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Abstract: Given the fast growth of intelligent devices, it is expected that a large number of
high-stakes artificial intelligence (AI) applications, e.g., drones, autonomous cars, and tac⁃
tile robots, will be deployed at the edge of wireless networks in the near future. Therefore,
the intelligent communication networks will be designed to leverage advanced wireless tech⁃
niques and edge computing technologies to support AI-enabled applications at various end
devices with limited communication, computation, hardware and energy resources. In this
article, we present the principles of efficient deployment of model inference at network edge
to provide low-latency and energy-efficient AI services. This includes the wireless distribut⁃
ed computing framework for low-latency device distributed model inference as well as the
wireless cooperative transmission strategy for energy-efficient edge cooperative model infer⁃
ence. The communication efficiency of edge inference systems is further improved by build⁃
ing up a smart radio propagation environment via intelligent reflecting surface.
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1 Introduction

The past few decades have witnessed a rapidly growing
interest in the area of artificial intelligence (AI), which
has contributed to the astonishing breakthroughs in
image recognition, speech processing, etc. With the

advancement of mobile edge computing[1], it becomes increas⁃
ingly attractive to push the AI engine from the cloud center to
the network edge. Such a transition makes AI proximal to the
end devices and has the potential to mitigate the privacy and
latency concerns. This novel area is termed as“edge AI”, in⁃
cluding both edge training and edge inference, which is envi⁃
sioned to revolutionize the future mobile networks and enable

the paradigm shift from“connected things”to“connected in⁃
telligence”[2]. Edge AI can provide various AI services, such
as Internet of Vehicles (IoV), unmanned aerial vehicles
(UAVs) and tactile robots, as illustrated in Fig. 1. By deploy⁃
ing AI models and performing inference tasks at network
edge, edge inference is the main focus of this article and faces
the following three major challenges. First, the large size of AI
models makes it difficult to be deployed at the network edge.
Second, the inference latency is severely bottlenecked by the
limited computation and communication resources at the net⁃
work edge. Third, edge devices are usually battery-powered
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with limited energy budget and computing power.
It is generally impractical to deploy the entire AI models

on a single resource-constrained end device. Fortunately, a
recently proposed edge inference architecture, termed as

“on-device distributed AI inference”, is capable of pooling
the computing resources on a large number of distributed de⁃
vices to perform inference tasks requested by each end de⁃
vice[3]. For popular distributed computing structures such as
MapReduce[4], the dataset (i. e., AI model for inference) is
split and deployed on end devices during the phase of datas⁃
et placement. Each end device computes the intermediate
values of all tasks locally with the map functions. After ex⁃
changing the intermediate values, each device obtains all
map function values for its inference task and performs the
reduce function to yield the desired inference result. Howev⁃
er, the communication efficiency of the intermediate value
exchange is the main performance bottleneck of distributed
edge inference systems[5]. To this end, we shall propose a
communication-efficient data shuffling strategy for on-device
distributed AI inference based on cooperative transmission
and interference alignment.
For computation-intensive inference tasks, it is beneficial

to deploy the AI models at the edge servers, e.g., access points
(APs), followed by uploading the input dataset to the proximal
edge servers. This helps to perform the inference tasks and re⁃
turn the inference results to the end devices through downlink
transmission. On the other hand, cooperative transmission[6] is
a well-known approach that can mitigate co-channel interfer⁃
ence as well as improve the reliability and energy efficiency of
downlink transmission. These facts motivate us to propose the
in-edge cooperative AI inference architecture by performing

each task at multiple edge servers and en⁃
abling cooperative transmission to improve
the quality of service (QoS) and reliability
for the delivery of inference results. Howev⁃
er, performing each inference task by multi⁃
ple edge servers leads to a higher computa⁃
tion power consumption. We thus propose a
joint task allocation and downlink coordinat⁃
ed beamforming approach to achieve energy-
efficient in-edge cooperative AI inference
through minimizing the total power con⁃
sumption consisting of both transmit and
computation power consumptions under the
target QoS constraints.
Although our joint computation and com⁃

munication designs can greatly improve the
communication efficiency for on-device dis⁃
tributed AI inference and in-edge coopera⁃
tive AI inference, the achievable low-latency
and energy efficiency are still fundamentally
limited by the radio propagation environ⁃
ment. We thus resort to an emerging technol⁃

ogy, i.e., intelligent reflecting surface (IRS)[7], to actively control
the wireless propagation environment. In particular, we propose
to utilize the IRS for further enhancing the communication effi⁃
ciency of edge AI inference systems, thereby providing low-la⁃
tency and energy-efficient AI services. By dynamically adjust⁃
ing the phase shifts of the IRS, our proposed strategy improves
the feasibility of the interference alignment conditions for the
data shuffling of on-device distributed AI inference systems, as
well as reduces the energy consumption of in-edge cooperative
AI inference systems.

2 Overview of Edge AI Inference
In this section, we present the architectures, key performance

metrics, and promising applications of edge AI inference.
2.1 Architecture
In the conventional cloud-based AI systems, a large

amount of data collected/generated by the end devices is re⁃
quired to be delivered to the central cloud center for AI mod⁃
el training. Such cloud-based AI systems are generally limit⁃
ed by scarce spectrum resources and susceptible to data mod⁃
ification attacks. With the increase of the computing power
and storage capability of edge servers (e.g., APs and base sta⁃
tions) and end devices (vehicles and robots), there is a trend
of pushing AI engines from the cloud center to the network
edge[8–9]. Therefore, edge AI emerges as a promising re⁃
search area that performs the training and inference tasks at
the network edge. In this article, we go beyond that and focus
on a much broader scope of edge AI to fully leverage the dis⁃
tributed computation and storage resources at the network

IoV: Internet of Vehicles UAV: unmanned aerial vehicles
▲Figure 1. Illustration of edge AI.
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edge across end devices, edge servers and cloud centers to
provide low-latency and energy-efficient AI services, such as
IoVs, UAVs and tactile robots.
According to Ref. [8], the edge AI can generally be classi⁃

fied into six levels, including cloud-edge co-inference, in-edge
co-inference, on-device inference, cloud-edge co-training, all
in-edge, and all on-device. The training of AI models can be
performed on end devices, in edge servers, or with the collabo⁃
ration of the cloud center and edge nodes, which are out of the
scope of this article. We in this article mainly focus on the
model inference of edge AI, also known as edge inference.
The major architectures of edge inference are listed as follows:
• Device-based edge inference: Deploying AI models direct⁃

ly on end devices can reduce the communication cost due to
information exchange. However, this poses stringent require⁃
ments on the storage capability, computing power, energy bud⁃
get of each end device. To this end, a promising structure of
device-based edge inference is to enable cooperation among
multiple devices via a distributed computing framework[3], i.e.,
on-device distributed AI inference.
• Edge-based edge inference: The end devices offload the

dataset to the neighboring edge servers, which perform the in⁃
ference tasks and return the inference results to the end users.
This inference architecture has the potential to perform com⁃
putation-intensive inference tasks. However, the limited chan⁃
nel bandwidth is the main performance-limiting factor of this
edge inference architecture. To address this issue, it is promis⁃
ing to enable cooperation among multiple edge servers[10–11] to
facilitate in-edge cooperative AI inference.
• Others: In addition to the device-based and edge-based

edge inference architectures, there are also other promising
edge inference architectures. The device-edge architecture
with model partition proposed in Refs. [12] and [13] can en⁃
hance the energy efficiency and reduce the latency of edge in⁃
ference systems. Moreover, the inference tasks can also be ac⁃
complished by adopting the edge-cloud collaborative architec⁃
ture, which is particularly suitable for end devices with highly
constrained resources.
This paper emphasizes on two promising system architec⁃

tures, i.e., on-device distributed AI inference and in-edge co⁃
operative AI inference, which pool the computation and com⁃
munication resources across multiple end devices and edge
servers, respectively. In such distributed systems, the commu⁃
nication efficiency is a critical issue in determining the perfor⁃
mance of edge inference systems. We thus focus on designing
communication-efficient on-device distributed AI inference
and in-edge cooperative AI inference strategies for computa⁃
tion-intensive inference tasks, thereby achieving low latency
and high energy efficiency.
2.2 Key Performance Metrics
The communication efficiency of edge inference systems

can be measured by the following metrics:

• Latency: In edge inference systems, latency is a crucial
performance metric that measures how fast the inference re⁃
sults can be obtained, which in turn determines the timeliness
of the inference results. The latency is generally composed of
the computation and communication latency. Achieving low la⁃
tency is challenging as it depends on various factors, includ⁃
ing channel bandwidth, transmission strategy, and channel
conditions.
• Energy efficiency: As performing inference tasks are gen⁃

erally energy consuming, the energy efficiency is a critical per⁃
formance metric of edge inference systems. The energy con⁃
sumption typically consists of both communication and compu⁃
tation energy consumptions, which depend on the type of the
inference tasks and the size of the dataset.
• Others: There are also other indicators that can describe

the performance of edge inference. For example, privacy is a
major concern in edge inference systems for various high-
stake AI applications such as IoVs and UAVs. For such appli⁃
cations, it is also critical to ensure that the inference results
are received at the end devices with a high level of reliability.
2.3 Applications
Efficient edge inference is envisioned to be capable of sup⁃

porting various low-latency AI services, including IoVs,
UAVs, and tactile robots, as shown in Fig. 1.
• Internet of Vehicles: IoV is a network system that inte⁃

grates networking and intelligence for promoting the efficiency
of transportation and improving the quality of life[14], as well as
emphasizes the interaction of humans, vehicles, and roadside
units. Numerous AI models are necessary for IoV such as the
advanced driver-assistance system (ADAS) for the detection of
vehicles, pedestrians, lane lines, etc. It is generally impracti⁃
cal to deploy all AI models on the resource-constrained vehi⁃
cles. As a result, to achieve low-latency and energy-efficient
inference for a large number of AI models, it is critical to pool
the distributed computation and storage resources of the vehi⁃
cles and edge servers at the network edge.
• Unmanned aerial vehicles: There has been a fast-growing

interest in UAVs[15] for the transportation of cargo, monitoring,
relaying, etc. Although the UAVs are battery-powered with
limited energy budget, they are deployed to accomplish a vari⁃
ety of intelligent computation tasks. As it is energy inefficient
for UAVs to communicate with the remote cloud center, en⁃
abling cooperative inference on the devices or in the edge is a
promising solution that can achieve low-latency and energy-ef⁃
ficient processing of inference tasks, as well as enhance the
data privacy.
• Tactile robots: As remote representatives of human be⁃

ings, smart robots are envisioned to be capable of achieving
physical interaction by enabling haptic capabilities, leading
to the new field of tactile robots[16]. The greatly improved ca⁃
pability of processing tactile sensation and the connectivity
of a large number of robots make tactile robots a representa⁃
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tive embodiment of the tactile Internet. Exploring the poten⁃
tial of edge inference for tactile robots is able to provide inte⁃
grated intelligence for agriculture, manufacture, health care,
traffic, etc.

3 Wireless Distributed Computing System
for On-Device Distributed AI Inference
In this section, we shall present a communication-efficient

data shuffling strategy in the wireless distributed computing
system for on-device distributed AI inference.
3.1 MapReduce-Based Distributed Computing System
MapReduce is a ubiquitous distributed computing frame⁃

work that processes tasks with a large amount of data across
multiple distributed devices[4]. For a computing task with the
MapReduce-like structure, the target function is decomposed
as the“reduce”function value of a number of map functions,
which can be computed in a parallel manner. Hence, the Ma⁃
pReduce-based distributed computing system is capable of
pooling the computation and storage resources of multiple de⁃
vices to enable on-device distributed AI inference.
For a wireless distributed computing system consisting of

multiple mobile devices, the inference result (e.g., a machine

learning model) to be obtained by each device depends on the
entire input dataset. Supposing that each computation task for
inference fits the MapReduce computation structure (Fig. 2),
K mobile devices cooperatively accomplish the inference tasks
through the following four phases
• Dataset placement: In this phase, the entire dataset is par⁃

titioned into N portions and each mobile device is allocated a
subset of the entire dataset before inference.
• Map function: With the allocated local data, each mobile

device computes the map function values with respect to all
the input data, which yields the intermediate values for itself
and other devices.
• Shuffling: As each mobile device does not have enough in⁃

formation for inference, the intermediate values computed by
each device shall be transmitted to the corresponding devices
over radio channels in this phase.
• Reduce function: Finally, based on the collected N inter⁃

mediate values, each mobile device calculates the reduce
function to obtain the corresponding inference result.
With limited radio resources, the shuffling of intermediate

values among multiple mobile devices leads to significant
communication overhead and is the main performance-limit⁃
ing factor for on-device distributed AI inference systems.

F

…F1 F2 FK

Map Map
3 3 3
4 4 4

Map
5 5 5
N N N

Reduce

1 1 1
2 2 2

Reduce Reduce

1 3 5
2 4 N

1 3 5
2 4 N

1 3 5
2 4 N

…1 2 3 4 5 N

Shuffle

▲Figure 2. Illustration of computing model of MapReduce-based distributed computing framework.
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3.2 Communication-Efficient Data Shuffling
As data shuffling over radio channels is the major bottle⁃

neck of MapReduce-based distributed computing systems, it
is necessary to propose a communication-efficient data shuf⁃
fling strategy for a given dataset placement. We take a wire⁃
less communication system consisting of multiple mobile de⁃
vices and an AP as an example (Fig. 3). The basic idea for
achieving low-latency data shuffling is to explore the opportu⁃
nity of concurrent transmission, detailed as follows.
• Uplink multiple access: After computing the intermediate

values with map functions, each mobile device transmits its
precoded intermediate values to the AP over the multiple ac⁃
cess channel.
• Downlink broadcasting: The AP broadcasts the received

signal of uplink transmission to each device, which decodes
its desired intermediate values.
The output of each computation task depends on both the lo⁃

cally computed intermediate values at each device based on
its own dataset and intermediate values computed by other de⁃
vices. By treating each intermediate value as an independent
message, the data shuffling procedure is indeed a message de⁃
livery problem. The AP first receives a mixed signal from all
mobile devices in the uplink, and then simply broadcasts the
mixed signal to all mobile devices in the downlink. By study⁃
ing the input-output relationship from all mobile devices to all
mobile devices after the uplink and downlink transmissions,
the proposed data shuffling strategy can be equivalently mod⁃
eled as a data delivery problem over the K-user interference
channel with side information available at both the transmit⁃
ters and the receivers. Note that the AP behaves like a two-
way relay[17] and simply transmits an amplified version of the
received signal. The side information refers
to the available intermediate values at each
device. As a result, the goal becomes the
transceiver design for maximizing the com⁃
munication efficiency of data shuffling. It
has been demonstrated that the linear cod⁃
ing schemes are effective for the transceiver
design because of their optimality in terms
of the degree of freedoms (DoFs) for interfer⁃
ence alignment as well as low implementa⁃
tion complexity. Note that DoF is a first-or⁃
der characterization of channel capacity,
which is thus chosen as the performance
metric for data shuffling. With interference
alignment, the solutions meeting interfer⁃
ence alignment conditions yield transceivers
that are able to simultaneously preserve the
desired signal and cancel the co-channel in⁃
terference.
The problem of finding solutions to the in⁃

terference alignment conditions with a maxi⁃
mum achievable DoF can be tackled by de⁃

veloping an efficient algorithm based on a low-rank optimiza⁃
tion approach[3]. This is achieved by defining the product of
the aggregated precoding matrix and the aggregated decoding
matrix as a new matrix variable, based on the following two
key observations:
• The interference alignment conditions can be represented

as affine constraints in terms of the newly defined matrix vari⁃
able and the global channel state information.
• The rank of the matrix is inversely proportional to the

achievable DoF.
Therefore, the maximum achievable DoF can be obtained

via minimizing the matrix rank, subjecting to the affine con⁃
straints. For the nonconvex low-rank optimization problem,
the traditional nuclear norm minimization approach yields un⁃
satisfactory performance, which motivates us to propose a nov⁃
el computationally efficient difference of convex functions
(DC) [18] algorithm to achieve considerable performance en⁃
hancement.
With limited radio resources, the scalability of the data

shuffling strategy is also critical to the wireless distributed
computing framework. We prefer a data shuffling strategy if
the communication cost (which can be measured by achiev⁃
able DoF) does not increase too much with more involved mo⁃
bile devices. We present simulation results to demonstrate the
effectiveness of the proposed algorithm for data shuffling. In
simulations, we consider a single-antenna system, where the
dataset is evenly split into five files and each device stores up
to two files locally. With the uniform dataset placement strate⁃
gy, each file is stored by 2K/5 mobile devices. The achievable
DoFs averaged over 100 channel realizations are illustrated in
Fig. 4. Interestingly, the achievable DoF of the proposed DC

AP: access point
▲Figure 3. Illustration of communication model for data shuffling of on-device distributed AI
inference systems.
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approach remains almost unchanged as the number of devices
increases, while the nuclear norm relaxation approach suffers
from a severe DoF deterioration. This demonstrates the scal⁃
ability of the proposed DC approach. The main intuition is
that the collaboration opportunities are increased as each file
can be stored at more devices, although more intermediate val⁃
ues are requested with more involved devices.

4 Edge Processing System for In-
Edge Cooperative AI Inference
In this section, we present a cooperative

wireless transmission approach for energy-effi⁃
cient edge processing of computational inten⁃
sive inference tasks at edge servers.
Due to the strong capability of capturing da⁃

ta representation, machine learning tech⁃
niques, in particular deep learning[19], have
been widely used for achieving greatly im⁃
proved performance in distilling intelligence
from images, videos, texts, etc. However, the
deep learning model are usually large and com⁃
plex, and processing deep neural networks
(DNNs) is a computation-intensive task. For re⁃
source-constrained mobile devices equipped
with limited storage, computation power, and
energy budget, such as drones and robots, a
promising solution of performing computation-
intensive inference tasks is to enable edge pro⁃
cessing at the APs of mobile networks. With
more powerful computing power than the re⁃
source-constrained mobile devices, APs have
the potential of efficiently performing the infer⁃
ence tasks and transmitting the inference re⁃
sults to mobile users[20]. The design target is to
enable cooperative transmission among multi⁃
ple APs to provide higher QoS for reliably de⁃
livering the inference results, while minimizing
the total power consumption consisting of the
computation power of inference tasks and the
transmission power at APs. The computation
power of each task at an AP can be determined
via estimating the energy consumption of pro⁃
cessing DNNs[21] and computation time.
We consider a typical edge processing sys⁃

tem consisting of N APs served as edge pro⁃
cessing nodes and K mobile users, as demon⁃
strated in Fig. 5. Each mobile user has an infer⁃
ence task to be accomplished. The inference re⁃
sults can be obtained by uploading the input of
each mobile user to the APs, processing a sub⁃
set of inference tasks at each AP, and coopera⁃
tively transmitting the inference results to the

corresponding mobile user. The pre-trained models can be
downloaded from the cloud center and deployed at each AP in
advance to facilitate edge inference. For example, the infer⁃
ence task can be the GauGan AI system by Nvidia, where the
inputs are rough doodles and the outputs are photorealistic
landscapes. Although the cooperative edge inference is able to
deliver the reliable inference results to mobile users, the ener⁃
gy efficiency becomes critical as a huge amount of computa⁃
tion is required for processing DNNs at multiple APs.
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▲Figure 4. Achievable DoF of algorithms versus the number of devices for the data shuf⁃
fling of on-device distributed AI inference systems.
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▲Figure 5. Illustration of in-edge cooperative AI inference systems.
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There exists a tradeoff between communication and compu⁃
tation in an edge processing system by enabling cooperation
among APs. In particular, if each AP performs more inference
tasks, the inference results can be delivered with better QoS
via cooperative downlink transmission. However, more compu⁃
tation power is consumed at the APs for processing the DNNs.
To balance the tradeoff, we thus propose to minimize the total
power consumption, consisting of computation power and com⁃
munication power, under the target QoS constraints. This prob⁃
lem involves the joint design of the task allocation strategy
across APs and the downlink beamforming vectors. Interest⁃
ingly, if an inference task is not performed at one AP, the cor⁃
responding beamforming vector could be set as zero. This in⁃
trinsic connection between the task allocation strategy and the
group sparsity structure of the downlink beamforming vectors
allows us to reformulate the total power minimization problem
under target QoS constraints as a group-sparse beamforming
problem with QoS constraints. The group sparse structure can
be induced with a well-recognized mixed l1,2 norm, which re⁃sults in a convex second-order cone program (SOCP) problem
that can be efficiently solved. We leave simulation results in
Fig. 6 in Section 5.3 to evaluate the total power consumption
of the proposed approach as well as the intelligent reflecting
surface empowered in-edge cooperative AI inference.

5 IRS for Enhancing Communication Effi⁃
ciency of Edge Inference Systems
In this section, we introduce the novel IRS[7] technique for

improving the signal propagation conditions of wireless envi⁃
ronment, which is able to further enhance the communication
efficiency for on-device distributed AI infer⁃
ence and in-edge cooperative AI inference.
5.1 Principles of IRS
An IRS is a low-cost two-dimensional sur⁃

face of electromagnetic (EM) materials and
composed of structured passive scattering ele⁃
ments[22]. The structural parameters determine
how the incident radio waves are transformed
at the IRS. The specially designed scattering el⁃
ements introduce a shift of the resonance fre⁃
quency and a change of boundary conditions,
resulting in phase changes of both the reflected
and diffracted radio waves. The scattering ele⁃
ments on IRS are reconfigurable by imposing
external stimuli to alter their physical parame⁃
ters, which can be exploited to fully control the
phase shift of each element at the IRS.
Although the communication efficiency of

data shuffling for on-device distributed AI in⁃
ference and wireless cooperative transmission
for in-edge AI inference can be greatly im⁃

proved by our novel communication strategy and algorithm de⁃
sign, it is still fundamentally limited by the wireless propaga⁃
tion environments. To this end, we resort to IRS that is capa⁃
ble of building a smart radio environment to address this issue.
5.2 IRS-Empowered Data Shuffling for On-Device Dis⁃

tributed AI Inference
IRS with real-time reconfigurability is capable of control⁃

ling the signal propagation environments, thereby improving
the spectral efficiency and reducing the energy consumption
of wireless networks. The controllable phase shifts to the inci⁃
dent signals make IRS possible for further improving the
achievable DoFs for data shuffling in Section 3. In particular,
by actively reconfiguring the radio propagation environment,
the feasibility of interference alignment conditions can be
achieved. As a result, IRS is a promising technology for pro⁃
viding low-latency on-device distributed AI inference services
for a wide range of applications. Note that we can still use the
communication scheme and interference alignment technique
provided in Section 3.2, and model the data shuffling problem
as a side information aided message delivery problem in inter⁃
ference channel, while the channel coefficients could be ad⁃
justed by the phase shifts of IRS. The additional dimension
provided by the phase shifts at RIS is able to further enhance
the desired signals while nulling interference.
5.3 IRS-Empowered In-Edge Cooperative AI Inference
To further reduce the power consumption of in-edge cooper⁃

ative inference in Section 4, it is promising to combat the unfa⁃
vorable channel conditions by actively adjusting the phase
shifts of IRS, rather than only adapting to the wireless propaga⁃
tion environments. By dynamically configuring the phase

IRS: intelligent reflecting surface SINR: signal-to-interference-plus-noise ratio
▲Figure 6. Average total power consumption comparison between edge processing sys⁃
tems with and without IRS.
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shifts of the IRS, a desired channel response
can be achieved at the mobile devices, which
in turn improves the signal power. Therefore,
under the same QoS requirements, IRS can be
utilized to further reduce the total power con⁃
sumption of the edge processing system.
However, it calls for the joint design of the

task allocation strategy, the downlink beam⁃
formers and the phase shifts of IRS. Exploiting
the group structure of beamformers yields a
highly nonconvex group-sparse optimization
problem with coupled optimization variables in
the QoS constraints, i. e., the downlink beam⁃
forming vectors at the APs and the phase shifts
at the IRS. An alternating optimization frame⁃
work can be adopted to decouple the highly
nonconvex QoS constraints, for which updating
the downlink beamforming vector is exactly the
same as that in Section 4.1. The update for
phase shifts at the IRS can be transformed to a
homogeneous quadratically constrained qua⁃
dratic program (QCQP) problem with noncon⁃
vex unit modulus constraints. To tackle the
nonconvex constraints, the problem is further reformulated as
a rank-one constrained optimization problem by leveraging the
matrix lifting technique. The resulting optimization problem
can then be solved with a DC algorithm by minimizing the dif⁃
ference between trace norm and spectral norm of the matrix
variable.
For illustration purpose, we consider an edge processing

system with three 5-antenna APs and ten single-antenna mo⁃
bile users that are uniformly located in the square area of
[ 0, 200 ]m ×[ 0, 200 ]m. An IRS equipped with 25 reflecting
elements is deployed at the center of the square area. In sim⁃
ulations, the power consumption of performing an inference
task at the AP is 0.45 W and the maximum transmit power of
AP is 1 W. Fig. 6 shows the average total power consumption
versus the target signal-to-interference-plus-noise ratio
(SINR) for edge processing systems without and with an IRS,
where a simple random phase shift strategy is adopted. Simu⁃
lation demonstrate that the power consumption can be signifi⁃
cantly reduced by leveraging the advantages of IRS. We then
compare the proposed DC approach with the semidefinite re⁃
laxation (SDR) approach as well as the random phase shifts
strategy in Fig. 7. It demonstrates that the proposed ap⁃
proach is able to achieve the least total power consumption
among others.

6 Conclusions
In this article, we presented the communication-efficient de⁃

signs for edge inference. We identified two representative sys⁃
tem architectures for edge inference, i.e., on-device distribut⁃

ed AI inference and in-edge cooperative AI inference. For on-
device distributed AI inference, we proposed a low-latency da⁃
ta shuffling strategy, followed by developing a low-rank optimi⁃
zation method to maximize the achievable DoFs. We also pro⁃
posed a group-sparse beamforming approach to minimize the
total power consumption of in-edge cooperative AI inference.
In addition, we explored the potential of deploying IRS to fur⁃
ther enhance the communication efficiency by combating the
detrimental effects of wireless fading channels. Our proposals
are capable of achieving low-latency and high energy efficien⁃
cy for edge AI inference.
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