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Abstract: By periodically aggregating local learning updates from edge users, federated
edge learning (FEEL) is envisioned as a promising means to reap the benefit of local rich da⁃
ta and protect users’privacy. However, the scarce wireless communication resource greatly
limits the number of participated users and is regarded as the main bottleneck which hin⁃
ders the development of FEEL. To tackle this issue, we propose a user selection policy
based on data importance for FEEL system. In order to quantify the data importance of each
user, we first analyze the relationship between the loss decay and the squared norm of gradi⁃
ent. Then, we formulate a combinatorial optimization problem to maximize the learning effi⁃
ciency by jointly considering user selection and communication resource allocation. By
problem transformation and relaxation, the optimal user selection policy and resource alloca⁃
tion are derived, and a polynomial-time optimal algorithm is developed. Finally, we deploy
two commonly used deep neural network (DNN) models for simulation. The results validate
that our proposed algorithm has strong generalization ability and can attain higher learning
efficiency compared with other traditional algorithms.
Keywords: data importance; federated edge learning; learning accuracy; learning efficien⁃
cy; resource allocation; user selection
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1 Introduction

With the explosive growth of data generated by mo⁃
bile devices and the remarkable breakthroughs
made in artificial intelligence (AI) in recent years,
the combination of AI and wireless networks is at⁃

tracting more and more interests[1]. To leverage the abundant
data, which are unevenly distributed over a large number of

edge devices, and to train a high quality prediction model, the
traditional scheme is to do centralized learning by transmit⁃
ting the raw data to the data center. However, this scheme has
two drawbacks. On the one hand, the privacy of users may be
divulged when the data center suffers from malicious attacks.
On the other hand, the communication latency is long since
the volume of data is large and the communication resource is
limited. To overcome these two issues, a new framework,
namely federated edge learning (FEEL), has been recently pro⁃
posed in Ref. [2]. This framework makes a collaboration of the
distributed learning framework, named federated learning (FL)
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[3] and mobile edge computing (MEC)[4], which not only ensures
users’privacy but also exploits the computing resource of
both edge devices and edge servers.
In the FEEL system, edge devices need to interact with the

edge server constantly to train a global model. Thus, communi⁃
cation cost is one of the major constraints of model training
since the wireless communication resource is limited. Recent⁃
ly, several works have investigated accelerating the training
task by reducing the communication overhead[5–6]. To achieve
a low-latency FEEL system, the authors in Ref. [5] propose a
broadband analog aggregation scheme by exploiting over-the-
air computation and derive two communication-and-learning
tradeoffs. In Ref. [6], the authors propose a new protocol to re⁃
duce the communication overhead and improve the training
speed by selecting devices as many as possible based on their
channel state information (CSI). Besides, energy-efficient FL
over wireless networks has been investigated in Refs. [7] and
[8]. In Ref. [7], energy-efficient strategies are proposed for
joint bandwidth allocation and energy-and-learning aware
scheduling with less energy consumption. The authors in Ref.
[8] propose an iterative algorithm to achieve the tradeoff be⁃
tween latency and energy consumption for FL. Moreover, sev⁃
eral recent works focus on the problem of user selection for FL
over wireless networks[9–12]. In Ref. [9], the authors derive a
tradeoff between the number of scheduled users and subchan⁃
nel bandwidth under fixed amount of available spectrum. To
improve the running efficiency of FL, the authors in Ref. [10]
propose a scheduling policy by exploiting the CSI, i.e., the in⁃
stantaneous channel qualities. In Ref. [11], the authors consid⁃
er a user selection problem based on packet errors and the
availability of wireless resources, and a probabilistic user se⁃
lection scheme is proposed to reduce the convergence time of
FL in Ref. [12].
However, the aforementioned works ignore the fact that the

process of model training is time-consuming as well. Accord⁃
ing to Ref. [13], different training samples are not equally im⁃
portant in a training task. Therefore, faced with the massive
data, the topic of selecting important data to further accelerate
the training task deserves to be studied. Several recent works
have studied on this topic. In Refs. [14] and [15], data impor⁃
tance is quantified by the signal-to-noise ratio (SNR) and data
uncertainty measured by the distance to the decision bound⁃
ary. Based on this, the authors propose a data importance
aware retransmission protocol and a user scheduling algo⁃
rithm, respectively.
As we have mentioned before, some works have already in⁃

vestigated the acceleration of the training task based on data
importance. However, this topic has not been investigated in
the FEEL system yet, which is a distributed edge learning sys⁃
tem. Inspired by this, we consider an FEEL system, where the
learning efficiency of the system is improved by user selection
based on data importance. First, we analyze the relation be⁃
tween the loss decay and the learning update information

(LUI), i.e., the squared norm of the gradient, and derive an in⁃
dicator to quantify the data importance. Then, an optimization
problem to maximize the learning efficiency of the FEEL sys⁃
tem is formulated by joint user selection and communication
resource allocation. The closed-form solution for optimal user
selection policy and communication resource allocation is de⁃
rived by problem transformation and relaxation. Based on this,
we develop a polynomial-time algorithm to solve this mixed-in⁃
teger programming problem. Finally, we verify the generaliza⁃
tion ability and the performance improvement of our proposed
algorithm by extensive simulation.
The rest of this paper is organized as follows. In Section 2,

we introduce the FEEL system and establish the deep neural
network (DNN) model and communication model. In Section
3, we propose an indicator to quantify the data importance, an⁃
alyze the end-to-end latency in each communication round,
and formulate the optimization problem to maximize the learn⁃
ing efficiency. The optimal solution and the optimal algorithm
are developed in Section 4. Simulation results are presented
in Section 5 and the whole paper is concluded in Section 6.

2 System Model
In this section, we will first introduce the FEEL system

model. Then, both the DNN model and communication model
are introduced.
2.1 Federated Edge Learning System
We consider an FEEL system as shown in Fig. 1, which

comprises an edge server and K distributed users, denoted by
K = {1,2,...,K }. Each user utilizes its local dataset to train
the local DNN model. Let Dk = {(x1,y1 ),..., (xNk,yNk ) } denote
the local dataset of user k, where xi is the training sample, yi isthe size of the corresponding ground-true label, and Nk is thesize of dataset. During each communication round, users first
upload their gradients to the edge server. Then, the edge serv⁃
er collects the local gradients from users and aggregates them
as the global gradient. Users update their local models by the
global gradient broadcast by the edge server. Ultimately, users
are supposed to collaborate with each other in training a
shared global model. Therefore, users’privacy is protected
since the raw data are not transmitted to the edge server. How⁃
ever, due to the limited wireless communication resource, the
number of users participated in the training task is restricted.
To tackle this issue, we intend to propose a user selection poli⁃
cy by jointly considering the LUI and CSI of each user. During
each communication round, users’data are not of equal im⁃
portance. So we only select part of users to upload their local
gradients based on data importance and channel data rate.
The following seven steps are defined as a communication
round.
1) Calculate local gradient. In the n-th communication

round, each user utilizes its local dataset to train its local mod⁃
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el. Denote θ as the parameter set of the DNN model. The local
gradient vector G θ

k [ n ] can be calculated by the backpropaga⁃tion algorithm. Note that the local model and the local gradi⁃
ent are different among users since different users may have
different datasets.
2) Upload the squared norm of local gradient. After obtain⁃

ing the local gradient vector G θ
k [ n ], each user calculates the

squared norm of local gradient  G θ
k [ n ] 2

2 and transmits it tothe edge server. Here,  ⋅ 2 is the L2 norm.
3) Select User. The edge server receives the squared norm

of local gradients from all users. Based on data importance
and channel data rate, the edge server will determine which
users are going to be selected to participate in the training
task.
4) Upload local gradient of selected users. In this step,

those selected users upload their local gradients to the edge
server via the time division multiple access (TDMA) method
without loss of generality.
5) Aggregate global gradient. The edge server receives the

local gradients of all selected users and then aggregates them
as the global gradient, which can be expressed as
Gθ [ n ] = 1

||∪k akDk

∑
k = 1

K

ak ||Dk G
θ
k [ n ] , (1)

where ak ∈ {0, 1} indicates whether user k is selected, i. e.,

ak = 1 if user k is selected and ak = 0 otherwise.6) Broadcast global gradient. After finishing the global gra⁃
dient aggregation, the base station (BS) broadcasts the global
gradient to all the users.
7) Update local model. After the global gradient is received,

each user updates its local model, as
θ [ n +1] = θ [ n ] - ξ [ n ]Gθ [ n ] , (2)

where ξ [ n ] is the learning rate of the n-th communication
round.
The above seven steps are periodically performed until the

global model converges. During the training process, the local
gradient and the CSI of users are different in each communica⁃
tion round. Therefore, the edge server should run the optimal
algorithm to select users in each communication round.
2.2 DNN Model
In this work, all users adopt the same DNN model for train⁃

ing. To evaluate the error between the learning output and the
ground-true label yi , we define the loss function of trainingsamples as l (θ,x i,yi ). Thus, the local loss function of user k
and the global loss function can be represented as
Lk (θ,Dk ) = 1

||Dk

∑
(xi,yi ) ∈ Dk

l (θ,x i,yi ), (3)

▲Figure 1. Seven steps in each communication round.

1. Calculate local gradient

User 1

User 2

…

User K DK

D2

D1

2. Upload the squared norm of local gradient  G θk [ n ] 2
2

4. Upload local gradient of selected user G θk [ n ]

3. Select user ak∈ { 0,1 }
5. Aggregate global gradient

BS Edge server

6. Download global gradient

7. Update local model

Gθ [ n ] = 1
||∪kakDk

∑
k = 1

K

ak ||Dk G
θ
k [ n ] ,

BS: base station
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L (θ) = 1
||∪k akDk

∑
k = 1

K

ak ||Dk Lk (θ,Dk ), (4)

respectively. In the course of training, the global loss function
L (θ) is the objective function to be minimized. In our scheme,
we aim to accelerate the training task and train a high quality
global model. Without loss of generality, we utilize stochastic
gradient descent (SGD) as the optimal algorithm. Then, the lo⁃
cal gradient vector of user k is given by
G θ
k = ∇Lk (θ,Dk ), (5)

where ∇ implies the gradient operator.
2.3 Communication Model
As described above, distributed users and the edge server

need to exchange data from each other in each communication
round. In our scheme, two frequently-used approaches of data
transmission are adopted, named TDMA and broadcasting.
First, those selected users upload their local gradients to

the edge server via the TDMA method. Specifically, a time
frame is divided into n time slots. Each user transmits its data
on its own time slot. According to Ref. [16], the length of each
time frame in LTE standards is 10 ms. Actually, the transmis⁃
sion delay of the gradients is on the scale of second, which is
far larger than the length of a time frame[17]. Therefore, we can
use the average uplink channel capacity, rather than the in⁃
stantaneous channel capacity, to evaluate the data rate of user
k[18], which can be expressed as

RUk = WEh{log2 (1 + pUk || hUk
2

N0 )}, (6)

where hUk is the uplink channel power gain of user k, pUk is thecorresponding transmission power, Eh is the expectation overthe uplink channel power gain, W is the system bandwidth,
and N0 is the noise power.After the global gradient aggregation is finished, the BS will
broadcast the global gradient to all users. In this way, all users
are able to receive the global gradient synchronously. Let hDkdenote the downlink channel power gain of user k and pD de⁃
note the transmission power for all users. Thus, the downlink
data rate is given by

RD = W min
k ∈ K {Eh{log2 (1 + pD || hDk

2

N0 )}}. (7)

3 Problem Formulation
In this section, we will first propose an indicator to quantify

the data importance of users. Then, we analyze the end-to-end
latency in each communication round and formulate the opti⁃

mization problem to maximize the lower bound of the system
learning efficiency.
3.1 Importance Analysis
In each communication round, only part of users is select⁃

ed to participate in the training task because of the limited
wireless communication resource. According to Ref. [13],
different training samples do not equally contribute to the
model training. Consequently, we intend to select users
based on the level of data importance as well as the channel
data rate. To quantify the data importance, we define the
loss decay function as
ΔL [ n ] = L (θ [ n - 1]) - L (θ [ n ]). (8)
The loss decay function ΔL [ n ] indicates the decrease of

the loss in the n-th communication round. From Eq. (8), in the
same period of time, the larger the loss decays, the faster the
training speed is. In other words, the loss decay reflects the da⁃
ta importance to some extent.
According to Ref. [19], the loss decay is proportional to the

squared norm of the gradient. Thus, the lower bound of the
loss decay in the n-th communication round is given as
ΔL [ n ] ≥ β Gθ [ n ] 2

2, (9)
where β is a constant determined by the learning rate and the
specific DNN model. Therefore, we can further link the data
importance with the squared norm of the gradient vector. With
the above discussions, we can quantify the data importance of
user k by the squared norm of its local gradient, which can be
represented as
ρk = β G θ

k [ n ] 2
2, ∀k ∈ K . (10)

Therefore, the lower bound of the global loss decay in a
communication round can be expressed as
ΔL =∑

k = 1

K

ak ρk . (11)

3.2 End-to-End Latency Analysis
As mentioned before, our goal is to improve the learning ef⁃

ficiency of the FEEL system. Thus, the end-to-end latency of
one communication round should be optimized. The detailed
analysis of latency in one communication round is given as fol⁃
lows.
1) Calculate local gradient. The latency of local training for

user k is denoted by T L
k .2) Upload local gradient of selected users. As we mentioned

before, only those selected users upload their local gradients
to the edge server via TDMA. So the average transmission de⁃
lay of user k can be expressed by
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T T
k = ak V

τkRUk
, ∀k ∈ K , (12)

where τk is the proportion of the time slot for user k in a timeframe and V is the volume of the gradient, which is a constant
for all users.
3) Broadcast global gradient. For all users, the latency of

downloading the global gradient is given by
TD = V

RD
. (13)

4) Update local model. Let us denote T U
k as the delay ofmodel updating for user k.

Since the squared norm of local gradient and the value of akare small enough, the corresponding transmission delay can
be neglected. Besides, the edge server has powerful comput⁃
ing capacity in general. Therefore, the aggregation delay can
also be neglected.
Then we provide further analysis to obtain the whole laten⁃

cy of one communication round. Note that all users receive the
global gradient and start to update the local model synchro⁃
nously. However, the delay of model updating and training var⁃
ies since users may have different computing power. Hence,
users are only allowed to upload the squared norm of local gra⁃
dient to the edge server until they all finish model updating
and training. In addition, the edge server should begin to ag⁃
gregate the global gradient until those selected users have up⁃
loaded their local gradients. Based on the above analysis, the
end-to-end latency of the FEEL system in one communication
round is given by
T = max

k ∈ K {T U
k + T L

k } + maxk ∈ K T
T
k + TD. (14)

3.3 Problem Formulation
In this work, we aim to improve the learning efficiency of

the FEEL system by jointly considering user selection and
communication resource allocation. According to Ref. [20], we
adopt the following criterion to evaluate the training perfor⁃
mance of the FEEL system.
Definition 1: The learning efficiency of the FEEL system

can be defined as
E = ΔL

T
. (15)

Remark 1: The definition of the learning efficiency implies
the decay rate of the global loss in a given time period T. The
improvement of the learning efficiency means the acceleration
of the training task. Therefore, it is appropriate to evaluate the
training performance of the FEEL system by the learning effi⁃
ciency. In our work, we aim to reduce the communication de⁃
lay of each communication round. Besides, we maximize the
lower bound of the system learning efficiency. Consequently,

the learning efficiency of the FEEL system can be improved.
Based on the above analysis, the optimization problem can

be mathematically formulated as

P1: max{ ak,τk,T }E =
ΔL
T
=∑k = 1

K

ak ρk

T
, (16a)

s.t. max
k ∈ K {T U

k + T L
k } + T T

k + TD ≤ T, ∀k ∈ K , (16b)

∑
k = 1

K

τk ≤ 1, (16c)

ak ∈ {0,1}, ∀k ∈ K , (16d)

τk, T ≥ 0, ∀k ∈ K , (16e)
where the constraint (16b) indicates that the end-to-end laten⁃
cy of each user in one communication round is no more than
the end-to-end latency of the FEEL system and the constraint
(16c) represents the uplink communication resource limita⁃
tion. For description convenience, we rewrite max

k ∈ K {T U
k +

T L
k } + TD as TC in the following sections.

4 Optimal Solution

4.1 Problem Transformation
It is evident that the optimization problem P1 is a mixed-in⁃

teger programming problem. Since the objective function of
P1 is non-convex, it is rather challenging to directly solve it.
Combining Eqs. (12) and (16b), we notice that T is relevant to
ak and τk. When ak and τk are fixed, the variable T must beminimized to maximize the learning efficiency. Therefore, the
optimal solution to problem P1 can be obtained when“ ≤”in
the constraint (16b) is set to“=”, i.e. τk = ak V RUk (T - TC ).
However, problem P1 is still hard to solve due to the inte⁃

ger constraint (16d). Therefore, we relax the integer constraint
ak ∈ { 0,1 } to the real-value constraint ak ∈ [ 0,1 ]. Problem
P1 can then be relaxed into problem P2, which is given by

P2: max
{ }ak,T

∑
k = 1

K

ak ρk

T
, (17a)

s.t.∑
k = 1

K akV
RUk

≤ T - TC, (17b)
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ak ∈ [ 0,1 ], ∀k ∈ K , (17c)

T ≥ 0. (17d)
In the following sections, we first obtain the optimal solu⁃

tion to problem P2 with fixed T. Then, we continue to solve
the problem P2 with varying T, and the optimal solution to
problem P1 is finally derived.
4.2 Optimal User Selection
We now solve the problem P2. When T is given, problem

P2 can be converted to a standard convex optimization prob⁃
lem since the objective function is concave and all constraints
are convex. Thus, we can derive the optimal solution to P2
with fixed T.
Theorem 1: The optimal solution to problem P2 with fixed

T is given as follows.
1) If ρkRUk < λ*, a*k = 0;2) If ρkRUk > λ*, a*k = 1;3) If ρkRUk = λ*, 0 ≤ a*k ≤ 1,where λ* is the optimal value of the Lagrange multiplier satis⁃

fying the constraint (17b). Particularly, the real-value of a*k de⁃pends on the constraint (17b) if ρkRUk = λ*.Proof: See Appendix A.
Remark 2 (Optimal user selection policy): According to

Theorem 1, λ* can be regarded as the threshold which deter⁃
mines whether to select the user. Besides, the selection priori⁃
ty of user k depends on the product of its data importance ρkand the uplink data rate RUk . On the one hand, a user withmore important data contributes more to the global model
training. On the other hand, the transmission delay can be
shortened by selecting users with higher uplink data rates.
Thus, the system prefers to select users with larger values of
ρkRUk . By doing so, the learning efficiency of the FEEL systemcan be improved.
4.3 Optimal System Latency and Communication Re⁃

source Allocation
In this part, we proceed to obtain the optimal system laten⁃

cy and develop the optimal communication resource allocation
to further improve the learning efficiency of the FEEL system.
So far, we have obtained the optimal user selection strategy
when the system latency is invariant. Based on this, the opti⁃
mal system latency must be obtained when“≤”in the con⁃
straint (17b) is set to“=”, i.e., T =∑k = 1

K akV RUk + TC. In or⁃
der to develop the optimal T and τk, we introduce the followingtheorem.
Theorem 2: The optimal solutions to problem P2 and prob⁃

lem P1 are exactly the same.
Proof: See Appendix B.
Remark 3 (Optimal system latency and communication re⁃

source allocation)：Theorem 2 indicates that the optimal solu⁃

tion of ak to problem P2 must be an integer solution. Based onthis, the range of feasible solutions to problem P2 can be re⁃
duced greatly. Thus, we only need to compare the learning effi⁃
ciency of the FEEL system when the total number of selected
users varies. Here, users in the system are selected by the opti⁃
mal user selection policy as aforementioned. So T * that
achieves the maximum learning efficiency is the optimal sys⁃
tem latency to both problems P2 and P1, which can be ex⁃
pressed as
T * =∑

k = 1

K a*kV
RUk

+ TC. (18)

As we have indicated before, when“≤”in the constraint
(16b) is set to“=”, the solution must be the optimal solution of
problem P1. Consequently, we can obtain the optimal commu⁃
nication resource allocation by simple mathematical calcula⁃
tion, as
τ*k = a*k V

RUk (T * - TC ) . (19)

The result in Eq. (19) shows that a less time slot is allocated
for the user with a higher uplink data rate.
4.4 Optimal Algorithm for Problem P1
Thus far, we have obtained the optimal solution to prob⁃

lem P1. In this part, we intend to develop an optimal algo⁃
rithm for problem P1 based on the above analysis. As men⁃
tioned before, in order to obtain the optimal solution to
problem P1, all selection cases should be compared. How⁃
ever, this would become very time-consuming as the num⁃
ber of users increases. Therefore, a low computational com⁃
plexity algorithm is required. We define EM, M ∈ {1, 2,...,K}
as the learning efficiency of the FEEL system when M users
are selected. To better fit the practical systems, we have the
following theorem.
Theorem 3: EM increases first and then decreases with theincrease of M.
Proof: See Appendix C.
Remark 4: Theorem 3 indicates that the learning efficiency

EM has only one global optimal. Therefore, we can select userssuccessively by the optimal user selection policy until the
learning efficiency of the FEEL system begins to decrease. By
doing so, we are able to find the optimal solution to problem
P1. According to the above analysis, the optimal algorithm for
problem P1 is shown in Algorithm 1. We can easily find that
the computational complexity of this algorithm is determined
by the sort operation. Therefore, the computational complexity
is O (K log K ). With regard to mixed-integer programming
problems, it is acceptable to find the optimal solution with a
polynomial-time complexity, indicating that this algorithm can
be applied to practical systems.
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Algorithm 1: The optimal algorithm for problem P1
1: Calculate ρkRUk , ∀k ∈ K .2: Sort ρkRUk in descending order.3: Select user successively by ρkRUk and calculate the learn⁃ing efficiency EM of the FEEL system.4: For M = 1 to K, do
5: if M = 1, then
6: Emax = EM.7: else
8: if EM < Emax, then9: break.
10: else
11: Emax = EM.12: End
13: Calculate the corresponding {a*k , T *, τU*k }with Emax.
14: Output the optimal solution {a*k , T *, τU*k }.

5 Simulation Results
In this section, we test the performance of the proposed al⁃

gorithm by simulation and validate the performance improve⁃
ment by comparing with other traditional algorithms.
5.1 Simulation Settings
In the FEEL system, K users are stochastically distributed

over the coverage of the BS. The coverage area of the BS is a
circle with a radius of 500 m. All users are connected with the
BS by wireless channels. The channel gains are generated by
the pass loss model, 128.1+37.6log(d [km]), while the small-
scale fading obeys the Rayleigh distribution with uniform vari⁃
ance. The noise power spectral density is −174 dBm/Hz and
the system bandwidth is 5 MHz. The uplink and downlink
transmit powers are both 24 dBm.
We utilize the dataset CIFAR-10 as the local dataset of all

users to train model. The dataset is composed of 60 000 32×32
color images in 10 classes, which includes 50 000 training im⁃
ages and 10 000 test images. We shuffle all training samples
first, divide them into K parts equally and then distribute them
to all users, respectively. Two common DNN models, Mobile⁃
NetV2 and ResNet18，are deployed for image classification.
Since it is time-consuming to restart training, we utilize the pre-
trained model to reduce the model convergence time.
5.2 Tests of Generalization Ability
The generalization ability refers to the adaptability of algo⁃

rithms to different DNN models. To test the generalization
ability of our proposed algorithm, we implement it on the two
DNN models as mentioned before when there are K = 14 us⁃
ers in the FEEL system. Meanwhile, we make comparisons
with the performance of proposed algorithm and the baseline
algorithm where all users are selected with equal communica⁃
tion resource allocation. The simulation results of the test ac⁃
curacy and the global training loss are shown in Figs. 2 and 3,

respectively. From the figures, the proposed algorithm can
achieve a high learning accuracy and a fast convergence rate
for different DNN models. The result shows that our proposed
algorithm has excellent generalization ability and can be wide⁃
ly implemented in practical systems. Moreover, the perfor⁃
mance of our proposed algorithm is similar to that of the base⁃
line algorithm with the increase of communication round rath⁃
er than training time. It is reasonable since our proposed algo⁃
rithm aims to reduce the communication delay in each commu⁃
nication round, rather than the number of communication
rounds. Besides, this result demonstrates that our proposed al⁃
gorithm can achieve the similar training speed by only select⁃
ing partial users in the FEEL system.
5.3 Performance Comparison Among Different Algorithms
In this part, we compare the performance of our proposed al⁃

gorithm with other conventional algorithms to verify its superi⁃
ority. The two benchmark algorithms are described as follows.
• Baseline algorithm: In each communication round, all users

▲Figure 3. The global training loss versus communication round.

▲Figure 2. The test accuracy versus communication round.
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in the FEEL system participate in the training task with equal
communication resource allocation, i.e., τk = 1 K, ∀k ∈ K .
• All selected algorithm: In each communication round, all

users in the FEEL system participate in the training task with
optimal communication resource allocation based on Eq. (19).
Here we use the pre-trained ResNet18 model to test the per⁃

formance of the three algorithms in an FEEL system with K =
14 users. The test accuracy versus training time with different
algorithms is shown in Fig. 4. From the figure, it can be seen
that our proposed algorithm achieves the highest test accuracy
among all algorithms. The reason is that our proposed algo⁃
rithm not only selects users based on data importance but also
makes the optimal communication resource allocation. By do⁃
ing so, only users with more important data and higher uplink
data rate participate in the training task. Thus, the communi⁃
cation latency is reduced and the global loss decay rate in⁃
creases, which eventually improves the learning efficiency of
the system. The gap between the baseline algorithm and the
all selected algorithm demonstrates the gain obtained by the
optimal communication resource allocation. The gap between
the all selected algorithm and the proposed algorithm demon⁃
strates the gain obtained by the optimal user selection. In con⁃
clusion, our proposed algorithm accelerates the training task
and improves the learning efficiency of the FEEL system by
jointly considering user selection and communication resource
allocation.
To further verify the applicability and effectiveness of our

proposed algorithm, we select one communication round ran⁃
domly to obtain more simulation results. Figs. 5 and 6 illus⁃
trate the results of user selection and communication re⁃
source allocation for our proposed algorithm in the communi⁃
cation round we selected, respectively. From Fig. 5, we can
observe that user k is selected only when the product of its
data importance and uplink data rate, i. e., ρkRUk , is no lessthan the selection threshold, which is consistent with Theo⁃
rem 1. Moreover, in order to clearly present the relationship
between the communication resource allocation and the up⁃
link data rate, we plot the corresponding uplink data rate for
all users in Fig. 7. Combining Fig. 6 with Fig. 7, it can be ob⁃
served that a selected user with a higher uplink data rate is
allocated with less communication resource, which is consis⁃
tent with Eq. (19).
In the end, we further study how the number of users im⁃

pacts the training performance of the FEEL system. The test
accuracy versus training time with different numbers of users
is shown in Fig. 8. From the figure, it can be seen that our pro⁃
posed algorithm achieves the highest system learning efficien⁃
cy when K = 6. The reasons can be explained as follows. The
number of time slot allocated to the selected user is large
when the number of users is small. Consequently, the commu⁃
nication latency greatly reduces, and the learning efficiency of
the FEEL system significantly improves in this scenario. More⁃
over, the number of selected users is limited by the scarce

wireless communication resource when the number of users is
too large. Therefore, the learning efficiency of the FEEL sys⁃
tem does not improve with user number when too many users
in the system.
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6 Conclusions
In this paper, we aim to accelerate the training task and

improve the learning efficiency of the FEEL system by pro⁃
posing an optimal user selection policy based on data impor⁃
tance and CSI. After analyzing the data importance of users
and the end-to-end latency of the FEEL system, we formulate
an optimization problem to maximize the learning efficiency
of the FEEL system. By problem transformation and relax⁃
ation, we first develop the optimal user selection policy.
Based on this, the optimal communication resource alloca⁃
tion is developed in closed-form. We further develop a poly⁃
nomial-time algorithm to solve this mixed-integer program⁃
ming problem and prove its optimality. Finally, the simula⁃
tion results show that our proposed algorithm has strong gen⁃
eralization ability and can significantly improve the learning
efficiency of the FEEL system.
Our work has demonstrated that the learning efficiency of

the FEEL system can be further improved by user selection

based on data importance and wireless resource allocation.
However, some assumptions have been made to gain insight⁃
ful results. In the future, we will make further investigation
to better fit the practical systems. First, we have assumed
that there is no inter-cell interference in the uplink. In the
future, the FEEL system with inter-cell interference de⁃
serves further investigation. Second, the local gradient re⁃
ceived by the edge server may contain data errors, which
may affect the training performance of the FEEL system.
Therefore, our future work can further study the impact of
those errors. Last but not the least, it is meaningful to extend
our proposed algorithm to the FEEL system, where orthogo⁃
nal frequency-division multiple access (OFDMA) is adopted
for data transmission.

Appendix A
Proof of Theorem 1
We apply the Lagrangian method to obtain the optimal solu⁃

tion to problem P2 with fixed T since it is a convex optimiza⁃
tion problem. The Lagrangian function is defined as

L = -∑k = 1
K

ak ρk

T
+ λ(∑

k = 1

K akV
RUk

- T + TC) , (20)

where λ is the Lagrange multiplier related with the constraint
(17b). By applying the Karush-Kuhn-Tucker (KKT) conditions
and simple calculation, we can draw the following necessary
and sufficient conditions, as

∂L
∂a*k = -

ρk
T
+ λ* V

RUk

ì

í

î

ïï
ïï

≥ 0, a*k = 0,
= 0, 0 ≤ a*k ≤ 1, ∀k ∈ K ,
≤ 0, a*k = 1,

(21)

λ* (∑
k = 1

K Va*k
RUk

+ TC - T) = 0, λ* ≥ 0. (22)

With simple mathematical calculation, we can derive the
optimal user selection policy as shown in Theorem 1, which
ends the proof.

Appendix B
Proof of Theorem 2
According to Theorem 1, users are selected by the descend⁃

ing order of ρkRUk . Hence, we can assume that ak = 1 when k =1, 2,...,M and ak = 0 when k = M + 2,M + 3,...,K. Moreover,
it is not clear whether aM + 1 = 0 or aM + 1 = 1. Then, we denote
E(1) as the objective function of problem P2, which can be ex⁃
pressed as
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E(1) = ∑
k = 1

M

ρk + aM + 1 ρM + 1

∑
k = 1

M V
RUk
+ aM + 1

V
RUM + 1

+ TC
. (23)

So the derivative of E(1) with respect to aM + 1 is given by

∂E(1)
∂aM + 1

=
ρM + 1 ( )∑

k = 1

M V
RUk
+ TC - V

RUM + 1
∑
k = 1

M

ρk

( )∑
k = 1

M V
RUk
+ aM + 1

V
RUM + 1

+ TC
2 . (24)

It shows that the sign of derivative is consistent with the
sign of the numerator of Eq. (24). However, the value of the nu⁃
merator of Eq. (24) is independent of aM + 1. Therefore, E(1) ismonotone when aM + 1 ∈ [ 0,1 ]. That is, the maximum value of
E(1) must be obtained either when aM + 1 = 0 or when aM + 1 = 1.In conclusion, the optimal solution of ak to P2 must be an inte⁃ger solution. Hence, this solution must be the feasible solution
to problem P1 as well. Moreover, after relaxation, the maxi⁃
mum value of the objective function is non-decreasing. Thus,
the optimal solutions to problem P2 and P1 are exactly the
same, which ends the proof.

Appendix C
Proof of Theorem 3
According to Theorem 2, we know that the optimal solutions

to problem P2 and P1 are exactly the same. Thus, we only
consider the integer solutions here. When no user is selected,
the learning efficiency is zero obviously. The learning efficien⁃
cy must increase first with the number of selected users. In
other words, at least one user is selected. Then we consider
the following condition.
Denote TM =∑k = 1

M V RUk + TC,M ∈ {1, 2,...,K} as the sys⁃
tem latency when M users are selected. Assume that the fol⁃
lowing formulas exist

EM - EM - 1 =
ρM∑

k = 1

M - 1 V
RUk
+ TC ρM - V

RUM
∑
k = 1

M - 1
ρk

( )∑
k = 1

M V
RUk
+ TC ( )∑

k = 1

M - 1 V
RUk
+ TC

> 0, (25)

EM + 1 - EM =
ρM + 1∑

k = 1

M V
RUk
+ TC ρM + 1 - V

RUM + 1
∑
k = 1

M

ρk

( )∑
k = 1

M + 1 V
RUk
+ TC ( )∑

k = 1

M V
RUk
+ TC

< 0. (26)

From Eqs. (25) and (26), we can obtain the following in⁃
equalities.
ρMRUM (∑

k = 1

M - 1 V
RUk
+ TC) > V∑

k = 1

M - 1
ρk, (27)

ρM + 1RUM + 1 (∑
k = 1

M V
RUk
+ TC) < V∑

k = 1

M

ρk . (28)

According to Eq. (27), we can derive the recurrence formu⁃
la as

ρM - 1RUM - 1 (∑
k = 1

M - 2 V
RUk
+ TC) - V∑

k = 1

M - 2
ρk =

ρM - 1RM - 1 (∑
k = 1

M - 1 V
RUk
+ TC) - V∑

k = 1

M - 1
ρk >

ρMRUM (∑
k = 1

M - 1 V
RUk
+ TC) - V∑

k = 1

M - 1
ρk > 0,

(29)

which implies EM -2 < EM - 1. Then we can obtain the conclu⁃sion recursively, as
E1 < E2 < ... < EM. (30)
Similar to the above analysis, we have the following conclu⁃

sion, as
E1 < E2 < ... < EM > EM + 1 > EM + 2 > ... > EK. (31)
Based on the above analysis, EM first increases and then de⁃creases with M, which ends the proof.
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⬅ From Page 01future directions. The third paper“Joint User Selection and
Resource Allocation for Fast Federated Edge Learning”by JI⁃
ANG et al. presents a new policy for joint user selection and
communication resource allocation to accelerate the training
task and improve the learning efficiency.
Edge learning includes both edge training and edge infer⁃

ence. Due to the stringent latency requirements, edge infer⁃
ence is particularly bottlenecked by the limited computation
and communication resources at the network edge. The fourth
paper“Communication-Efficient Edge AI Inference over
Wireless Networks”by YANG et al. identifies two communi⁃
cation-efficient architectures for edge inference, namely, on-
device distributed inference and in-edge cooperative infer⁃
ence, thereby achieving low latency and high energy efficien⁃
cy. The fifth paper“Knowledge Distillation for Mobile Edge

Computation Offloading”by CHEN et al. introduces a new
computation offloading framework based on deep imitation
learning and knowledge distillation that assists end devices to
quickly make fine-grained offloading decisions so as to mini⁃
mize the end-to-end task inference latency in MEC networks.
By considering edge inference in MEC-enabled UAV systems,
the last paper“Joint Placement and Resource Allocation for
UAV-Assisted Mobile Edge Computing Networks with
URLLC”by ZHANG et al. jointly optimizes the UAV’s
placement location and transmitting power to facilitate ultra-
reliable and low-latency round-trip communication from sen⁃
sors to UAV servers to actuators.
We hope that the aforementioned six papers published in

this special issue stimulate new ideas and innovations from
both the academia and industry to advance this exciting area
of edge learning.
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