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Abstract: Due to the increasing need for massive data analysis and machine learning model
training at the network edge, as well as the rising concerns about data privacy, a new distrib⁃
uted training framework called federated learning (FL) has emerged and attracted much at⁃
tention from both academia and industry. In FL, participating devices iteratively update the
local models based on their own data and contribute to the global training by uploading mod⁃
el updates until the training converges. Therefore, the computation capabilities of mobile de⁃
vices can be utilized and the data privacy can be preserved. However, deploying FL in re⁃
source-constrained wireless networks encounters several challenges, including the limited
energy of mobile devices, weak onboard computing capability, and scarce wireless band⁃
width. To address these challenges, recent solutions have been proposed to maximize the
convergence rate or minimize the energy consumption under heterogeneous constraints. In
this overview, we first introduce the backgrounds and fundamentals of FL. Then, the key
challenges in deploying FL in wireless networks are discussed, and several existing solu⁃
tions are reviewed. Finally, we highlight the open issues and future research directions in
FL scheduling.
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1 Introduction

With the deployment of deep learning algorithms on
Internet-of-Things (IoT) devices at the network
edge[1] and the explosive growth of mobile data[2],
technologies like edge learning[3] emerge and focus

on running deep learning algorithms at the wireless access net⁃

work. To ensure the performance of deep learning in practical
scenarios, such as auto-driving and user preference predic⁃
tion, efficient training of the learning model with the data gen⁃
erated at the network edge is necessary. However, transmis⁃
sion of massive training data from edge devices to servers is
challenging due to limited wireless communication resources,
as well as the privacy requirement, which makes it difficult to
exploit centralized training for updating the learning model.
To solve this problem, federated learning (FL) [4] is proposed,
which exchanges learning models rather than raw data be⁃
tween edge devices and edge servers by deploying the training
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algorithms on edge devices. Since mobile devices will con⁃
sume their limited computation and communication resources
when participating in FL, mobile devices may not be willing to
contribute. Therefore, some incentives have been introduced,
such as the access to the high-quality models trained by FL,
as well as some payment after participating in the FL training.
In a typical FL system, there is an edge server and several

edge devices, which collaboratively train a learning model.
The architecture of FL system is shown in Fig. 1. In each it⁃
eration (also known as communication round), the edge serv⁃
er aggregates the local models from edge devices in order to
update the global model. Then the edge server broadcasts
the newest model to edge devices for model training in the
next round. After receiving the newest model, each edge de⁃
vice improves this model based on its own data to obtain a
new local model. This process goes on until the global model
converges. When aggregating the local model, each device
can send the gradient of the local model back to the edge
server as well as the whole local model. Compared with send⁃
ing the whole model, sending gradients can reduce the infor⁃
mation loss under the constraint of signal-to-noise ratio
(SNR) and thus perform better than sending the whole model
in analog aggregation (refer to Section 2.2 for details), be⁃
cause the norm of the gradient is smaller than the model gen⁃
erally. Except for analog aggregation, aggregating gradients
and models are equivalent from the scheduling point of
view, thus we consider that edge devices upload their updat⁃
ed local models rather than model gradients in the following
parts of this paper unless otherwise specified. Fig. 1 shows
two different model aggregation schemes, analog aggregation

and digital aggregation. In the analog aggregation scheme,
edge devices send local models to the sever simultaneously
and the aggregation is performed in the wireless channel ac⁃
cording to the waveform-superposition property. In this way,
the system can reduce the transmission latency since the
transmission latency will not scale linearly with the number
of devices. However, stringent synchronization between de⁃
vices is needed during the model uploading, and the aggre⁃
gation is vulnerable under the attack of third-party devices.
In the digital aggregation, the model can be encoded for
compression, encryption, and other purposes, which pre⁃
vents the model from being aggregated in the wireless chan⁃
nel and is not suitable for analog aggregation. Although the
digital aggregation is more convenient than the analog aggre⁃
gation, long transmission latency will be introduced when
the number of devices is large.
By distributing model training to the edge devices, FL miti⁃

gates the problem of privacy leaks caused by sending the raw
training data from devices to the server. With the advantage of
protecting data privacy, FL has been applied in some data sen⁃
sitive scenarios, such as health artificial intelligence (AI) [5].
However, some studies show that the learning model can still
result in privacy leaks[6]. To solve this problem, differential pri⁃
vacy-based methods[7–8], collaborative training-based meth⁃
ods[9–10] and encryption-based methods[11–12] are proposed,
which can protect the privacy of parameters of learning model.
Another advantage of FL is saving the communication cost

of transmitting a large amount of training data. However, FL
meets some new challenges. The training of the learning mod⁃
el is distributed to edge devices that may have non-indepen⁃
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▲Figure 1. Architecture of federated learning system.
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dent and identically distributed (non-i.i.d.) training dataset[13],
which results in bad performance (such as low accuracy) of
the learning model. Also, due to the different computation ca⁃
pabilities of devices, the FL system should consider the syn⁃
chronization of the model updates from devices, and to ad⁃
dress the straggler issues. In practical scenarios, the wireless
resources of the FL system are usually limited, and thus the
edge server may not be able to receive the local models from
all the edge devices. To solve this problem, one direction of re⁃
search is reducing the cost of transmitting the local model for
every edge device, including model compression by quantiza⁃
tion[14] and only updating the model for the edge server when
the models have significant improvement[15]. Another research
direction is the scheduling of devices, where the edge server
needs to schedule a subset of edge devices to send the model
update. The device scheduling can reduce the communication
cost but may result in slower convergence rate of the model
training. Given the constrained wireless resources, scheduling
policies for FL are proposed to maximize the convergence
rate[16] of the learning model or to minimize the energy con⁃
sumption[17] of the whole system.
There are some existing surveys on FL and edge machine

learning[18–21]. In Ref. [18], the authors provide a general over⁃
view on FL and its challenges in implementation, but do not
consider specific issues of deploying FL in wireless networks.
The architecture of deep learning and the process of training
and inference in the context of edge computing are studied in
Ref. [19]. However, the authors of Ref. [19] place more empha⁃
sis on optimizing the FL algorithm itself rather than the sched⁃
uling policies for FL. The authors of Ref. [20] focus on commu⁃
nication-efficient FL in mobile edge computing platforms,
rather than the scheduling policies that maximize the conver⁃
gence rate of FL under resource constraints. In Ref. [21], the
authors discuss potential FL applications in mobile edge com⁃
puting, the resource allocation problems and data privacy
problems in FL. Nevertheless, the authors of Ref. [21] have
not provided an in-depth survey on the scheduling policies ac⁃
cording to the model aggregation technique of FL in wireless
networks, which can greatly affect the design of the schedul⁃
ing policies.
In summary, none of the existing work has studied the FL in

wireless networks from a scheduling perspective. Therefore,
we provide a taxonomy on the aggregation methods used in
FL, and discuss scheduling policies that can optimize the
training performance under resource constraints for both digi⁃
tal⁃aggregation-based and analog ⁃ aggregation ⁃based FL. The
rest of this paper is organized as follows. In Section 2, we first
introduce FL systems with analog⁃transmission⁃based aggrega⁃
tion, and then several scheduling policies designed for the an⁃
alog⁃aggregation⁃based FL are discussed. The scheduling poli⁃
cies designed for the digital ⁃aggregation ⁃based FL are intro⁃
duced in Section 3. Section 4 gives the conclusion of this pa⁃
per and the future directions of federated learning.

2 Analog Aggregation
In a conventional wireless system, a base station needs to de⁃

code (deliver) the individual information from (to) each user.
Accordingly, digital communications and orthogonal multiple
access techniques have been developed and widely used. How⁃
ever, a key difference in the FL system is that, while aggregat⁃
ing the local models, the server is not interested in the individu⁃
al parameters of edge devices, but their average. Note that the
waveform-superposition property adds all the signals in a wire⁃
less multiple access channel, using analog transmission for
global model aggregation, which is a more communication-effi⁃
cient strategy[22–27]. Edge devices synchronize with each other
and transmit their local models concurrently. Then the wireless
channel carries out the summation over the air, and the server
receives the desired values, i.e., the average of the local mod⁃
els, after dividing the received signal by the number of devices
involved. Analog aggregation is also called over-the-air compu⁃
tation and it can further support more flexible functions such as
weighted summation via power allocation, so that the server can
receive the weighted average of local parameters. Some recent
papers are summarized in Table 1.
2.1 Device Scheduling for Analog Aggregation
A key issue of analog aggregation is how to schedule devic⁃

es based on their channel states and power constraints. In the
t-th round, each device n observes the channel state hn,t, andthen aligns the transmission power pn,t, to ensure that the serv⁃er can receive its desired value. The power alignment equa⁃
tion is given by

pn,t =
ì

í

î

ïï
ïï

at
hn,t
, || hn,t

2 > hth
0, otherwise

, (1)

Technology

Power alignment

Sparsification and
error accumulation

Data redundancy

Highlights

· Fundamental tradeoffs under Rayleigh fad⁃
ing channel

· Online energy-aware dynamic device sched⁃
uling policy

· Device scheduling for multi-antenna ana⁃
log aggregation

· Gradient sparsification and error accu⁃
mulation

· Device scheduling policy under average
power constraint

· Introducing data redundancy to deal with
non-independent and identically distribut⁃
ed (non-i.i.d.) data

Related Works

Ref. [23]

Ref. [24]

Ref. [25]

Refs. [26–27]

Ref. [24]

▼Table 1. Summary of recent papers on analog aggregation
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where at is a power scalar that determines the received SNR atthe server side, as well as the energy consumption at the de⁃
vice side. Parameter hth is called the power-truncation thresh⁃old, i.e., a device can be scheduled only if its current channel
state is better than the threshold. Parameters at and hth shouldbe carefully selected in order to optimize the training perfor⁃
mance for FL.
In Ref. [23], two fundamental tradeoffs, namely the SNR-

truncation tradeoff and reliability-quantity tradeoff, are rigor⁃
ously characterized. Under the assumption of Rayleigh fad⁃
ing, the relation between the received SNR and power-trunca⁃
tion threshold is studied. The SNR-truncation tradeoff is
then revealed: increasing hth can improve the received SNRat the server, at the cost of truncating more devices which
cannot satisfy the channel quality requirement. Moreover,
the received SNR is limited by the furthest device with larg⁃
est path-loss. Followed by this observation, a cell-interior
scheduling policy is proposed, where only the devices within
a distance threshold rth can be scheduled in each communica⁃tion round. Parameter rth balances the tradeoff between com⁃munication reliability and data quantity: larger rth enablesthe server to schedule more devices and exploit more data for
training, while it degrades the received SNR and leads to a
noisier version of the average of local models. An alternating
scheduling policy is proposed, where the server alternates be⁃
tween the cell-interior scheduling policy and all-included
scheduling policy. Finally, theoretical analysis indicates that
the communication latency of analog aggregation can be re⁃
duced by O (N/log2N) compared to its digital counterpart,
where N is the number of devices.
Removing the Rayleigh fading constraint, an online ener⁃

gy-aware dynamic device scheduling policy is proposed in
Ref. [24]. Since the explicit mapping between the loss func⁃
tion of the FL task and the set of devices scheduled in each
round remains unknown, an alternative objective function that
maximizes the average number of scheduled devices is consid⁃
ered. The long-term average energy constraint (which is equiv⁃
alent to power constraint) of each device is transformed to a
virtual energy deficit queue based on Lyapunov optimization.
In each communication round, each device acquires the cur⁃
rent channel state hn,t and decides whether to update its localmodel individually by considering the value of the virtual
queue and the required energy consumption. The proposed de⁃
vice scheduling policy works in an online fashion, without re⁃
quiring any information of the channel states in the future. It
also works well if the channel states are non-i.i.d across time.
A multi-antenna analog aggregation FL system is consid⁃

ered in Ref. [25], where the number of scheduled devices is
maximized under the mean-square-error (MSE) constraint. Sat⁃
isfying the MSE requirement can limit the transmission error,
and thus it guarantees the accuracy of the aggregated learning
model parameters. In order to improve the efficiency of the de⁃
vice scheduling policy, a sparse and low-rank approach is in⁃

troduced.
2.2 Sparsification and Error Accumulation
The neural networks to be trained for FL tasks usually have

huge dimensions, with thousands to millions of parameters.
However, the wireless bandwidth is in general limited, and
thus the communication latency scales up with the dimension
of local models. To further reduce the communication cost for
model aggregation, gradient sparsification techniques are in⁃
troduced in Refs. [26] and [27]. Note that transmitting local
gradients rather than local models can improve the power effi⁃
ciency of analog aggregation, because all the power is used to
transmit the information unknown to the server. Therefore, all
the devices update their gradients rather than the up-to-date
models.
To reduce the dimension of local gradients, a random linear

projection is first employed, inspired by compressive sensing.
In particular, each local model is multiplied by a random ma⁃
trix, where each entry follows Gaussian distribution. The ran⁃
dom matrix is shared by the devices and the server. Then each
device only retains k entries with largest absolute values,
which can be regarded as the most important parameters of
the gradients, while setting all the other gradients to zero.
Here, k is a design parameter which balances the tradeoff be⁃
tween communication reliability and distortion: with smaller k,
each entry can be transmitted in a higher power, so that the
SNR at the server is higher. However, more information of the
local gradient is lost due to the sparsification, degrading the
accuracy of the neural network as well as the convergence rate
of training.
Instead of discarding all the lost information due to sparsifi⁃

cation, a more efficient way is to do error accumulation at the
device side. In particular, in each round, the device calculates
the differences between the sparse gradients and the original
gradients, and adds these differences to the gradients obtained
in the next round before employing sparsification. In this way,
the error due to sparsification is accumulated by workers, and
the training accuracy can be improved according to the experi⁃
mental results.
Device scheduling policies are also designed for analog ag⁃

gregation with gradient sparsification and error accumulation.
In Ref. [26], additive white Gaussian noise (AWGN) channel
is considered, and both equal and unequal power allocation
policies are designed. The unequal policy puts more power to
the initial rounds, motivated by the fact that the variance of
the gradients diminishes across time. Ref. [27] further consid⁃
ers Rayleigh fading channels. Extensive experiments show
that compared to the digital aggregation, analog aggregation
can improve the convergence rate of training, particularly at
low bandwidth and stringent power regimes.
2.3 Non-IID Training Data
The non-i. i. d. data, i. e., the different distributions of data
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samples at devices, is also a major bottleneck for FL. It is
shown in Ref. [28] that high non-i.i.d. data reduces the accura⁃
cy of the neural network by 11% under the Modified National
Institute of Standards and Technology (MNIST) dataset, and
by over 50% under CIFAR-10 dataset. The non-i. i.d. level of
data refers to the difference of local data distribution and glob⁃
al data distribution, which can be characterized by the earth
mover’s distance, a measurement of the distance between two
distributions. To reduce the non-i. i.d. level and thus improve
the training accuracy, the server collects some sharable data
samples from the devices and disseminates the data to the
whole FL system.
Non-i.i.d. data is still a key issue in analog aggregation FL

systems. In Ref. [24], data redundancy is introduced to reduce
the non-i.i.d. level of data samples, which can be obtained by
exchanging data between a group of devices or collecting data
with overlapped coverage in IoT networks. Fig. 2 illustrates
the analog aggregation for FL systems with data redundancy.
Workers 1 and 2, 3 and 4 exchange their local datasets with
each other, and the redundancy level of the system, i.e., how
many devices store each data sample, is two. The experiment
results with non-i.i.d. data using MNIST dataset are shown in
Fig. 3, where -E is the average energy constraint (in J),“dyn”
is the proposed online energy-aware dynamic device schedul⁃
ing policy, and“myopic”is a benchmark policy where devic⁃
es can use as much energy as -E in each round. Parameter r de⁃
notes the redundancy level, and -E = ∞ refers to the case
where devices have infinite energy, so that all of them can be
scheduled in each round. We can see that the proposed dy⁃

namic device scheduling policy outperforms the myopic
benchmark, and data redundancy can improve the training ac⁃
curacy significantly. In particular, when -E = 5, increasing re⁃
dundancy from r = 1 to r = 2 can achieve an improvement of
10% in training accuracy.

3 Digital Aggregation
In many other studies, the FL systems are deployed in exist⁃

ing wireless networks (e. g., cellular network or Wi-Fi net⁃
work), where orthogonal-access schemes such as orthogonal
frequency division multiple access (OFDMA) are used for
model aggregation. To distinguish them from analog aggrega⁃
tion approaches, we categorize these approaches into digital
aggregation. In digital aggregation, the participating devices
need to share the scarce wireless bandwidth to upload the up⁃
dated local models, making the global aggregation very time-
consuming. Further, the limited energy and computing re⁃
sources of participating devices make it more challenging to
deploy FL in real wireless networks. Therefore, various sched⁃
uling policies have been proposed to address these challenges.
These scheduling policies can be divided into the following
three categories: aggregation frequency adaptation, local accu⁃
racy tuning, and device scheduling. Table 2 summarizes the
highlights of recent papers on digital aggregation.
3.1 Aggregation Frequency Adaptation
In FL, the local update consumes computing resources of

devices and the global aggregation consumes the bandwidth
resources. Since FL iterates between local updates and global

▲Figure 2. Analog aggregation for federated learning with data redundancy.
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aggregations, the frequency of global aggregations (i.e., the re⁃
ciprocal of the number of local updates between two adjacent
global aggregations) should be carefully tuned to balance the
consumption of computing and bandwidth resources. In Ref.
[29], the authors first analyze the convergence bound of FL
with respect to (w.r.t) the number of local updates between two
adjacent global aggregations. The bound shows that a higher
global aggregation frequency can speed up the FL conver⁃
gence, while the drawback is consuming more wireless re⁃
sources for global aggregation. Then a scheduling policy that
adapts the frequency of global aggregations in real time to
maximize the convergence rate of FL is derived based on the
derived convergence bound. The proposed scheduling policy
is applicable to non-i.i.d. data distributions and heterogeneous
resource constraints of participating devices. Their simulation

results show that adaptively adjusting the global
aggregation frequency can greatly improve the con⁃
vergence rate of FL, compared with fixed global
aggregation frequency counterparts. Further, the
authors of Ref. [30] extend the scheduling policy
proposed by Ref. [29] into a client-edge-cloud hi⁃
erarchical system. In the client-edge-cloud hierar⁃
chical FL system, each edge server is allowed to
perform partial aggregation that aggregates the up⁃
dated local models of the edge devices within its
communication range. While for the cloud-based
global aggregation, the partially aggregated mod⁃
els at edge servers are aggregated through the
backbone network by the centralized cloud server.
The aggregation frequencies of two levels of model
aggregation (i. e., edge-based partial aggregation
and cloud-based global aggregation) are optimized
to minimize the global loss function value under a
constrained number of total local updates.
3.2 Local Accuracy Tuning
The tradeoff between computation and commu⁃

nication is balanced through optimizing the aggregation fre⁃
quency in aggregation frequency adaptation. Alternatively,
some researchers balance this tradeoff via tuning the accuracy
level of the local models. In general, increasing local model
accuracy requires more computation, while fewer communica⁃
tion rounds are needed for more accurate local models to
achieve a fixed global accuracy.
In Ref. [31], the authors refer to an upper bound for the

number of communication rounds w.r.t. global accuracy and lo⁃
cal accuracy, which is applied to strong convex loss functions
for designing the scheduling policy. They adopt time division
multiple access (TDMA) for media access control (MAC) layer
and dynamic voltage and frequency scaling (DVFS) for devic⁃
es’CPUs. Thus the frequencies of devices’CPUs, the com⁃
munication latency of local model uploading and the local ac⁃
curacy are jointly optimized to minimize the weighted sum of
training latency and device energy consumption. As a result,
both the computation-communication tradeoff and the device
energy consumption-FL training latency tradeoff can be char⁃
acterized. The overall non-convex optimization problem is de⁃
coupled into convex sub-problems, and the closed-form opti⁃
mal solutions to the sub-problems are illustrated by extensive
numerical results. While in Ref. [32], the authors consider a
similar FL system but with frequency division multiple access
(FDMA). Therefore, the bandwidth allocated to each devices
should be jointly optimized with the communication latency,
the CPU frequency and the local accuracy. Due to the compli⁃
cated nature of the problem, the authors of Ref. [32] proposed
an iterative algorithm. Their simulation results show that up to
25.6% latency reduction and 37.6% energy reduction can be
achieved compared to conventional FL.

Technology

Aggregation fre⁃
quency adaption

Local accuracy
tuning

Device scheduling

Highlights

· Global aggregation frequency adaption un⁃
der given resource constraints.

· Extending Ref. [29] into a client-edge-
cloud hierarchical FL system

· Tuning local model accuracy to balance
the tradeoff between local update and
global aggregation

· Energy- and convergence-aware resource
allocation

· Energy- and convergence-aware joint
scheduling and resource allocation

·Consider unreliable wireless transmissions
· Maximize the convergence rate with re⁃
spect to time

Related Works

Ref. [29]

Ref. [30]

Refs. [31–32]

Ref. [17]

Refs. [35–36]

Refs. [16] and [37]

▼Table 2. Summary of recent papers on digital aggregation

▲Figure 3. Training accuracy of dynamic device scheduling policy in Ref. [24] under in⁃
dependent and identically distributed (i.i.d.) and non-i.i.d. data.
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3.3 Device Scheduling
Due to the limited wireless resources and stringent train⁃

ing delay budget, only a portion of devices are allowed to up⁃
load local models in each round in real FL systems[33]. Thus
the device scheduling policy is critical to FL and will affect
the convergence performance in the following two aspects.
On one hand, the server needs to wait until all scheduled de⁃
vices have finished updating and uploading their local mod⁃
els in each round. Therefore, scheduling more devices per
round can significantly slow down the model aggregation, be⁃
cause of the reduced bandwidth allocated to each device and
the higher probability of having a straggler device (i. e., the
device with limited computation capabilities or bad wireless
channel). On the other hand, scheduling more devices per
round increases the convergence rate (w. r. t. the number of
rounds) [34] and can potentially reduce the number of rounds
required to attain the same accuracy. To this end, the sched⁃
uling policy should carefully balance the latency and learn⁃
ing efficiency per round.
Recently, device scheduling problems in FL have received

many research efforts. The authors of Ref. [17] consider a joint
scheduling and radio resource allocation problem for FL. In
Ref. [17], OFDMA is used for model uploading, where band⁃
width allocation can be optimized to reduce the energy con⁃
sumption. To further characterize the convergence perfor⁃
mance, they assume that the convergence rate linearly increas⁃
es with the number of scheduled devices. Therefore, the opti⁃
mization objective is set to be the weighted sum of the energy
consumption and the number of scheduled devices with a pre-
determined tradeoff factor, so as to balance the energy con⁃
sumption and convergence rate. After relaxing the integer con⁃
straint for the device scheduling as the real-value constraint,
the optimization problem is solved by iteratively solving the
bandwidth allocation and scheduling sub-problems.
Furthermore, some recent studies consider the unreliable

wireless transmissions. In Ref. [35], the authors propose to de⁃
ploy FL in cellular networks where inter-cell interference can
affect the transmissions of model aggregation. For the trans⁃
mission quality, only if the received signal-to-interference-
plus-noise ratio (SINR) exceeds a threshold, the received local
models can be successfully decoded. The convergence rate of
FL under such settings, accounting for effects from both sched⁃
uling and interference, is then derived. Furthermore, three ba⁃
sic scheduling policies, namely the random scheduling, round-
robin and proportional fair, are compared in terms of FL con⁃
vergence rate. Their results show that the proportional fair pol⁃
icy performs better under a high SINR threshold, while round-
robin is suitable for a low SINR threshold. However, the au⁃
thors of Ref. [36] consider OFDMA for model aggregation and
use the packet error rate to capture the unreliability of the
wireless transmission. In Ref. [36], a convergence rate bound
w.r.t. packet errors is first derived, given the transmitting pow⁃
er of devices, OFDMA resource block allocation and device

scheduling policy. Then, the authors formulate an optimization
problem to maximize the convergence rate by jointly optimiz⁃
ing the transmitting power allocation, resource block alloca⁃
tion and scheduling policy. The optimization problem is
solved in a two-step manner: first obtaining the optimal trans⁃
mitting power of each device given the device scheduling and
resource block allocation; then using the Hungarian algorithm
to find the optimal device scheduling and resource block allo⁃
cation. As shown by simulations, the proposed method can re⁃
duce up to 10% and 16% loss function value, compared to: 1)
optimal device scheduling with random resource allocation; 2)
random device scheduling and random resource allocation, re⁃
spectively.
However, the convergence rate w.r.t. time, which is critical

for real-world FL applications, has not been addressed by
aforementioned works. To accelerate the FL training, the au⁃
thors of Ref. [37] propose to maximize the number of sched⁃
uled devices in a given time budget for each round, while the
stragglers are discarded to avoid slowing down the model ag⁃
gregation. The proposed greedy scheduling policy iteratively
schedules the device that consumes the least time in model
updating and uploading, until reaching the time budget. Al⁃
though the proposed scheduling policy is simple, their experi⁃
ments show that it is efficient and applicable to both non-i.i.d.
data distributions and heterogeneous devices.
Nevertheless, the time budget is chosen through experi⁃

ments and can hardly be adjusted under highly-dynamic FL
systems. To overcome this drawback, Ref. [16] proposes a
joint scheduling and resource allocation policy with fast con⁃
vergence for FL. Specifically, a latency-optimal bandwidth al⁃
location policy for local model updating and uploading is first
derived. Then given the set of scheduled devices and the laten⁃
cy-optimal bandwidth allocation, based on a known upper
bound of the number of required rounds to attain a fixed glob⁃
al accuracy, an upper bound of the time required to attain a
fixed global accuracy is derived. Finally, an iterative schedul⁃
ing policy is proposed that iteratively schedules the device
that minimizes the approximate time upper bound until the ap⁃
proximate upper bound begins to increase (i. e., scheduling
more devices makes the convergence time longer). Fig. 4
shows the highest achievable accuracy within a total training
time budge that equals to 300 seconds under different sched⁃
uling policies, including fast converge scheduling policy[16],
random scheduling policy with empirically optimal number of
scheduled devices (random-opt), client selection policy[37], and
proportional fair policy[35]. The experiments are conducted us⁃
ing non-i. i. d. distributed MNIST dataset, and it is assumed
that all devices are randomly located in a cell. With different
cell radius, the simulation results show that the fast converge
scheduling policy always outperforms other scheduling poli⁃
cies in terms of the convergence rate w.r.t. time, and is appli⁃
cable to non-i.i.d. data.
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4 Conclusions and Future Directions
This paper presents a brief introduction of FL in wireless

networks and in particular an overview on the scheduling poli⁃
cies for wireless FL. Firstly, the motivation of deploying FL in
wireless networks and the fundamentals of FL systems are in⁃
troduced. Then, a series of works in the FL systems with ana⁃
log aggregation are discussed, including device scheduling,
model sparsification and data redundancy. Afterwards, we pro⁃
vide an overview on another series of works in FL systems
with digital aggregation, including aggregation frequency adap⁃
tation, local accuracy tuning and device scheduling. However,
apart from the aforementioned works, there are still some chal⁃
lenges and future research directions in deploying FL in wire⁃
less networks:
1) Delayed CSI: In the existing works on analog aggrega⁃

tion, power alignment is based on perfect CSIs of devices.
While in practice, the server only has delayed CSIs of devices,
and how to align the transmission power of devices to mini⁃
mize the distortion of the aggregated model under delayed CSI
remains an open problem. To address this challenge, using the
recurrent neural network to predict instantaneous CSI accord⁃
ing to the historical CSI estimations may be a future direction.
2) Non-i.i.d. data distribution: Since the data distributions

of different devices are usually non-i. i. d. in practical wire⁃
less FL applications, it is crucial to design non-i.i.d. data dis⁃
tribution-aware scheduling policies. Although the non-i. i. d.
issue in FL systems with digital aggregation has been consid⁃
ered in Refs. [16], [29–30] and [37], none of them has pro⁃
posed any method to alleviate the accuracy degradation
caused by non-i.i.d. data. In the future, the data redundancy
introduced in Ref. [24] and the communication-efficient data
exchange technologies between different devices can be con⁃

sidered in FL systems with digital aggregation to
address the non-i.i.d. issue.
3) Convergence guarantee: FL is actually a dis⁃

tributed optimization algorithm that cannot always
guarantee to converge. Although most FL algo⁃
rithms empirically converge and several existing
works have provided convergence analysis for FL
with convex or strongly convex loss functions. The⁃
oretical analysis and evaluations on the conver⁃
gence of FL with generally non-convex loss func⁃
tions are still open problems.
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