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Abstract: Transfer learning aims to transfer source models to a target domain. Leveraging
the feature matching can alleviate the domain shift effectively, but this process ignores the
relationship of the marginal distribution matching and the conditional distribution match⁃
ing. Simultaneously, the discriminative information of both domains is also neglected,
which is important for improving the performance on the target domain. In this paper, we
propose a novel method called Balanced Discriminative Transfer Feature Learning for Visu⁃
al Domain Adaptation (BDTFL). The proposed method can adaptively balance the relation⁃
ship of both distribution matchings and capture the category discriminative information of
both domains. Therefore, balanced feature matching can achieve more accurate feature
matching and adaptively adjust itself to different scenes. At the same time, discriminative
information is exploited to alleviate category confusion during feature matching. And with
assistance of the category discriminative information captured from both domains, the
source classifier can be transferred to the target domain more accurately and boost the per⁃
formance of target classification. Extensive experiments show the superiority of BDTFL on
popular visual cross-domain benchmarks.
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1 Introduction

Labeled data are very important for supervised domain
adaptation. However, it is time-consuming and expen⁃
sive to annotate data manually in real application. To
address this limitation, transfer learning becomes an

effective alternative choice by applying the knowledge extract⁃
ed from an available well-labeled source domain to a target do⁃
main. There is a common assumption in transfer learning that
source data and target data belong to related but different dis⁃
tributions[1]. This can provide a promising approach to the sce⁃
narios that suffer from a shortage of labeled data[1–5].
Most existing distribution adaptation methods achieve ei⁃

ther domain-wise alignment, class-wise alignment or both of
them. Both theoretical verification and experiment results indi⁃
cate the adapting marginal distribution and conditional distri⁃
bution of both domains could obtain better performance. How⁃
ever, domain-wise alignment and class-wise alignment are of⁃
ten considered as equally important. In this case, the discrep⁃
ancy of these two distributions is ignored. In fact, marginal dis⁃

tribution matching and conditional distribution matching
should be given different weights under different scenarios.
Under the circumstance that the correlation between the
source domain and the target domain is lower, marginal distri⁃
bution needs to be more valued. When the target domain is
closely similar to the source domain, conditional distribution
should be given more attention. If we notice this situation and
give different weights to these two domain matching, the align⁃
ment of source and target domains will be more accurate.
Achieving domain matching simultaneously brings a new

problem that different categories may be wrongly matched.
Therefore, we should not only achieve feature matching, but al⁃
so need the learned feature to be class⁃discriminative. Once
the feature of samples is class⁃discriminative, points belong⁃
ing to the same class would be clustered into compact clusters
and different clusters would move away from each other,
which is helpful to classification of the model.
In order to solve above problems, we propose a novel meth⁃

od called Balanced Distribution Transfer Feature Learning
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(BDTFL). BDTFL can not only balance the relationship of
both distribution matchings, but also encourage the learned
features to be class⁃discriminative. On one hand, for different
transfer learning tasks, BDTFL can effectively adjust relative
weight of both distribution matchings. On the other hand, we
also alleviate category confusion during domain-wise align⁃
ment by leveraging category discriminative information of both
domains. When the learning feature appears class⁃discrimina⁃
tive, discriminative information of samples is exploited to
boost the classification performance. Several existing methods
can be regarded as special cases of BDTFL. To evaluate the
performance of BDTFL, we conduct comprehensive experi⁃
ments on several visual cross-domain classification tasks. The
results verify that our method can outperform the baselines sig⁃
nificantly.
We summarize our contributions as the following three

points:
(1) We propose a novel transfer learning method BDTFL to

balance the marginal and conditional distribution matching.
BDTFL can adaptively adjust relationship of both distribution
matching and achieve more accurate alignment. Thus, several
transfer learning methods can be treated as special cases of
BDTFL.
(2) Our method adopts the triplet loss to exploit the discrim⁃

inative information among categories. When the learned fea⁃
tures with discriminative information are extracted to match
the marginal and conditional distributions across domains, we
encourage the smaller distance between samples with the
same label and the larger distance between samples with dif⁃
ferent labels, which improves classification effect of the model
on the target domain.
(3) Comprehensive experiments on several visual across-do⁃

mains datasets demonstrate the superiority compared with oth⁃
er state-of-the-art methods.

2 Related Work
The prior work has achieved a promising process in the

field of domain adaptation. Existing domain adaptation
methods can be roughly divided into two categories: in⁃
stance reweighting and feature extraction. Our proposed
method BDTFL belongs to the feature-based learning meth⁃
ods. Thus, we will focus on feature extraction approaches to
discuss.
A transfer component analysis (TCA) [6] approach is pro⁃

posed to minimize the distance between source and target do⁃
mains using the maximum mean discrepancy metric[7] by
searching transfer component. Furthermore, LONG et al. [8]
put forward joint distribution adaptation (JDA) to jointly
match marginal and conditional distributions of source do⁃
main and target domain in a principal dimension reduction
procedure. Based on JDA, transfer joint matching (TJM), pro⁃
posed in Ref. [9], reweights source instances to reduce differ⁃

ence between two domains.
To capture the discriminative information of two domains,

Ref. [10] adds the supervised source class cluster to the do⁃
main matching process. Furthermore, a domain-invariant and
class-discriminative (DICD) approach[11] tries to simultaneous⁃
ly maximize the inter-class dispersion and minimize the intra-
class variance of source and target data to mitigate the domain
shift. Inspired by DICD, our method explores class⁃discrimina⁃
tive information during the feature matching in the latent
space.
However, the above methods ignore the relationship of two

distribution matching for different scenes. They just simply
and roughly add metrics together. Different from the above
methods, our method can adjust the relationship of two distri⁃
bution matching according to different scenes and capture
class⁃discriminative information of two domains.

3 Proposed Approach
In this section, we first demonstrate the problem definition

and then show how to learn adaptive domain-invariant feature
representation with category discriminative information in our
method.
3.1 Preliminary and Motivation
In unsupervised domain adaptation problems, given source

labeled data D s = { ( xsi, ysi )}ns
i = 1 and target unlabeled data D t =

{ ( xtj )}nt
j = 1, where ns and nt are the numbers of source and tar⁃

get samples respectively, it is assumed that
xsi, xtj ∈ X, (X ⊂ Rm ) and ysi ∈ Y (Y ⊂ R ). ysi is the label ofthe source sample xsi; X is the feature space and Y is the labelspace.
Since there exists a domain shift across domains, it is obvi⁃

ous that marginal distributions satisfy Ps ( xs ) ≠ Pt ( xt ) with
condition distributions Ps ( |ys xs ) ≠ Pt ( |yt xt ). We aim to find
a discriminative feature transformation A, utilizing adaptive
joint feature matching to mitigate the domain shift. In this
way, the classifier can be well transferred to the target do⁃
main, which results in better target classification.
During the feature extraction process, we focus on the fol⁃

lowing two points:
(1) Effective feature extraction can alleviate domain shift.

For different scenes, the relationship of the marginal distribu⁃
tion and conditional distribution should be taken into consid⁃
eration. When source and target domains match in the embed⁃
ding space, our method balances the relationship of the mar⁃
ginal distribution and conditional distribution, which is differ⁃
ent from JDA.
(2) To further improve the performance of the model, the

samples sharing the same label are expected to gather closer
and clusters with different labels to be far away from each oth⁃
er. Therefore, we extract the category-discriminative informa⁃
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tion by minimizing the intra-class dispersion and maximizing
the inter-class compactness.
3.2 Learning Adaptive Domain-Invariant Features
We are devoted to extract adaptive domain-invariant feature

representation such that the source model trained by source
data can always be well applied to target data in different sce⁃
narios. In this way, we search a linear domain-invariant proj⁃
ect to discover shared subspace where the domain shift is ef⁃
fectively alleviated.
3.2.1 Joint Feature Matching
Since the source and target domains are related but dif⁃

ferent, it is essential to match the marginal distributions
and conditional distributions across domains to achieve
overlap between the source domain and target domain. The
metric Maximum Mean Discrepancy is adopted to measure
the distribution distance. The mean discrepancy of the mar⁃
ginal distributions and conditional distributions is repre⁃
sented as:
Zd = Z0 +∑

k = 1

C
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(3)

where 1m × n is defined as m × n matrix filled with one.We need to minimize Eq. (1) to achieve marginal and condi⁃
tional distribution matching in extracted feature subspace.
However, in this process, the marginal distribution and condi⁃
tional distribution are equally important. In fact, their impor⁃
tance varies from different scenarios. The relationship be⁃
tween marginal distribution matching and conditional distribu⁃
tion matching should be balanced for different scenarios.
3.2.2 Balanced Feature Matching
BDTFL innovatively adjusts the relative magnitude of mar⁃

ginal distribution matching and conditional distribution match⁃
ing to adapt different scenarios. Specifically, through a factor
ρ, we adaptively adjust the relative magnitude of marginal dis⁃
tribution matching and conditional distribution matching. In
this way, BDTFL can satisfy different requirements of various
scenarios.
By defining P = P0 + ρ∑k = 1

C Pk, the specific form of Eq. (1)
is formulated as:
Zd = Z0 + ρ∑

k = 1

C

Zk =
Tr (ATX (P0 + ρ∑

k = 1

C

Pk )XTA ) =
Tr (ATXPXTA ).

(4)

When the domain discrepancy is too large, there exists
large diversity of class-wise distributions across domains.
Class-wise alignment would then bring about serious class
confusion. As a result, the class-wise alignment does not make
any sense and even causes negative transfer problem. Thus,
the class-wise alignment should be weakened in this case.
However, if the target domain is closely similar to the source
domain, the class-wise alignment should be enhanced. In that
case, we should pay more attention to conditional distribution
matching. The application scenarios can be greatly expanded
by balancing marginal distribution matching and conditional
distribution matching. We should estimate the similarity of the
source and target domains according to different scenarios and
then select ρ. In this paper, the values of ρ are selected accord⁃
ing to the performance in experiments.
3.2.3 Learning Category-Discriminative Information
Completing the above steps, we simultaneously align mar⁃

ginal and conditional distributions across domains to alleviate
the domain shift. We also expect the learned feature represen⁃
tations in the latent shared subspace to be discriminative. On
one hand, if samples sharing the same label are more concen⁃
trated and clusters sharing different labels are more dispersed,
the source classifier can be well generalized to the target do⁃
main and achieves better performance on the target domain.
On the other hand, with the assistance of the discriminative in⁃
formation captured from both domains, conditional distribu⁃
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tion matching can be more accurate.
Inspired by triplet loss[11–13], we adopt the strategy that

makes the samples sharing the same label close and clusters
with different labels far away from each other in the extracted
feature subspace. The corresponding matrix of the distance
loss of source data can be formulated as:
Z s =∑

k = 1

C ns
nks
∑
ysi, ysj = k

 νsi - νsj 2 + ∑
ysi ≠ ysj

 νsi - νsj 2 =
Tr (ATX s (QS1 - QS2 )XT

sA ),
(5)
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(7)

In the target domain, we utilize the pseudo label to make
similar derivation and definition. We define Q1 =
diag (QS1,QT1 ) and Q2 = diag (QS2,QT2 ), and the whole category-discriminative loss for both domains is obtained as:
Zc = Z s + Z t =
Tr (ATX (Q1 - Q2 )XTA ) =
Tr (ATXQXTA ),

(8)

where Q = Q1 - Q2.The minimization of Eq. (8) encourages intra-class compact⁃
ness and inter-class dispersion to enhance the discriminative
characteristic of the learned representation.
3.2.4 Overall Framework
We incorporate Eqs. (4) and (8) into one formulation, which

represents the overall loss of BDTFL. Then we minimize this
overall loss as:
min
A
Zd + Zc + β  A 2

s.t. ATXHXTA = Id, (9)

where Id represents an identity matrix of dimension d and H =
I(ns + nt ) - [1 (ns + nt ) ]1(ns + nt ) × (ns + nt ) represents the centering
matrix. Besides, β is the regularization coefficient for avoiding
overfitting.
If we incorporate the matrix forms of Eqs. (4) and (8), Eq.

(9) can be rewritten as:

min
A
Tr (ATX (P + Q )XTA ) + β  A 2

s.t. ATXHXTA = Id.
(10)

The constrained optimization problem (10) can be regarded
as a generalized eigen-decomposition problem. The optimal so⁃
lution w. r. tA (A ∈ Rm × d ) can be solved as:
(X (P + Q )XT + βIm )A = XHXTAΘ, (11)

where Θ = diag (θ1, θ2,..., θd ) ∈ Rd × d is a diagonal matrix with
Lagrange Multipliers. The optimization problem (11) is also a
generalized eigen-decomposition problem. And the optimal so⁃
lution is the generalized eigenvectors of Eq. (11) correspond⁃
ing to the d-smallest egienvalues. BDTFL can be kernelized to
be applied to nonlinear scenarios. Through the above steps,
we achieve the joint feature matching simultaneously retaining
the discriminative information in BDTFL.
Recently, deep neural networks have been applied into

transfer learning. Fine-tuning can be effectively used to
transfer knowledge extracted from a source dataset to a tar⁃
get task. Several factors that influence the performance of
fine-tuning are systematically investigated in Ref. [14], in⁃
cluding the distribution of source and target data. In recent
works on deep domain adaptation, discrepancy measures are
embedded into deep architectures to reduce the gap between
the source domain and target domain. Theoretically, BDTFL
can be combined with the deep neural network to learn bet⁃
ter feature representation, which will be further explored in
the future.

4 Experiments
In this section, we evaluate the performance of BDTFL with

massive state-of-the-art shallow domain adaptation methods
on several popular visual cross-domain benchmarks.
4.1 Description of Datasets
Two widely-used benchmarks are adopted in our experi⁃

ments, including Office-31(DeCAF7) [15] and CMU-PIE[16]. Of⁃
fice-31 includes 4 652 images with 31 categories composed of
three domains: Amazon (A), Webcam (W) and DSLR (D).
CMU-PIE contains more than 40 000 face images from 68 in⁃
dividuals.
Considering different pose factors, we select 5 out of 13 pos⁃

es as Ref. [8]. The detail of the datasets is shown in Table 1.
▼Table 1. Cross-domain datasets used in the experiments

Dataset

Office-31
(DeCAF7)
CMU-PIE

Number of
Samples

4 652

11 554

Number of
Features

4 096

1 024

Number
of Classes

31

68

Domain

A, W, D

C05, C07, C09, C27, C29
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4.2 Comparison Methods
We compare our method with the following seven methods:
• 1-Nearst Neighbor Classifier (1NN)[17];
• Pricipal Component Analysis (PCA)[18];
• Geodesic Flow Kernel (GFK)[19];
• Transfer Component Analysis (TCA)[6];
• Joint Distribution Adaptation (JDA)[8];
• Subspace Alignment (SA)[20];
• Discriminative Transfer Subspace Learning (DTSL)[21].
Among these seven methods, the first two are traditional

transfer learning methods and the others are state-of-the-art
shallow transfer learning methods.
4.3 Implementation Details
1NN is acted as the final classifier, while 1NN, PCA, GFK,

TCA, SA, DTSL and BDTFL are acted as feature extractors.
We search ρ in {0.001, 0.01,..., 100} for BDTFL. After the re⁃
duction of dimensionality, the feature number d is fixed as
100. When extracting the feature, we use the linear kernel in
all the experiments. The iteration number T in the experi⁃
ments is fixed as 10. The target classification accuracy is con⁃
sidered as the evaluation metric of the methods.
4.4 Experiment Results
The following experiment results present the superiority of

the proposed method in this paper.
(1) Results on the Office-31 dataset (Table 2): On almost

all the tasks, BDTFL achieves great advantage compared with
the others. On A→→W and W→→A tasks, our method obtains a
significant performance improvement of 7.66% and 5.19%
compared to the best baseline SA. The target average classifi⁃
cation accuracy of our method reaches 70.47%, 2.57% more
than the best baseline. BDTFL performs better than JDA on
each task, which verifies the discriminative information is vi⁃
tal to the transfer feature learning.
(2) Results on the CMU-PIE dataset (Table 3): On the most

tasks, BDTFL performs better than the others. The target aver⁃

age classification accuracy is 67.7%, 4.2% more than the best
baseline DTSL. On C05→→C27 and C29→→C05 tasks, our meth⁃
od obtains significant performance improvements of 6.2% and
6.9% compared to the best baseline DTSL.

5 Conclusions
In this paper, we propose a novel method called BDTFL,

which adaptively balances the relationship of the marginal dis⁃
tribution matching and the conditional distribution matching
and captures the category discriminative information. The
adaptive feature matching encourages the overlap between the
source domain and target domain to be more accurate. And
the category discriminative information can make samples
sharing the same label close and clusters with different labels
far away from each other, which can further boost the condi⁃
tional distribution matching across domains. The discrimina⁃
tive information is exploited to alleviate category confusion
during the domain-wise alignment. With the assistance of dis⁃
criminative information, the source classifier can be well trans⁃
ferred to the target domain and boost target classification per⁃
formance. Our experiments verify the superiority of BDTFL.

▼Table 2. Accuracy (%) on Office-31(Decaf7) Datasets
Task/
Method

A→D
A→W
D→A
D→W
W→A
W→D
Average

1NN

59.6
54.0
42.4
90.9
40.8
97.8
64.3

PCA

60.6
55.6
44.6
91.8
42.0
98.6

65.5

GFK

52.0
48.2
41.8
86.5
38.6
87.5
59.1

TCA

56.2
54.8
44.3
92.1
42.1
95.6
64.2

JDA

56.8
58.1
44.8
95.7
46.2
97.6
66.5

SA

61.0
59.5

46.9
95.1
46.6
98.2
67.9

DTSL

60.0
54.5
46.6
94.3
45.6
94.0
65.8

BDTFL

62.65

58.62
54.56

96.60

51.79

98.59
70.47

1NN: 1⁃Nearst Neighbor Classifier
BDTFL: Balanced Discriminative Transfer Feature Learning for Visual Domain Adaptation
DTSL: Discriminative Transfer Subspace Learning
GFK: Geodesic Flow Kernel
JDA: Joint Distribution Adaptation
PCA: Pricipal Component Analysis
SA: Subspace Alignment
TCA: Transfer Component Analysis

▼Table 3. Accuracy (%) on CMU-PIE Datasets
Task/Meth⁃

od

C05 →C07
C05 →C09
C05→C27
C05 →C29
C07→C05
C07→C09
C07→C27
C07 →C29
C09 →C05
C09→C07
C09 →C27
C09 →C29
C27→C05
C27 →C07
C27→C09
C27 →C29
C29→C05
C29 →C07
C29→C09
C29 →C27
Average

1NN

26.1
26.6
30.7
16.7
24.5
46.6
54.1
26.5
21.4
41.0
46.5
26.2
33.0
62.7
73.2
37.2
18.5
24.2
28.3
31.2
34.8

PCA

24.8
25.2
29.3
16.3
24.2
45.5
53.4
25.4
21.0
40.5
46.1
25.3
32.0
61.0
72.2
35.1
18.9
23.4
27.2
30.3
33.9

GFK

26.2
27.3
31.2
17.6
25.2
47.4
54.3
27.1
21.8
43.2
46.4
26.7
34.2
62.9
73.4
37.4
20.4
24.6
28.5
31.3
35.4

TCA

40.8
41.8
59.6
29.4
41.8
51.5
64.7
33.7
34.7
47.7
56.2
33.2
55.6
67.8
75.9
40.3
27.0
30.0
30.0
33.6
44.8

JDA

58.6
52.0
83.7
47.7
60.6

60.2
75.4
40.9
50.9
56.1
68.0
40.3
81.0
82.8
87.2

49.9
47.5
44.8
48.1
56.5
59.6

SA

26.8
28.2
30.9
19.6
26.4
48.0
54.3
28.2
23.2
44.3
46.2
28.9
36.3
63.8
73.2
38.1
23.4
25.5
28.6
31.2
36.3

DTSL

65.9
64.1
82.0
54.9
45.0
53.5
71.4
48.0
52.5
55.6
77.5

54.1

81.5
85.4
82.2
72.6
52.2
49.4
58.5

64.3
63.5

BDTFL

67.3

68.1

89.9

58.6

59.8
62.7

80.4

49.6

57.7

61.1

76.1
53.2
86.8

86.6

86.5
72.8

59.1

53.6

57.6
66.0

67.7

1NN: 1⁃Nearst Neighbor ClassifierBDTFL: Balanced Discriminative Transfer Feature Learning for Visual Domain AdaptationDTSL: Discriminative Transfer Subspace LearningGFK: Geodesic Flow KernelJDA: Joint Distribution AdaptationPCA: Pricipal Component AnalysisSA: Subspace AlignmentTCA: Transfer Component Analysis
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