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Abstract: Edge computation offloading allows mobile end devices to execute compute-inten⁃
sive tasks on edge servers. End devices can decide whether the tasks are offloaded to edge
servers, cloud servers or executed locally according to current network condition and devic⁃
es’profiles in an online manner. In this paper, we propose an edge computation offloading
framework based on deep imitation learning (DIL) and knowledge distillation (KD), which
assists end devices to quickly make fine-grained decisions to optimize the delay of computa⁃
tion tasks online. We formalize a computation offloading problem into a multi-label classifi⁃
cation problem. Training samples for our DIL model are generated in an offline manner. Af⁃
ter the model is trained, we leverage KD to obtain a lightweight DIL model, by which we fur⁃
ther reduce the model’s inference delay. Numerical experiment shows that the offloading de⁃
cisions made by our model not only outperform those made by other related policies in laten⁃
cy metric, but also have the shortest inference delay among all policies.
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1 Introduction

Nowadays more and more end devices are running com⁃
pute-intensive tasks, such as landmarks recognition
apps in smartphones[1], vehicles detection apps used
for traffic monitoring in cameras[2], and augmented re⁃

ality apps in Google Glass. The advantages of executing com⁃
pute-intensive tasks on end devices are twofold. On the one
hand, most data, such as images, audios and videos, are gener⁃
ated at end devices. Compared with sending these data to the

cloud server, processing data locally on end devices can avoid
time-consuming data transmission and reduce heavy band⁃
width consumption. On the other hand, some tasks are sensi⁃
tive to latency and the execution result can be out of date if be⁃
ing late. In some cases (e. g., face recognition applications),
high latency can result in poor user experience. If computa⁃
tion tasks are offloaded to the cloud, the unreliable and delay-
significant wide-area connection can be problematic. Hence,
executing compute-intensive tasks on end devices is a poten⁃
tial solution to lower end-to-end latency.
However, compared with cloud servers, the computing re⁃

sources of end devices are very limited. Even a smartphone’s
computing capability is far weaker than a cloud server, not to
mention the Google Glass and cameras. It turns out that exe⁃

DOI: 10.12142/ZTECOM.202002006

http://kns.cnki.net/kcms/detail/34.1294.
TN.20200529.1853.002.html, published
online May 29, 2020

Manuscript received: 2019-12-01

This work was supported in part by the National Science Foundation of
China under Grant No. 61972432 and the Program for Guangdong Introduc⁃
ing Innovative and Entrepreneurial Teams under Grant No. 2017ZT07X355.

cuting compute-intensive tasks on end devices may result in
high computation latency. In addition, end devices often have
energy consumption restrictions；for example, most smart⁃
phone users do not want a single app to consume too much
power. Thus, it is unwise to execute tasks on end devices in⁃
discriminately.
Recently, edge computing has emerged as a new paradigm

different from local execution and cloud computing, and has
attracted more and more attention. The European Telecommu⁃
nications Standards Institute provided a concept of multi-ac⁃
cess edge computing (MEC) [3]. In the MEC architecture, dis⁃
tributed edge servers are located at the network edge to pro⁃
vide computing capabilities and IT services with high band⁃
width and real-time processing. Edge servers become the third
offloading location of compute-intensive tasks in addition to
end devices and cloud. However, due to edge servers’restrict⁃
ed computing capability, they cannot completely take place of
cloud servers. Many factors, including available computation
and communication resources, should be taken into consider⁃
ation when making offloading decisions. To tackle this chal⁃
lenge, in this paper, we design a computation offloading frame⁃
work which jointly considers computation and communication
and dynamically makes optimal offloading decisions to mini⁃
mize the end-to-end execution latency.
Recent advances in deciding offloading strategies focus on

learning-based methods. YU et al.[4] propose to“imitate”the op⁃
timal decisions of traditional methods by deep imitation learn⁃
ing (DIL), where DIL[5] uses instances generated from human’s
behaviors to learn the decision strategies in specific environ⁃
ments. DIL enjoys two advantages compared with traditional
methods[6] and deep reinforcement learning methods[7]. First, in⁃
ference delay of DIL is much shorter than that of traditional
methods especially when the amount of input data is large (as
shown in our experiment in Section 5). Second, DIL has higher
accuracy in imitating optimal offloading decisions compared
with approaches based on deep-reinforcement-learning (DRL).
However, the DIL model is built upon deep neural network

(DNN), which is compute-intensive and typically requires
high inference latency. On this issue, model compression[8] is
proposed, and knowledge distillation (KD) is one of the solu⁃
tions[9]. The idea behind KD is similar to transfer learning. KD
not only effectively reduces the size of the neural network and
improves the inference efficiency, but also improves the accu⁃
racy in the case where training samples are insufficient and
unbalanced, which may appear in DIL training phase. Hence,
we believe that applying KD can benefit the deployment of
DIL model.
In this article, we leverage the emerging edge computing par⁃

adigm and propose a framework based on DIL and KD, which
jointly considers available computation and communication re⁃
sources and makes fine-grained offloading decisions for end de⁃
vices. The objective of the proposed framework is to minimize
the end-to-end latency of compute-intensive tasks on end devic⁃

es. We use offloading decision instances to train our DIL model
offline and compress the model to a lightweight one by KD on⁃
line for quickly making near-optimal offloading decisions.
The rest of this article is organized as follows. We briefly re⁃

view related works in Section 2. We explain how to build a
DIL model and use it in computation offloading decisions in
Section 3. Then we describe how to use KD to further optimize
the performance of the DIL model in Section 4. Numerical ex⁃
periment results are shown in Section 5. At last we discuss
some future directions and conclude in Section 6.

2 Related Work

2.1 Computation Offloading Strategies
To achieve lower latency or energy, mobile end devices usu⁃

ally choose to offload tasks to the cloud or edge servers. How⁃
ever, due to the complexity of network conditions in practice,
for different devices at different times, the optimal computa⁃
tion offloading decisions are different. It is difficult to find this
optimal decision in real time. Traditional computation offload⁃
ing strategies are mostly based on mathematical modeling. Re⁃
searchers in Ref. [6] study the computation offloading problem
in multi-user MEC environment. They firstly prove that find⁃
ing the best offloading strategies in multi-channel and multi-
user condition is NP-hard. Then they model this problem as
an offloading game and design a distributed approach to reach
the Nash equilibrium. The authors in Ref. [10] study offload⁃
ing video objects detection tasks to cloud server. In Ref. [10],
a big YOLO model is deployed in cloud while a lite YOLO
model is deployed at end devices. Many factors such as bit
rate, resolution and bandwidth are considered and the offload⁃
ing problem is formulated into a multi-label classification
problem. A near-optimal solution is found by an iteration ap⁃
proach and it successfully achieves higher accuracy in video
objects detection. The main disadvantage of mathematical
modeling methods is that they are so complicated that they
may cause non-negligible inference delays and are difficult to
be deployed in MEC network.
One of the typical compute-intensive tasks is DNN infer⁃

ence, on which many researchers study specialized computa⁃
tion offloading strategies. KANG et al. [11] propose Neurosur⁃
geon framework for DNN offloading. Neurosurgeon divides
DNN into two parts. One part runs at end devices and the oth⁃
er runs at the cloud. This method reduces the calculation at
end devices, and tries to find a balanced point between com⁃
putation and transmission. Neurosurgeon evaluates the latency
of each DNN layer by regression models offline, and uses
these models to calculate the best divided point online tai⁃
lored to end devices’performance and bandwidth.
Recently, some researchers introduce DRL to find computa⁃

tion offloading strategies. In this case, the latency or energy
consumption serves as agents’reward. The authors in Ref. [7]
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cuting compute-intensive tasks on end devices may result in
high computation latency. In addition, end devices often have
energy consumption restrictions；for example, most smart⁃
phone users do not want a single app to consume too much
power. Thus, it is unwise to execute tasks on end devices in⁃
discriminately.
Recently, edge computing has emerged as a new paradigm

different from local execution and cloud computing, and has
attracted more and more attention. The European Telecommu⁃
nications Standards Institute provided a concept of multi-ac⁃
cess edge computing (MEC) [3]. In the MEC architecture, dis⁃
tributed edge servers are located at the network edge to pro⁃
vide computing capabilities and IT services with high band⁃
width and real-time processing. Edge servers become the third
offloading location of compute-intensive tasks in addition to
end devices and cloud. However, due to edge servers’restrict⁃
ed computing capability, they cannot completely take place of
cloud servers. Many factors, including available computation
and communication resources, should be taken into consider⁃
ation when making offloading decisions. To tackle this chal⁃
lenge, in this paper, we design a computation offloading frame⁃
work which jointly considers computation and communication
and dynamically makes optimal offloading decisions to mini⁃
mize the end-to-end execution latency.
Recent advances in deciding offloading strategies focus on

learning-based methods. YU et al.[4] propose to“imitate”the op⁃
timal decisions of traditional methods by deep imitation learn⁃
ing (DIL), where DIL[5] uses instances generated from human’s
behaviors to learn the decision strategies in specific environ⁃
ments. DIL enjoys two advantages compared with traditional
methods[6] and deep reinforcement learning methods[7]. First, in⁃
ference delay of DIL is much shorter than that of traditional
methods especially when the amount of input data is large (as
shown in our experiment in Section 5). Second, DIL has higher
accuracy in imitating optimal offloading decisions compared
with approaches based on deep-reinforcement-learning (DRL).
However, the DIL model is built upon deep neural network

(DNN), which is compute-intensive and typically requires
high inference latency. On this issue, model compression[8] is
proposed, and knowledge distillation (KD) is one of the solu⁃
tions[9]. The idea behind KD is similar to transfer learning. KD
not only effectively reduces the size of the neural network and
improves the inference efficiency, but also improves the accu⁃
racy in the case where training samples are insufficient and
unbalanced, which may appear in DIL training phase. Hence,
we believe that applying KD can benefit the deployment of
DIL model.
In this article, we leverage the emerging edge computing par⁃

adigm and propose a framework based on DIL and KD, which
jointly considers available computation and communication re⁃
sources and makes fine-grained offloading decisions for end de⁃
vices. The objective of the proposed framework is to minimize
the end-to-end latency of compute-intensive tasks on end devic⁃

es. We use offloading decision instances to train our DIL model
offline and compress the model to a lightweight one by KD on⁃
line for quickly making near-optimal offloading decisions.
The rest of this article is organized as follows. We briefly re⁃

view related works in Section 2. We explain how to build a
DIL model and use it in computation offloading decisions in
Section 3. Then we describe how to use KD to further optimize
the performance of the DIL model in Section 4. Numerical ex⁃
periment results are shown in Section 5. At last we discuss
some future directions and conclude in Section 6.

2 Related Work

2.1 Computation Offloading Strategies
To achieve lower latency or energy, mobile end devices usu⁃

ally choose to offload tasks to the cloud or edge servers. How⁃
ever, due to the complexity of network conditions in practice,
for different devices at different times, the optimal computa⁃
tion offloading decisions are different. It is difficult to find this
optimal decision in real time. Traditional computation offload⁃
ing strategies are mostly based on mathematical modeling. Re⁃
searchers in Ref. [6] study the computation offloading problem
in multi-user MEC environment. They firstly prove that find⁃
ing the best offloading strategies in multi-channel and multi-
user condition is NP-hard. Then they model this problem as
an offloading game and design a distributed approach to reach
the Nash equilibrium. The authors in Ref. [10] study offload⁃
ing video objects detection tasks to cloud server. In Ref. [10],
a big YOLO model is deployed in cloud while a lite YOLO
model is deployed at end devices. Many factors such as bit
rate, resolution and bandwidth are considered and the offload⁃
ing problem is formulated into a multi-label classification
problem. A near-optimal solution is found by an iteration ap⁃
proach and it successfully achieves higher accuracy in video
objects detection. The main disadvantage of mathematical
modeling methods is that they are so complicated that they
may cause non-negligible inference delays and are difficult to
be deployed in MEC network.
One of the typical compute-intensive tasks is DNN infer⁃

ence, on which many researchers study specialized computa⁃
tion offloading strategies. KANG et al. [11] propose Neurosur⁃
geon framework for DNN offloading. Neurosurgeon divides
DNN into two parts. One part runs at end devices and the oth⁃
er runs at the cloud. This method reduces the calculation at
end devices, and tries to find a balanced point between com⁃
putation and transmission. Neurosurgeon evaluates the latency
of each DNN layer by regression models offline, and uses
these models to calculate the best divided point online tai⁃
lored to end devices’performance and bandwidth.
Recently, some researchers introduce DRL to find computa⁃

tion offloading strategies. In this case, the latency or energy
consumption serves as agents’reward. The authors in Ref. [7]
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consider a condition of vehicular networks based on software
defined network and jointly optimize networking, caching,
and computer resource by a double-dueling Deep-Q-Net⁃
work. The main drawback of DRL-based approaches in com⁃
putation offloading is that the offline training and online in⁃
ference takes many overheads. To tackle this challenge, we
propose to utilize DIL for computation offloading, the train⁃
ing cost and inference latency of which are significantly low⁃
er than those of DRL.
2.2 Deep Imitation Learning and Knowledge Distillation
DIL refers to training agents to imitate human’s behaviors

by a number of demos. Compared with DRL, training and in⁃
ference time of DIL is much shorter. The authors in Ref. [4]
build an edge computation offloading framework based on
DIL. However, since DIL is based on DNN, if the size of DNN
grows too large, it may still result in high inference delay. On
this issue, we use Knowledge Distillation to compress the DIL
model.
KD is firstly proposed in Ref. [9], where the authors show

that small DNNs can achieve approximately high accuracy as
large DNNs with relatively less inference latency. This moti⁃
vates us to compress the models to reduce inference delay
with tiny accuracy loss. In KD, a large DNN is trained on a
large training set and a lite DNN is trained on a small training
set whose labels are the output of large DNN after“softened”.
In our work, we compress our DIL model through KD to fur⁃

ther reduce the inference delay, and improve the model’s per⁃
formance when training samples are missing and unbalanced.

3 Edge Computation Offloading by Deep
Imitation Learning

3.1 System Model
We study the problem of making fine-grained offloading deci⁃

sions for a single end device user. A compute-intensive task A
on end device needs to be executed. We firstly split task A into
some subtasks, following Ref. [12]. Each subtask can be denot⁃
ed by a tuple at = ( t, εt, dt, dt + 1 ). Task A can be seen as a set ofall subtasks at. And εt represents the computation complexity ofthe t-th subtask (usually in central processing unit (CPU) cy⁃
cles). All of the computation complexity forms a set E =
{ εt|tϵ[ 0, | A |) }. The dt denotes the size of input data of the t-th
subtask (usually in bytes). When t=0, d0 represents the size ofinput data of task A. dt + 1 denotes the size of output data of the t-th subtask, and is also the input data size of the (t+1) -th sub⁃
task. When t=|A|, d |A| represents output size data of task A. Sizesof all data flow jointly form the set D = { dt|t ∈ [ 0, | A | + 1) }.
As shown in Fig. 1, during the runtime of the mobile end

device, a wireless connection with an edge server is estab⁃
lished, and the edge server maintains a connection with the
cloud server through the Internet. When a computation task in
the end device needs to be executed, it will be divided into
some subtasks. Each subtask can choose to be executed local⁃
ly on end device or sent to the edge server. When the edge
server receives a requirement of execution of a subtask, it can
decide whether to execute it locally on edge server or further
send it to cloud server. Execution of a subtask leads to compu⁃

▲Figure 1. Subtasks are offloaded to end device, edge server and cloud server respectively.
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tation latency, which depends on the profile of end device and
edge server and the computation complexity of subtasks E. If
two adjacent subtasks are offloaded to different locations,
transmission latency will also occur, which mainly depends on
the bandwidth between end device, edge server and cloud
server and transmission data size D. In this paper, due to the
strong computing capability of the cloud server, cloud compu⁃
tation latency is far less than the transmission latency. Hence,
when the subtask is offloaded to cloud server, the computation
latency can be ignored and only the transmission latency is
concerned.
3.2 Problem Formulation
When a computation task needs to be executed, end devic⁃

es split it into some subtasks and evaluate computation com⁃
plexity E and transmission data sizes D of all subtasks. We
can leverage the method introduced in Ref. [12] to evaluate E
and D. Then all subtasks, E, D and the computing capability
of the end device (denoted by p1) are sent to edge server；p1can be measured in CPU frequency (in Hz). The edge server
measures the bandwidth between the end device and edge
server (denoted by b1) and the bandwidth between the edgeserver and cloud server (denoted by b2). Factors mentionedabove and the computing capability of edge server (denoted by
p2) jointly form the description of current offloading require⁃ment S = (E,D, p1, p2, b1, b2 ). The edge server is responsiblefor making offloading decisions of each subtask according to S.
For each subtask at, its offloading decision is representedby It ∈ { 0, 1, 2 }. It = 0, 1, 2 indicates that subtask at is execut⁃ed at end device, edge server or cloud server respectively.

Offloading decision of the whole task A is given by I =
{ It|t ∈ [ 0, |A|) }. Obviously, |I| = 3|A|. The offloading problemturns into finding the offloading decision I with the shortest
end-to-end latency according to given S.
Now we compute the end-to-end latency of a specific I. As

we have discussed, end-to-end latency can be divided into
computation latency and transmission latency. Let Ltexec denotethe computation latency of t-th subtask. When It = 0, 1, thesubtask is executed at end device or edge server, hence Ltexec =
εt /p1 or Ltexec = εt /p2, respectively. When It = 2, as mentionedin Section 3.1, computation latency at cloud server is ignored,
hence Ltexec = 0. Given S and offloading decision I, computa⁃tion latency of the whole task A is:
Lexec (S, I) =∑t = 0

|| A - 1Ltexec . (1)
Let Lttrans represent the data flow size between t-th and (t-1)-thsubtask. When data are transmitted between end device and

edge server, Lttrans = dt /b1 , and when data is transmitted be⁃tween edge server and cloud server, Lttrans = dt /b2. Note that thedata at the beginning of the whole task are input by the end
device, and the final output destination is also the end device,
thus we can assume that I-1 and I |A| are always 0. Given S and

offloading decision I, transmission latency of the whole task A
is:
Ltrans (S, I) =∑t = 0

|| A Lttrans . (2)
Our goal is to find the offloading decision I * with the short⁃

est end-to-end latency, which is:
I * = argmin I (Lexec (S, I) + Ltrans (S, I)) . (3)
So far, we have formulated computation offloading problem

to an end-to-end latency minimization problem. By changing
the parameter of argmin to energy, we can switch optimization
objective to the energy consumption. Let S represent the de⁃
scription of offloading requirement, I represent the offloading
decision, Rexec (S, I) be the energy consumption of computation
and Rtrans (S, I) be the energy consumption of transmission.
Then the best offloading decision I * is: I * =
argmin I (Rexec (S, I) + Rtrans (S, I) ). If it is required to optimize
latency and energy simultaneously, we can set the parameter
of argmin to a weighted sum of latency and energy.
3.3 Deep Imitation Learning for Offloading
The above minimization problem can be considered as a

combinatorial optimization problem. Existing technologies
such as traditional offloading algorithms or reinforcement
learning are difficult to solve such problems efficiently.
Hence, we apply DIL to deal with it. Finding the best offload⁃
ing decision I * can be formulated to a multi-label classifica⁃
tion problem[13]. Decision I is a set of |A| labels and the three
values of It corresponding to three classes. The idea of DIL isto use a DNN to learn the mapping from S to the best offload⁃
ing decision I *. To this end, offloading requirement S can
serve as features of input samples and I * serves as the real la⁃
bels of samples, as shown in Fig. 2.
DIL for offloading consists of three phases described as fol⁃

lows:
1) Generate training samples offline. DIL is supervised

learning and it needs a number of features labels pair (S, I * ).
The feature S can be obtained by collecting the actual offload⁃
ing task requirement, or randomly generating features based
on the distribution of various parameters in the actual offload⁃
ing task requirement. Since labels I * are generated offline,
some expensive non-real-time algorithms can be applied. In
addition, performance of our DIL model is limited by the qual⁃
ity of labels, and only the labels with high accuracy can en⁃
sure highly accurate DIL model. Note that the size of decision
space is 3|A|. In summary, when |A| is small, we can use an ex⁃
haustive approach to obtain the optimal offloading decision by
searching the whole decision space. When |A| is large, we
solve this problem as integer programming problem by exist⁃
ing efficient solvers such as CPLEX.
2) Train DIL model offline. We train a DNN model to learn
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the mapping from S to I*. In this multi-label classification
problem, the output of DNN consists of predictions of |A| la⁃
bels. Each prediction has three possibilities corresponding to
three values of It. Hence the output layer of DNN has 3 × |A|neurons and the activation function is SoftMax. All hidden lay⁃
ers are full connected layers.
3) Make offloading decisions online. After our DIL model is

trained, it is deployed to edge server to make offloading deci⁃
sions online. Experiment shows that the efficiency of DIL mod⁃
el inference is higher than baseline models.
DIL is based on learning. DIL’s performance is closely re⁃

lated to the training samples. If the training samples are di⁃
verse, DIL model can deal with more conditions, i. e., it be⁃
comes more robust. If training samples contain offloading re⁃
quirement under the conditions with fluctuation of wireless
channels, DIL model can learn how to make a good decision
under these conditions. In practice, training samples are from
actual offloading requirement. The fluctuation of the wireless
channels is also covered.
After the DIL model is trained, we should consider where

the DIL model is deployed for online inference. Same as the
computation tasks, DIL model can be deployed on end devic⁃
es, edge server or cloud server. However, if DIL model is de⁃
ployed on the cloud server, the wide-area connection will be⁃
come an unstable factor. To ensure model’s performance, we
expect that the inference result of DIL model can be obtained
with a low and predictable delay. Hence, even though the com⁃

puting capability of cloud server is much stronger, it is not rec⁃
ommended to deploy DIL model on cloud server. In addition,
since having all model inference workload on end device may
lead to high energy consumption, we believe that edge server
is a better place for DIL model deployment.

4 Knowledge Distillation for Model Com⁃
pression
Since our DIL model is based on compute-intensive DNN

execution, the inference latency could be high due to the limit⁃
ed computing capability of edge servers. We hope that the DIL
model running on the edge server is lightweight and the model
inference delay is minimized. Towards that, a potential solu⁃
tion is to put the three phases mentioned above into edge serv⁃
er to train a DIL model based on small DNN locally on edge
server. However, it raises two problems. First, limited by the
number of parameters, the learning capability of a small DNN
is insufficient. Compared with large DNN, it may cause loss of
accuracy and make performance worse. Second, in the phase
of generated demo offline, training samples are obtained by
collecting the actual offloading task requirement or randomly
generated based on distribution of various parameters in the
actual offloading task. However, the service area of an edge
server is highly limited. Compared with the samples collected
by cloud server, samples collected by edge server may be not
enough and unbalanced. This further incurs the accuracy and
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▲Figure 2. Deep imitation learning model for edge computing offloading. Given the offloading requirement S=(E, D, p1, b1, p2, b2) as the input, the
deep imitation learning model can output the offloading decision I* = (a1, a2, a3, a4, a5, a6).
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performance of small DNN. To this end, directly training a
lightweight DIL model on edge server is not practical[15].
The authors in Ref. [9] proposed KD, which can be used for

DNN compression. This technology helps us transfer the
knowledge from a large DNN to a small DNN. When the train⁃
ing samples are inadequate and unbalanced, accuracy of the
DNN trained by KD is higher than that of the DNN directly
trained on samples. Large DNN is called the“teacher”and
small DNN is called the“student”. Back to our offloading
problem, we can leverage the strong computing capability of
cloud server and a number of samples to train a large DNN
with high accuracy to serve as the teacher, and then transfer
the knowledge learned by large DNN to small DNN which is
deployed to edge server by KD, achieving low inference delay
and small scale with tiny loss of accuracy, as shown in Fig. 3.
KD can be applied to any neural networks whose output

layer is activated by SoftMax; in other words, the networks are
used for solving classification problem. In KD, we train two
networks, the teacher network and the student network. Train⁃
ing the teacher network is the same as training conventional
network, and training the student network is also similar. The
only difference is that the initial labels of student network be⁃
fore training are from the teacher network’s trained labels,
rather than from the training dataset.
In some cases, teacher network’s trained labels may be very

small and close to zero (e.g., < 10-3), which is nearly the same
as the original one-hot encoded labels and remains difficult for
student network to learn the differences between labels. To alle⁃
viate this problem, we amplify the differences by further“soft⁃
ening”the labels. Let pi be the probability of the i⁃th class pre⁃dicted by the teacher, and qi is the softened probability corre⁃sponding to pi. We slightly change the form of the softening for⁃mula in Ref.[9] to compute qi:

qi =
exp ( )ln ( )pi

T

∑j = 1
C exp ( )ln ( )pj

T

, （4）

where C is the total number of classes, in our offloading prob⁃
lem C=3. T is a tunable hyper-parameter with the constraint T ≥
1. If T=1, qi = pi. The labels will be softer with higher T. For in⁃stance, if original label is (0.999, 2 × 10-4, 3 × 10-6), when T=
5, the softened label will be (0.71, 0.20, 0.09); when T=10, the
softened label will be (0.53, 0.28, 0.19). In the following experi⁃
ment we set T=5. Back to the offloading problem, we use a
teacher network trained at cloud server to predict labels of the
training set obtained by edge server. Then soften these labels
by the formula mentioned above and train student network by
softened labels at edge server.
We show the complete flowchart of our DIL offloading

framework with KD in Fig. 4.

5 Evaluation

5.1 Evaluate Large DIL Model Performance
In this section, we set up a numerical experiment to evalu⁃

ate the performance of DIL model described in Section 3. We
consider that an MEC network consists of an end device user
and an edge server connected by wireless connection, mean⁃
while the edge server connects to cloud server via the Inter⁃
net[16]. We assume that the compute-intensive task A on end
device is divided into 6 subtasks, which is |A|=6. If the num⁃
ber of subtasks of some computation tasks is not 6, we can
merge some subtasks or insert empty subtasks to make the
number of subtasks 6. The computation complexity of each

Predict labels bylarge DIL model andsoften the labels

Edge server

Lite model

▲Figure 4. Complete flowchart of our edge offloading framework based
on DIL and KD.

▲Figure 3. Compress model by knowledge distillation to get a lightweight
model deployed to edge server.
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subtasks εt (measured in CPU cycles) is in the interval of
[ 0, 2 000 ] × 106, following uniform distribution. Sizes of data
transmission between subtasks follow uniform distribution
with dt ∈ [ 0,10 ]MB, like the setting in Ref. [14]. In addition,
we assume that the computing capability of end device and
edge server (both measured by CPU frequency in Hz) is in the
intervals of [ 100, 1000 ]MHz and [ 500, 5 000 ]MHz respec⁃
tively, both following the uniform distribution. The bandwidth
between end device and edge server and the bandwidth be⁃
tween edge server and cloud server are uniformly distributed
in b1 ∈ [ 0, 2 ]MB/s and b2 ∈ [ 0, 3 ] MB/s respectively. We ran⁃domly generate 100 000 samples offline to train DIL model
and 10 000 testing samples for testing.
Our DIL model is based on a DNN with 5 hidden layers. All

hidden layers are full connected layers and consist of 256 neu⁃
rons. The number of parameters in the whole DNN is 1.6 mil⁃
lion. Activation function of hidden layers is RELU and output
layer is activated by SoftMax. To evaluate the performance of
our DIL based offloading framework, we consider some base⁃
line frameworks listed follow:
1) Optimal. Exhaustive method: For each sample, search the

whole 3|A| decision space, compute the latency described in Sec⁃
tion 3.2 and choose the offloading decision with minimal laten⁃
cy. Note that this minimal latency is the lower bound in the de⁃
cision space. Hence, this decision is bound to be optimal.
2) Greedy. For each sample, find the offloading location one

by one for each subtask to minimize the computation and
transmission latency of current subtask.
3) DRL. Offload framework based on deep reinforcement

learning. Features of samples serve as environment and offload⁃
ing decisions serve as actions. The
opposite number of latency acts as
reward. The deep Q network is
similar to that in Ref. [7].
4) Others. Local: The whole task

is executed on end device, which is
for any t, It = 0; Edge: All subtasksare executed on edge server, which
means It = 1; Cloud: All subtasksare offloaded to cloud server, which
is It = 2; Random: Randomly
choose offloading location for each
subtask, that is to say, It are ran⁃domly chosen from {0, 1, 2}.

Fig. 5 shows the normalized la⁃
tency of the DIL model and base⁃
line frameworks with the latency of
optimal decision are normalized to
1.0, and then the latency of deci⁃
sion made by our DIL model is
1.095, with an increase less than
10%. Experiment results show that
our model outperforms other base⁃

line frameworks. Note that latency of“Edge”is less than“Lo⁃
cal”and“Cloud”, which indicates that edge server can certain⁃
ly improve the compute-intensive tasks in end-to-end latency.
At last, latency of“Random”is far higher than others, this is
because randomly choosing offloading location will cause high
transmission latency, which is expectable.
5.2 Evaluate Knowledge Distillation Performance
As mentioned in Section 4, we should compress our DIL

model before deploying it to edge server and deal with the situa⁃
tion in which training samples on edge server are insufficient
and unbalanced. We call our compressed model“KD-DIL”for
short. In this section, we assume the CPU cycles of subtasks are
uniformly distributed in εt ∈ [ 500, 1500 ] × 106. Sizes of trans⁃mission data between subtasks are in dt ∈ [ 3, 8 ] MB, followinguniform distribution. The distribution range of εt and dt is re⁃duced by half compared with that in Section 5.1. Distributions
of other parameters remain the same. In order to simulate the
case in which training samples are insufficient, we only gener⁃
ate 1 000 samples for training in this section, reduced by 99%
compared with that in Section 5.1. Testing samples remain the
same as that in Section 5.1.
Our KD-DIL model is still based on DNN consisting of full

connect layers. There are only 2 hidden layers in DNN with 32
neurons in each layer. The number of parameters of the whole
DNN is about 10 000, reduced by 99.375% compared with that
in Section 5.1. The following baseline models are used for eval⁃
uating the performance of our KD-DIL model.
1) Baseline DIL: This DIL model is based on the DNN which

is same as that in KD-DIL. The difference is that Baseline DIL

▲Figure 5. Normalized end-to-end latency of offloading decisions made by our DIL model and baselines.
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is directly trained on the training
set described above without apply⁃
ing KD described in Section 4.
2) DRL: Deep reinforcement

learning based on DQN. The dif⁃
ference between this and DRL
model in Section 5.1 is that it is
trained on training set with 1 000
samples described above instead
of that with 100 000 samples de⁃
scribed in Section 5.1.
3) Greedy: Same as Greedy in

Section 5.1.
Fig. 6 shows the normalized la⁃

tency of KD-DIL models and base⁃
line models. Again, the latency of
optimal decision is normalized to
1.0. It shows that our KD-DIL
model still outperforms baseline
models. Note that the performance
of DRL has a sharp decreasing
compared that in Section 5.1 be⁃
cause of the change of training set.
It is further shown that when the number and distribution of
training samples are changed, the accuracy loss of our KD-DIL
model is relatively small.
At last, Table 1 shows the normalized inference delay of

all models with delay of“Greedy”being normalized to 1.00,
since the greedy method is the typical method for computation
offloading. We measure the delay of making 100 000 deci⁃
sions of all the models, and divide this delay by 100 000 to
get the average delay of each decision. As shown in Table 1,
compared with the large DIL model, the inference delay of
KD-DIL model decrease by 63% (0.17/0.51). Table 1 shows
that the inference delay of the Greedy approach is slightly
higher than DIL model. As described in Section 5.1, the
Greedy approach finds deployment place for each subtask by
iterations. The number of iterations equals to that of subtasks.
In practice, the number of subtasks may be much higher than
6, so the inference delay of the Greedy approach may become
correspondingly higher.
Lastly, the inference of the optimal approach and DRL is

hundreds of times that of our DIL models. Because optimal ap⁃
ply exhaustive method, high inference delay is expectable.
While making decisions by DRL, we treat each strategy as an
action and end-to-end latency as reward. We calculate each
action’s reward to find the highest reward, which needs many
times of DNN inference. Hence, the delay of DRL inference is
much higher than DIL.

6 Future Work and Conclusions
Flowcharts of subtasks can be represented by directed acy⁃

clic graph (DAG) known as computation graph. In computa⁃
tion graph, nodes denote subtasks, edges denote data flow and
directions of edge represent data transmission directions.
DNN can also be regarded as a computation graph. In many
programming frameworks dedicated to deep learning, such as
TensorFlow, the concept of computation graph is applied.
Offloading a computation graph in MEC network to optimize
end-to-end latency is a difficult problem. The subtasks flow⁃
chart studied in this article has a list structure. In our future
work we will focus on how to modify our work to adapt to DAG.
In this article, we have studied fine-grained edge computing

offloading framework. In the situation in which an end device
wirelessly connects to an edge server, compute-intensive tasks
can choose to be executed at end device, edge server or cloud
server. We first review existing edge offloading framework in⁃
cluding mathematic model method (game theory) and rein⁃
forcement learning. Then we provide model of computing task
and describe the execution process of a task. Offloading prob⁃
lem is formulated into a multi-label classification problem and
is solved by a deep imitation learning model. Next, in order to
deal with the insufficient and unbalanced training sample, we
apply knowledge distillation to get a lightweight model with ti⁃
ny accuracy loss, making it easier to be deployed to edge serv⁃

▲Figure 6. Normalized KD-DIL model and baselines when using a small training set.

DIL: deep imitation learningKD-DIL: knowledge distillation-deep imitation learning DRL: deep reinforcement learning

▼Table 1. Inference delay of all models
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er. Numerical experiment shows that the offloading decisions
made by our model have the lowest end-to-end latency and the
inference delay of our model is the shortest, and after knowl⁃
edge distillation we successfully reduce the inference delay by
63% with tiny accuracy loss. At last we briefly discuss some
future directions of edge computation offloading.
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