization
problem is formulated as a 0–1 Integer Linear Programming (ILP), which is NP-hard. Spe⁃
cifically, the method of processing content requests is defined as server actions, we deter⁃
mine the server actions to maximize the quality of experience (QoE). We propose a cache-
friendly heuristic algorithm to solve it. Simulation results demonstrate that the proposed
framework has superior performance in improving the QoE.
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1 Introduction

As the development trend of future networks, the In⁃
ternet of things (IoT) has become a hot research top⁃
ic in the industry and academia in recent years[1].
The emergence of“IoT”paradigm makes accessi⁃

bility of various IoT sensors (e. g., smart cameras and tem⁃
perature sensors) universal, and thus enables intelligent ser⁃
vices to improve the life quality of humans[2]. Billions of IoT
devices (IDs) generate a tremendous number of monitoring
data while a great many end-users are consuming these da⁃
ta. However, countless electronic devices are anticipated to
generate a sheer volume of traffic loads, and the aggregate
load on core networks is expected to be large. Therefore, it
is important to reduce congestion and transmission delay
for network providers[3–5].
As we have stated above, mobile edge networks are faced

with the challenge of the explosive growth of IoT data re⁃
quests from the IDs, especially in the current backhaul net⁃
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works[6]. According to the research, most of the high load in
the mobile networks is generated by downloading the same
content and data. To solve this problem, it is necessary to
put forward new revolutionary methods in network structure
and data transmission[7]. As one of the rapidly developing
technologies, edge caching has drawn growing attention.
Edge caching technology can reduce repeated downloading
and transmission by caching contents in advance[8]. Howev⁃
er, as content providers (CPs) provide growing content, and
the storage and computing capacity of a cell (e.g., edge serv⁃
er) are limited, we still face great challenges to solve the
above problems. Many researchers are looking for addition⁃
al cache gains in this area. Some current research (e. g.,
FemtoCache[9]) focuses on caching contents in the edge serv⁃
er of base stations (BSs). However, it only focuses on the ba⁃
sic cell cache, and the understanding of inter-cell coopera⁃
tion is not deep.
Besides, how to use the cached contents to achieve more

cache gains is also a problem we have to consider. It is diffi⁃
cult to improve the caching performance only by focusing
on the content popularity in the entertainment-oriented mo⁃
bile networks. To solve this problem, the recommender sys⁃
tems provide an effective method that can provide personal⁃
ized content recommendations through historical behavior,
e.g., users may have evaluated or scored different contents.
However, some related content, such as two similar comedy
movies or two short videos of the same type, might have sim⁃
ilar utility for a user. We use the term—soft cach⁃
ing[10], which means that if the local BS doesn’t cache the re⁃
quested content, the BS can send other relevant contents
available locally. If the user likes or accepts the relevant
contents (under a certain threshold) instead of the content
which was originally requested, a soft cache hit will occur.
This scheme may give up some content relevance, but it
avoids the“expensive”connection of the IDs to get the re⁃
quested content from the backhaul network. Actually, some
recent experimental evidence suggests that IDs may be will⁃
ing to trade off some content relevance for a better quality
of experience (QoE)[11].
More specifically in this paper, the cooperative edge

caching and recommender systems are used to alleviate the
pressure of the backhaul network and get related contents
to achieve soft caching, respectively. We combine coopera⁃
tive edge caching with recommender systems to improve
the QoE. Recently, some researchers consider the interac⁃
tion between edge caching and recommender systems to op⁃
timize cache or recommender systems[10–17]. However, most
of the research only focuses on one side of the problem, e.
g., caching-friendly recommendations[10, 12–13, 15, 17] or recom⁃
mendation-aware caching policies[16]. The real joint treat⁃
ment of both is tried in Refs. [11] and [14], but their stud⁃
ies on hierarchical mobile edge networks are not deep
enough.

To sum up, different from the existing studies on edge
caching and recommender systems, we focus on improving
the QoE by judiciously selecting server actions. Our main
contributions are summarized as follows:
1) We combine cooperative edge caching with soft cach⁃

ing for IoT systems. To measure cache profits, we propose a
generic metric of QoE that depends on the quality of service
(QoS) and the quality of recommendation (QoR).
2) We formulate the problem of optimally choosing the

server actions towards maximizing the QoE. While such
joint caching and recommendation problems have been
proved to be NP-hard, we have proposed a cache-friendly
hierarchical heuristic algorithm.
3) Trace-driven evaluation results demonstrate that our

proposed scheme has superior performance on improving
the cache hits and QoE finally.
The remainder of this paper is organized as follows. Sec⁃

tion 2 discusses the proposed hierarchical cooperative edge
caching model and formulates the optimization problem.
Section 3 introduces a cache-friendly hierarchical heuristic
algorithm to solve the problem. Section 4 evaluates the per⁃
formance of the proposed framework and Section 5 con⁃
cludes this paper.
2 System Model and Problem Formulation
In this section, we introduce the system model of edge

caching. Specifically, we present the hierarchical coopera⁃
tive edge caching architecture and topology in Section 2.1.
Section 2.2 introduces the recommendation-aware content
request processing model. Then we propose a QoE model,
considering delay and recommendation in Section 2.3. Fi⁃
nally, Section 2.4 gives the problem formulation. Some key
parameters are listed in Table 1.

Notation

N

M

F

C

Df
pf

am,n

sn,f

wm,f

vm,n
πm,n,f

dLm,n,f , dEf , dCf
rLm,n,f , rEm,n,f , rCm,f

Definition

Number of BSs
Number of IDs

Total number of contents
Cache size of a BS
Size of the content f

The content f requested probability
The association of the ID and the BS

The cache state of the content f in the BS n
Rating (i.e., preference) for the content f of the ID m

The wireless transmission rate between the ID and the BS
System action

Transmission delay of the content f between the BS n and the ID m,
BS and BS, BS and CS, respectively

Content satisfaction in different server actions

▼Table 1. Key Parameters

BS: base station CS: cloud server
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2.1 Hierarchical Cooperative Edge Caching Model
The proposed system is a cooperative Cloud-Edge-End

computing system with a cloud server (CS), some discrete
BSs, and IDs. As shown in Fig. 1, we consider a cooperative
edge caching scenario for IoT networks. The CS has enough
computing and caching capacity, consisting of all data and
contents. Each BS is equipped with an edge server, which
has the limited ability to cache and compute. Each ID as a
content requester generates a request at each time slot. In
our proposed system, each BS communicates with the CS
through the backhaul links. To enhance the usage of the
BSs and alleviate the pressure of the backhaul networks,
each BS can communicate with all cooperative BSs through
fronthaul links instead of working individually[18]. Besides,
as the contents are cached in the BSs or the CS, IDs can
fetch their requested contents either from edge servers via
wireless links or directly by downloading the contents from
the CS to the BSs.
The proposed system consisting of N = {1, 2, ..., N} fully

connected BSs with a finite cache size C andM = {1, 2, ...,
M} IDs are distributed in the service area of the BSs. In ad⁃
dition, we denote am,n∈ [0, 1] as the association probabilitybetween the BS n and the ID m. We assume each ID re⁃
quests content or a set of data from a catalogue F= {1,
2, ..., F} at each time slot, and we denote the size of each
content as Df.We assume that the ID m requests the content f with the
standard content probability pmf . Hence, we could obtain thecontent popularity pf from pmf [9]. Furthermore, we assume that
the content popularity pf changes slowly, and∑f = 1

F pf = 1.
For the cache state, we focus on whether the content has

been cached in the BSs. The content cache state is denoted

as sn,f ∈ {0, 1}, ∀n ∈ , ∀ f ∈ F . Here, sn,f = 1 represents thatthe BS n has cached the content f, otherwise sn,f = 0.
2.2 Recommendation-Aware Request Processing Model
We define a score wm,f to represent the ID’s preferencefor the content or data f. As for pf, it denotes the probabilityof the ID m requesting the content f. Specifically, given the

scores wm,f , a reasonable choice could be their normalizedvalues:
pf = wm,f∑

i ∈ F
wm,i . (1)

Since soft caching is to replace the requested content
with related contents or data available in the local BS, we
rank the scores in a descending order to get a recommenda⁃
tion list Km of the ID m. When a content request f generatedby the ID m arrives at the local BS, there are three types of
situation:
1) Local hits: Local hits denote that the local BS process⁃

es content requests. The local hits are divided into direct
cache hits and soft cache hits.
2) Neighboring hits: the request generated by an ID can

be obtained from its cooperative BSs, and the transmission
delay is relatively small compared with downloading from
the CS.
3) CS hits: The ID obtains the requested content from

the CS. The transmission in this situation is known as“ex⁃
pensive”.
We model the server actions of the content request with

three sub-decisions models, denoted as πm,n,f =
(πL

m,n,f,πE
m,n,f,πC

m,n,f), where πL
m,n,f,πE

m,n,f,πC
m,n,f ∈ { 0,1 } are the indi⁃

cators for whether the request is processed in the local BS,
cooperative BSs, or the CS. Three sub-decisions can jointly
determine how the request is processed. Different decisions
will affect the transmission delay and content satisfaction.
As the content is indivisible, so for ∀m ∈M, only one of

πL
m,n,f,πE

m,n,f and πC
m,n,f can be 1. Similar to Ref. [19], the deci⁃sion variable πm,n,f is constrained by

πL
m,n,f + πE

m,n,f + πC
m,n,f = 1. (2)

2.3 QoE Model
We define the QoE as a combination of the QoS and the

QoR. The QoS and QoR are measured by the transmission
delay and content satisfaction, respectively. In the follow⁃
ing, we will discuss the two parts with different decisions in
detail:
1) Delay: We consider the transmission delay as the time

for an ID to receive the contents or data. In the proposed
system, there are three delay parts: dLm,n,f denotes the trans⁃mission delay that the ID m receives the content from the lo⁃
cal BS n, dEf denotes the transmission delay of the BSs’co⁃▲Figure 1. Cooperative edge caching supporting IoT architecture

Cloud server

Base station

Edge server

Wireless links

Backhaul links

Fronthaul links

IoT devices
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operation, and dCf denotes the transmission delay betweenthe BS and the CS.
Specifically, we assume that the wireless channel has

been deployed. Similar to Ref. [20], we can get the transmis⁃
sion rate between the ID m and the local BS n as follow:
vm,n = B log2 (1 + Pmgm,nσ2 ), (3)

where B denotes the channel bandwidth; σ2 denotes the
background noise power; Pm denotes the power consump⁃tion of the BS n transmission to the ID m. The channel gain
gm,n is estimated by the distance lm,n between the local BS nand the IDm.
Thus, the delay of transferring the content m between the

ID f and the local BS n is denoted as:
dLm,n,f = am,n sn,f Df

vm,n . (4)
The transmission among the cooperative BSs is through

fronthaul links with high bandwidth. In terms of the trans⁃
mission between the CS and the BSs, the CS is usually de⁃
ployed at a further distance, and a large amount of traffic is
transmitted through multiple intermediate nodes; We ex⁃
press these two parts in terms of the average rate; ve denotesthe average transmission rate between two BSs. Therefore,
the transmission delay between cooperative BSs can be ex⁃
pressed as follow:
dEf = Df

ve
. (5)

Similarly, vc denotes the average transmission rate be⁃tween the BSs and the CS. The transmission delay between
the BSs and the CS can be expressed as:
dCf = Df

vc
. (6)

2) Recommendation: If the content requested by the ID is
not cached locally, the similar contents cached locally
could be alternated.
Specifically, for local hits, considering the soft caching,

we define the content satisfaction as:
rLm,n,f = am,n sn,fwm,f. (7)
Similarly, for neighboring BSs cache hits, we define the

content satisfaction as:
rEm,n,f = sn,fwm,f. (8)
For downloading the content f from the CS, we define the

content satisfaction as:

rCm,f = wm,f. (9)
2.4 Problem Formulation
In the proposed system, our goal is to find the best server

actions to improve the QoE. As we have discussed above,
transmission delay and content satisfaction are major fac⁃
tors. We express these two parts as follows:
dm,n,f = π

L
m,n,f
dLm,n,f

+ πE
m,n,f

dLm,n,f + dEf +
πC
m,n,f

dLm,n,f + dCf , (10)

rm,n,f = rLm,n,fπL
m,n,f + rEm,n,fπE

m,n,f + rCm,fπC
m,n,f, (11)

where Eq. (10) denotes the QoS, which is expressed as the
reciprocal of the delay of content transmission (i. e., when
the delay of the content transmission is small, the larger
QoS can be obtained), (dEf + dLm,n,f) denotes the transmission
delay when the content is sent through the cooperative BSs,
and (dCf + dLm,n,f) denotes the transmission delay when the
content is downloaded from the CS. Eq. (11) denotes the
QoR.
To improve the QoE, we need to trade off the QoS and the

QoR (i. e., find the balance between low transmission delay
and high content satisfaction) by optimizing the server ac⁃
tions πm,n,f. To maximize the QoE, we formulate the optimiza⁃tion problem as:
P: max

Π ∑
m ∈M
∑
n ∈ N
∑
f ∈ F
pf ( )αdm,n,f + βrm,n,f (12a)

s.t. α + β = 1, (12b)
sn,f ∈ { 0,1 } ,∀n ∈ N,∀f ∈ F, (12c)
∀πLm,n,f ∈ { 0,1 } ,∀πE

m,n,f ∈ { 0,1 } ,∀πC
m,n,f ∈ { 0,1 }, (12d)

∑
n ∈ N
∑
f ∈ F
πm,n,f = 1,∀m ∈M, (12e)

∑
f ∈ F
πm,n,fDf ≤ C,∀m ∈M,∀n ∈ N, (12f)

where pf denotes the probability of the content or data f re⁃quested. In Eq. (12b), α and β are the scalar parameters to
balance transmission delay and content satisfaction. Eq.
(12c) denotes the cache state. Eqs. (12d) and (12e) denote
the constraints of the server actions. Eq. (12f) denotes the
cache ability.
To represent the server actions of the system, we denote

Π = (ΠL,ΠE,...,ΠC) as the entire selection, where ΠL =
(ΠL1 ,ΠL2 ,...,ΠL

M), ΠE = (ΠE1 ,ΠE2 ,...,ΠE
M), and ΠC =

(ΠC1 ,ΠC2 ,...,ΠC
M). And we denote ΠL

m = {πL
m,n,f |∀n ∈ N,∀f ∈ F},
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ΠE
m = {πE

m,n,f|∀n ∈ N,∀f ∈ F}, and ΠC
m = {πC

m,n,f|∀n ∈ N,∀f ∈ F}.
Lemma 1: The QoE problem is equivalent to the 0–1 In⁃

teger Linear Programming (ILP) problem.
Proof: As mentioned above, different server actions will

affect the transmission delay and content satisfaction. We
denote positive constants A1m,n,f = α/ am,n sn,fDf

log2 ( )1 + Pmgm,n
σ2

+

βam,n sn,fwm,f, A2m,n,f =
é

ë

ê

ê

ê

ê
êêê
êα/

æ

è

ç

ç

ç

ç
çç
ç

ç am,n sn,fDf

log2 ( )1 + Pmgm,n
σ2

+ Df

ve

ö

ø

÷

÷

÷

÷
÷÷
÷

÷

ù

û

ú

ú

ú

ú
úúú
ú + βsn,fwm,f,

and A3m,n,f =
é

ë

ê

ê

ê

ê
êêê
êα/

æ

è

ç

ç

ç

ç
çç
ç

ç am,n sn,fDf

log2 ( )1 + Pmgm,n
σ2

+ Df

vc

ö

ø

÷

÷

÷

÷
÷÷
÷

÷

ù

û

ú

ú

ú

ú
úúú
ú + βwm,f. To com⁃

bine optimization objectives with decision variables, the op⁃
timization objective of the problem in Eq. (12) can be ex⁃
pressed as:
P: max

Π ∑
m ∈M
∑
n ∈ N
∑
f ∈ F
pf ( )A1m,n,fπL

m,n,f + A2m,n,fπE
m,n,f + A3m,n,fπC

m,n,f ,
(13a)

s.t. the same as Eq.s (12b) , (12c) , (12d) , (12e) , and (12f) .
(13b)

Thus, the problem can be described as selecting optimal
server actions for processing requests with jointing trans⁃
mission delay and content satisfaction. This is a 0–1 ILP
problem, which is NP-hard. Because the number of IDs,
BSs, and contents can be large, it is of high complexity to
get the optimal solution by using exact methods.
3 Proposed Framework Design
The proposed system is a hierarchical cooperation orches⁃

trated computing topology. We focus on improving the QoE
by judiciously selecting the server actions. Different server
and content selections affect the final server actions. Thus,
to address the above complex optimization Eq. (13), we de⁃
compose it into two simpler subproblems as below.
1) Inner algorithm for recommendation list. First, we ob⁃

tain the recommendation list Km for the ID m from the con⁃tent or data catalog, which is implemented by the collabora⁃
tive filtering algorithm based on items-Inverse User Fre⁃
quency (ItemCF-IUF). The inner algorithm is mainly divid⁃
ed into two steps: calculating the similarity between two
contents and generating the recommendation list. When cal⁃
culating the similarity, we consider the influence of the ID

m activity on content similarity. We use the improved co⁃
sine formula to calculate the similarity between the content
i and f as:

sim i,f =
∑

m ∈ Ni ∩ Nf

1
log1 + ||N ( )m

||Ni ∪ ||Nf

,
(14)

where Ni denotes the number of IDs that like the content i,
Nf denotes the number of IDs that like the content f, and
|Ni | ∪ |Nf | denotes the number of IDs that both like content
i and f. Then the score of the content f will be calculated.
Then we sort wm,f in a descending order to generate the fi⁃nal recommendation list of the ID m. The details of the pro⁃

posed method for solving the inner problem are shown in Al⁃
gorithm 1. The internal of the loop consists of |F | calcula⁃
tions. Next, the complexity of the sorting step is O (log |F |)
in a pre-ordered list. Since these steps are repeated for ev⁃
ery ID m, the total complexity of the algorithm is
O (|M||F |).
Algorithm 1: Inner Algorithm for Recommendation.

Input:M , F , and all IDs’information.
Output: { K } M × R.1 Initialization: { K } M × R← 0M × R;2 for the ID m ∈M do

3 for each content pair of (i, f ), ∀i, f ∈ F do
4 Calculate sim i,f and wm,f;5 Sort wm,f in decreasing order;6 Choose the top R contents into the Km;7 Add Km to { K } M × R;8 end
9 end
2) Server actions. We optimize the server actions. As

mentioned above, Π has 3MNF possible selections. It may
be easy to find the optimal solution in a small scenario.
Since the number of IDs, BSs, and contents can be large, it
will take abundant time to converge if we use the general ex⁃
haustive methods (e. g., checking each combination of vari⁃
ables with a value of 0 or 1, and comparing the value of the
objective function to obtain the optimal solution). To solve
the problem, we propose a cache-friendly heuristic algo⁃
rithm with the branch and bound (BNB) strategy.
Lemma 2: Eq. (13) can be divided into M independent

subproblems as:
P: max Zm = ∑

n ∈ N
∑
f ∈ F

pf ( )A1m,n,fπL
m,n,f + A2m,n,fπE

m,n,f + A3m,n,fπC
m,n,f

，

(15a)
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s.t. the same with Problems (12b) , (12c) , (12d) , (12e) , and (12f) .
(15b)

Obviously, we have Z* = ∑
m ∈M

Zm.
Proof: For each ID m , we seek the best strategy to satisfy

its request and then it can benefit the whole cache system.
Therefore, Eq. (13) can be separated, i.e., the sub-decision
for each ID does not affect other IDs because there is no rel⁃
evance between them.
Specifically, for a content or a data request generated by

the ID m , we search server and content selections Π layer
by layer. After initialization, we first determine whether a
local direct hit occurs according to the cache state. If it
does not happen, we consider whether the soft cache hits
occur. If neither of the above two situations occurs, re⁃
quest processing will be completed through cooperative
BSs or the CS. This procedure is repeated until the cache
is full. To reduce unnecessary searches, we use the BNB
strategy. In Eq. (15), when a feasible solution is deter⁃
mined by using the heuristic algorithm, the value of Zm iscalculated and denoted as Zψ

m. Thus, Zψ
m will be added tothe constraint as the lower bound of the target value. Any

solution with Zm < Zψ
m can be deleted without verifyingwhether it meets other constraints. By continuously im⁃

proving the lower bound of the target value, the constraint
conditions can be improved and the amount of calculation
can be reduced.
The details of the proposed method for solving the whole

problem are shown in Algorithm 2. And the computation
complexity of Algorithm 2 is O (|M ||N ||K |).
Algorithm 2: Cache-Friendly Hierarchical Heuristic
Algorithm.

Input: C, N, M, F, K, content request probability {pf},
content cache status {sn,f}.

Output: {Π*}.
1 Initialization: ΠL = 1;
2 while the ID m = 1, 2, ..., M do
3 for the BS n ∈ N do
4 for the content f ∈ KM do
5 Calculate Zm (πL

m,n,f) by Algorithm 1;
6 Store it as Zψ

m in a sorted list;7 According to the cache state sn,f, update πm,n,f;
8 Calculate Zm (πm,n,f);
9 if Zm (πm,n,f) > Zψ

m then
10 Swap and update πm,n,f;11 Add πm,n,f to Π ;
12 end
13 end
14 if πm,n,fDf > C then

15 break;
16 end
17 end
18 end
19 Π ← argmaxZ* (Π);
20 Π * ← Π.

4 Simulation Results
For simulation purposes, all parameters are selected ac⁃

cording to the real-world scenario. Numerical experiments
are provided to evaluate the performance of the proposed
scheme. We consider several BSs, each of which has the
maximum coverage of a circle with a radius of 250 meters.
And more than 400 IDs are randomly distributed within the
coverage area of the BSs. We determine the local BS of
each ID according to the association probability am,n. The
channel gain is modeled as gm,n = 30.6 + 36.7 log (lm,n) dB,
where lm,n is the distance between the ID m and the BS n.
The distance is randomly set as [0, 250] m. The wireless
bandwidth, transmit power of each ID, and noise power is
set as 20 MHz, [1.0, 1.5] W, and 10-13 W, respectively.
For IoT data, we consider a real data set consisting of

457 users and more than 9 000 video contents. And these
contents are randomly cached in the BSs. The content size
is randomly set as [2, 5] Mbit. Further, the cache constraint
of the BS is set to a percentage θ of the total storage size.
Besides, we use itemCF-IUF to get the recommendation list
for each ID, and we get the corresponding score wm,f. The pa⁃rameter of Algorithm 1 is set as R = 2 . To verify the experi⁃
mental effect of the recommendation algorithm, we calcu⁃
late the accuracy rate, recall rate, and their weighted har⁃
monic average. And the results are respectively 0.4,
0.1311, and 0.1975.
To evaluate our proposed framework, we consider the fol⁃

lowing three baseline schemes: 1) File popularity distribu⁃
tion (FPD) strategy. As mentioned in Ref. [21], when a con⁃
tent request is generated by the ID, the cache system will
distribute popular contents according to the popularity of
contents. However, this strategy processes requests without
considering content preferences and soft caching; 2) User-
centric optimization (UCO) strategy. Similar to our paper, a
simple QoE metric has been proposed for combining con⁃
tent caching with the recommender systems in Ref. [11].
They weigh the QoS and QoR, but the work of cooperative
edge caching is missing; 3) Random scheme. The content re⁃
quest is randomly processed at the local BS, cooperative
BSs, or the CS. Π is randomly set under the constraints in
Eqs. (12d), (12e), and (12f).
In Fig. 2, we study different server selection schemes un⁃

der contents ranging from 1 000 to 9 000, and eight inde⁃
pendent simulations are considered (in this case, we set the
N = 2). For each scheme, we set the balance constraint α to
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0.1 and 0.2 respectively. We observe that the QoE increas⁃
es rapidly with the increase of the contents in our proposed
scheme, mainly because a tremendous amount of contents
can provide more accurate references for recommendation
(e.g., more historical behaviors). In the random scheme, the
result fluctuates obviously because the decision is random.
The experimental effect of our proposed scheme is also bet⁃
ter than other schemes. In particular, the proposed scheme
has an overall performance improvement of about 30% com⁃
pared with the FPD scheme. The reason is that the soft
cache fully considers content preferences, ensuring that
content preferences are controllable and the distortion is
minimized.
Next, we investigate whether the proposed scheme has

better performance in QoS-QoR trade-off, as shown in Fig.
3. The balance factor α is in the range of 0.1 to 0.9. Accord⁃
ing to the simulation, the QoE increases linearly with the in⁃
crease of α. When α = 0.1 (i. e., QoR is given priority), we
observe that the performance of the FPD scheme and the
UCO scheme is similar to the proposed scheme, mainly be⁃
cause cooperative caching has little effect on additional
cache gain. When α increases gradually (i.e., a part of QoR
is sacrificed and QoS is given priority), and the perfor⁃
mance of the proposed scheme is greatly improved com⁃
pared with the FPD scheme and UCO scheme. Due to the
strong randomness of the random scheme, the performance
improvement is not obvious.
We also evaluate the hit ratio under different BS num⁃

bers, as shown in Fig 4. In the proposed scheme, cache hits
are defined as local hits and neighboring hits. We study dif⁃
ferent server selection schemes under the N range of 1 to 4.
The hit ratio of the proposed scheme fluctuates depending

on the number of BSs. For instance, it achieves the best hit
ratio when the BS number is 2. But when the numbers of
BSs are equal to 3 and 4, the hit ratio decreases gradually,
mainly because more BSs will receive more content re⁃
quests. In terms of improving the hit ratio, the performance
of the proposed scheme is obviously better than the other
three baseline schemes, mainly because the proposed
scheme provides more cache hit possibilities.
The proposed scheme considers soft caching and the co⁃

operation between the BSs. Compared with other baseline
schemes, our proposed scheme considers the content prefer⁃

▲Figure 3. QoE versus different balance parameters
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ences of the IDs to meet their needs and the BSs’coopera⁃
tion to reduce the transmission delay of contents in the net⁃
works. Therefore, our scheme is superior to other schemes
in the above comparative experiments.
5 Conclusions
In this paper, we have investigated the joint problem of

cooperative edge caching and recommender systems for IoT
systems. We have used the concept of soft caching by shift⁃
ing from satisfying requests of IDs to satisfying their needs.
Under the constraints of resources, computing conditions,
etc., we choose the appropriate server actions to improve
the QoE, which is defined as a 0–1 ILP problem. To solve
it, we have proposed an uncomplicated and cache-friendly
hierarchical heuristic algorithm with the BNB strategy. Sim⁃
ulation results have revealed the superior performance of
the proposed scheme on increasing the QoE.
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