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Abstract: The burgeoning advances in machine learning and wireless technologies are forg⁃
ing a new paradigm for future networks, which are expected to possess higher degrees of in⁃
telligence via the inference from vast dataset and being able to respond to local events in a
timely manner. Due to the sheer volume of data generated by end-user devices, as well as
the increasing concerns about sharing private information, a new branch of machine learn⁃
ing models, namely federated learning, has emerged from the intersection of artificial intelli⁃
gence and edge computing. In contrast to conventional machine learning methods, federated
learning brings the models directly to the device for training, where only the resultant param⁃
eters shall be sent to the edge servers. The local copies of the model on the devices bring
along great advantages of eliminating network latency and preserving data privacy. Never⁃
theless, to make federated learning possible, one needs to tackle new challenges that require
a fundamental departure from standard methods designed for distributed optimizations. In
this paper, we aim to deliver a comprehensive introduction of federated learning. Specifical⁃
ly, we first survey the basis of federated learning, including its learning structure and the
distinct features from conventional machine learning models. We then enumerate several
critical issues associated with the deployment of federated learning in a wireless network,
and show why and how technologies should be jointly integrated to facilitate the full imple⁃
mentation from different perspectives, ranging from algorithmic design, on-device training,
to communication resource management. Finally, we conclude by shedding light on some po⁃
tential applications and future trends.
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1 Introduction

The networking system is experiencing a paradigm shift
from a conventional cloud computing architecture that
aggregates the computational resources at a data cen⁃
ter, to mobile edge systems which largely deploy com⁃

putational power to the network edges to meet the demands
from mobile applications—which are most thriving today—
and support resource-constrained nodes reachable only over
unreliable network connections[1]. Moreover, along with the
burgeoning progress of machine learning research, it is expect⁃
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ed that by integrating machine learning algorithms to the
edge nodes, future networks will be able to utilize local data
to conduct intelligent inference and control on many activi⁃
ties, e. g., learning activities of mobile phone users, predict⁃
ing health events from wearable devices, or detecting burglar⁃
ies within smart homes[2].
However, as the data is usually generated at the end-user

devices, the sheer volume of the dataset as well as the rising
concerns about sharing private information often makes the us⁃
ers reluctant to send their raw data to the edge server for the
training of any model—even that can eventually benefit them
in return. In response to this dilemma, a new machine learn⁃
ing model has emerged, namely federated learning, that allows
decoupling of data acquisition and computation at the central
unit[3–5]. Specifically, rather than collecting all the data to a
central unit for training, federated learning brings the models
directly to the end-user devices for training, where only the re⁃
sultant parameters shall be sent to the edge servers that reside
in an edge node. This salient feature of on-device training
brings along great advantages of eliminating the large commu⁃
nication overheads as well as preserving data privacy, and
hence making federated learning particularly relevant for mo⁃
bile applications. These properties also identify the federated
learning as one of the most promising factors to an intelligent
mobile edge network[6–9].
Nevertheless, in order to deliver a successful deployment of

federated learning, one also needs to tackle new challenges
that require a fundamental departure from the standard meth⁃
ods designed for distributed optimization[3],[10]. Particularly, un⁃
like many traditional machine learning models, where an algo⁃
rithm runs on a large dataset partitioned homogeneously
across multiple servers in the cloud, the federated learning of⁃
ten operates in a mobile edge system, in which a server orches⁃
trates the training with a union of end-user devices, which
have non independent and identically distributed (i. i. d.) and
unbalanced dataset, and communicate over a resource-limited
spectrum[11–12]. In that regard, the staleness becomes more par⁃
amount to the training process[13] and security issues also arise
that make the learning architecture vulnerable[14]. Addressing
these issues requires joint studies from many aspects, includ⁃
ing the learning algorithm, system design, and communication
and information theory[15–16]. In response, Ref. [10] discussed
the possible directions to improve the training efficiency when
encountering with heterogeneous datasets. Moreover, Ref. [6]
investigated the end-to-end latency, reliability, and scalability
of a federated learning empowered edge network. In the partic⁃
ular context of deep learning, Ref. [8] explored the challenges
and approaches to integrate the learning algorithm into net⁃
work edge via a federated approach; Ref. [9] discussed a num⁃
ber of guidelines for the implementation of federated learning
with the wireless channels. With these efforts, the results are
fruitful: As will be detailed in Section 4, there are numerous
applications that can benefit a lot by adopting federated learn⁃

ing. To that end, the central thrust of this paper is to deliver a
comprehensive introduction to the federated learning system
as well as to appeal for more research devoted into this emerg⁃
ing field. It is also noteworthy that while a few surveys on the
topic of federated learning have been now available, our work
puts a particular focus on the integration of the wireless infra⁃
structures (such as the mobile edge network) as a supporting
platform and the federated learning as an operation system,
which ultimately achieves the network intelligence by jointly
running them together.
The remainder of this paper is organized as follows. In Sec⁃

tion 2, we introduce the basic structure and the defining char⁃
acteristics of a federated learning model. The techniques to
the core of a practical implementation of the federated learn⁃
ing system are elaborated in Section 3. Section 4 discusses the
potential applications and future trends of federated learning,
followed by the conclusion remarks in Section 5.

2 Federated Learning: Basis and Properties
In this section, we detail the basic architecture of a federat⁃

ed learning model running on the mobile edge system. A num⁃
ber of key features associated with such a setting will also be
presented.
2.1 Basic Architecture
As illustrated in Fig. 1[17], the network elements involved in

the federated learning include a central unit, e. g., the edge
server that resides at a base station or access point and a num⁃
ber of end-user devices, in which they collaboratively learn a
statistical model. The model is typically devised by a model
engineer for a particular application, with which the server
then orchestrates the training process with the end-user devic⁃
es by repeating the following steps[3–4].
1) Client selection: The server selects from a subset of its

clients, namely the end-user devices, which meet the eligibili⁃
ty requirements, e. g., mobile phones or tablets that currently
have a wireless connection, for one round of training.
2) Broadcast: The selected clients download the current

model, including the weights and a training program, from the
server for local computing.
3) End-user computation: Each selected device performs a

local computation, usually in the form of stochastic gradient
descend (SGD), for a given period, and uploads the resultant
parameters to the server.
4) Update aggregation: The server collects the updates from

the end-user devices—in the form of either trained parameters
or gradients—and aggregates, in general by a weighted aver⁃
age, the collected results.
5) Model update: The server locally updates the shared

model based on the aggregated update computed from the cli⁃
ents that participated in the current round.
After a sufficient number of training and update exchanges
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(usually termed as communication rounds) between the server
and the clients, the global statistical model is able to converge
to its optimal and the end users can benefit from a collabora⁃
tively learned model.
1) The advantage: By training via federated learning, end

users are able to directly download the model, perform com⁃
puting on the devices, and send back the resultant trained pa⁃
rameters; in this way, the end users decouple the necessity of
sharing local data and hence reserves privacy. Additionally,
the local training also abbreviates the upload of raw data,
which can be very large in size and consume a lot of energy for
the upload. To that end, the federated learning is particularly
relevant to wireless applications.
2) The challenge: The potential drawback of federated learn⁃

ing is also obvious. As the training is at a large scale amongst
heterogeneous entities, e. g., different end terminals can have
various processing power and communication conditions, the
learning efficiency can be much lower than that in a data cen⁃
ter. On top of this, the communication is often unreliable in
the federated learning environment and security issue is more
paramount under such a setting.
In the sequel, we will point out the possible directions to

overcome the crux and finally realize the potential of federated
learning. Before that, let us pause a while and clarify the most
distinguishing features of such a learning model.
2.2 Distinguishing Features
At the first sight, it might seem that the federated learning

is simply another format of distributed learning. These two ma⁃
chine learning models share several properties in common; for

instance, the computing is carried
out by a number of end terminals
and the terminals iteratively col⁃
laborate via a central entity. How⁃
ever, there are many more fea⁃
tures that distinguish the federat⁃
ed learning from those more con⁃
ventional models. We highlight
the key features of federated
learning as follows.
• Non-i. i. d. dataset: The most

distinct feature of federated learn⁃
ing is that the dataset of each end-
user device is highly personalized
and hence the dataset is usually
non-i.i.d. across users. The sourc⁃
es of the dependence and non-
identicalness are due to the fact
that data collected at each device
corresponds to a particular user, a
particular geographic location,
and/or a particular time period.
As such, unlike situations in the

conventional setup where the dataset is completely shuffled
and i. i. d., in federated learning, the non-i. i. d. structure may
lead to the local minimum of each device diverting from the
global minimum, and requires a rethinking of learning model
to take into account such differences in the process.
• Unbalanced data size: Aside from being non-i.i.d. distrib⁃

uted, the dataset of each end-user device also differs in size.
Therefore, the training procedure at each end terminal can be
highly unbalanced, because some terminals that have small
datasets can complete the training in a short period of time,
while those with large dataset sizes may take a longer time to
complete the local training. Moreover, due to the unbalanced
nature, some devices, e.g., those with a large dataset, may con⁃
tribute more to the overall model than others, and hence how
to account for such difference in the learning algorithm is also
important.
• Limited communication resources: As the communications

between end-user devices and a central entity often take place
at the network edge, where spectrum is the medium to conduct
communications, the transmissions are by nature unreliable.
Moreover, as the wireless resources are usually limited, it is
necessary to select the appropriate number of users each round
for the communication. All these can impose more significant
impact of staleness on the overall training efficiency.
• Privacy/security issues: Whilst learning under the federat⁃

ed setting abbreviates the sharing of local data, it does not
promise a perfect protection of privacy. In fact, one can still
extract leaky information from upload parameters and retrieve
the original information to an approximation extend[11]. More⁃
over, under the federated setting, the end-devices are more

▲Figure 1. Illustration of the network architecture, in which a mobile edge system is integrated with fed⁃
erated learning.
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vulnerable to malicious attacks in this case and it is easily for
some adversary users to inject malicious information into the
system.
Note that a marked property of many of the features/prob⁃

lems discussed above is that they are inherently interdisci⁃
plinary and solving them likely requires not just machine
learning, but also techniques from distributed optimization,
security, differential privacy, fairness, compressed sensing,
systems, information theory, statistics and more. In fact,
many of the hardest problems are at the intersections of these
areas and hence a cross-area study/collaboration is essential
to ongoing progress.

3 Towards Practical Implementation
As mentioned in the previous section, despite the potentials

to endow the mobile edge network with a higher degree of in⁃
telligence via federated learning, it requires a full cooperation
between computing and communication to realize the full po⁃
tential of such a scheme. In this section, we elaborate several
key aspects that we believe to be lying at the core of achieving
the final goal.
3.1 Efficient Learning Algorithms
The primary factor to the implementation of federated

learning is an efficient algorithm. Due to the non-i.i.d. nature
of the dataset, a model training process of the federated
learning can be very different from the conventional counter⁃
parts. In particular, unlike scenarios under the distributed
computing, where each end terminal possesses a statistically
identical model (namely the empirical loss function), in the
federated learning, each end-user device can have very dif⁃
ferent empirical loss due to the personalized dataset. As
such, the local minimum may differ from the global minimum
and the learning algorithm shall be reengineered to account
for this fact[10]. Besides, as the communication resource is
limited, the edge server can only choose a subset of users for
the update in each round of communication. Therefore, how
to select users appropriately also plays a critical role in the
overall learning efficiency[12].
3.1.1 Optimization and Model Aggregation
Because of the non-i. i. d. nature of user dataset, treating

all samples equivalently at the global model may not make a
solid sense. Therefore, how to craft a more appropriate objec⁃
tive function is an important aspect to research. Besides, the
current state-of-the-art training is mostly SGD-base, which
is well-known for slow converging. Therefore, how to devel⁃
op more effective algorithm will also determine the efficien⁃
cy of federated learning. Moreover, owing to the vast num⁃
ber, each device is likely to participate only a few rounds in
the training of a global model, so stateless algorithms are
necessary to investigate.
In the aggregation stage, the common approach is the Feder⁃

ated Averaging algorithm, an adaption of parallel SGD that
takes a weighted average of the collected parameters accord⁃
ing to their dataset size. While the effectiveness of such an ap⁃
proach has been demonstrated in different models, it is still
unknown whether this is the optimal way of aggregating param⁃
eters and further investigation is necessary.
3.1.2 Sampling and Client Selection
Due to the unbalanced structure of datasets as well as the

limited bandwidth, the sampling, of not just the data points for
computing but also the clients to conduct local trainings in
each communication round, plays a critical role that deter⁃
mines the overall learning efficiency. In particular, as each
end-user device may correspond to a specific local minimum
of empirical loss, spending a lot of time on the local training
may bear the risk of leading the parameters to diverge from
the global minimum. On the other hand, as the global commu⁃
nication can take up a much longer period than the local com⁃
puting, it is also desirable to reduce the communication
rounds. As such, how to strike a balance between local com⁃
puting and global communication is important to the efficien⁃
cy of federated learning. In response, it is suggested that the
sampling data size of each local training shall be adaptively
adjusted across the global learning period.
On top of the sampling of dataset for local training, in the

global aggregation stage, the edge server can only select a por⁃
tion of users out of the total due to the limited bandwidth avail⁃
able. Therefore, for the client, i.e., end-user device, selection
is also critical for the performance of federated learning. In
the context of mobile edge system, it has been shown that by
taking the channel quality into consideration and selecting the
end-user devices with the best channel qualities, the learning
efficiency can be effectively boosted up[12], as demonstrated in
Fig. 2. Besides, it is also important to take into account the
staleness and the significance of updates in the client selec⁃
tion stage[17].
3.2 Model Compression
Although the processing power of mobile devices has

surged over the last decade by the hardware revolution, these
terminals are still subject to power and storage constraints,
making it problematic to deploy the federated learning toward
a deep and large scale. The difficulty mainly attributes to two
reasons. One is that a deep neural network often consists of an
abundant amount of activation units and interconnecting
links, and hence training such a model will inevitably incur
excessive energy consumption and, if not worse, memory occu⁃
pation. The other is that, even the task of model training can
be accomplished at the user side, sending the resultant param⁃
eters, which are generally high dimension vectors, to the serv⁃
er requires not just high transmit power but also wide mobile
spectrum, which imposes very high communication cost. None⁃
theless, this does not mean one has no hope to adopt the most

UE1 UE2
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vulnerable to malicious attacks in this case and it is easily for
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for this fact[10]. Besides, as the communication resource is
limited, the edge server can only choose a subset of users for
the update in each round of communication. Therefore, how
to select users appropriately also plays a critical role in the
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3.1.1 Optimization and Model Aggregation
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solid sense. Therefore, how to craft a more appropriate objec⁃
tive function is an important aspect to research. Besides, the
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ber, each device is likely to participate only a few rounds in
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ated Averaging algorithm, an adaption of parallel SGD that
takes a weighted average of the collected parameters accord⁃
ing to their dataset size. While the effectiveness of such an ap⁃
proach has been demonstrated in different models, it is still
unknown whether this is the optimal way of aggregating param⁃
eters and further investigation is necessary.
3.1.2 Sampling and Client Selection
Due to the unbalanced structure of datasets as well as the

limited bandwidth, the sampling, of not just the data points for
computing but also the clients to conduct local trainings in
each communication round, plays a critical role that deter⁃
mines the overall learning efficiency. In particular, as each
end-user device may correspond to a specific local minimum
of empirical loss, spending a lot of time on the local training
may bear the risk of leading the parameters to diverge from
the global minimum. On the other hand, as the global commu⁃
nication can take up a much longer period than the local com⁃
puting, it is also desirable to reduce the communication
rounds. As such, how to strike a balance between local com⁃
puting and global communication is important to the efficien⁃
cy of federated learning. In response, it is suggested that the
sampling data size of each local training shall be adaptively
adjusted across the global learning period.
On top of the sampling of dataset for local training, in the

global aggregation stage, the edge server can only select a por⁃
tion of users out of the total due to the limited bandwidth avail⁃
able. Therefore, for the client, i.e., end-user device, selection
is also critical for the performance of federated learning. In
the context of mobile edge system, it has been shown that by
taking the channel quality into consideration and selecting the
end-user devices with the best channel qualities, the learning
efficiency can be effectively boosted up[12], as demonstrated in
Fig. 2. Besides, it is also important to take into account the
staleness and the significance of updates in the client selec⁃
tion stage[17].
3.2 Model Compression
Although the processing power of mobile devices has

surged over the last decade by the hardware revolution, these
terminals are still subject to power and storage constraints,
making it problematic to deploy the federated learning toward
a deep and large scale. The difficulty mainly attributes to two
reasons. One is that a deep neural network often consists of an
abundant amount of activation units and interconnecting
links, and hence training such a model will inevitably incur
excessive energy consumption and, if not worse, memory occu⁃
pation. The other is that, even the task of model training can
be accomplished at the user side, sending the resultant param⁃
eters, which are generally high dimension vectors, to the serv⁃
er requires not just high transmit power but also wide mobile
spectrum, which imposes very high communication cost. None⁃
theless, this does not mean one has no hope to adopt the most

05



Special Topic Enabling Intelligence at Network Edge: An Overview of Federated Learning

Howard H. YANG, ZHAO Zhongyuan, Tony Q. S. QUEK

ZTE COMMUNICATIONS
June 2020 Vol. 18 No. 2

fruitful achievement of machine learning, namely the deep
neural network, in the federated setup. Two powerful ap⁃
proaches shed the light for overcoming the setbacks:
1) Architecture compression: This approach aims to save

the cost from the computing perspective of neural network via
pruning the connecting links and shrinking the size of the net⁃
work[7]. The idea of link pruning stems from the fact that the
majority of links connecting different layers of neurons are
usually associated with very small weights. In order words, the
most effective component of a neural network is architectural⁃
ly sparse. Therefore, it is feasible to mute a number of links
that have small weights—so as to skimp on the caching memo⁃
ry—without affecting the overall accuracy. Moreover, despite
the unprecedented success brought by deep learning, there
are many applications in which using a small neural network
is able to achieve as good the performance as a large one. As
such, directly reducing the size of neural network at the user
side is also an appropriate choice to attain marked savings in
both energy and memory consumption.
2) Gradient compression: This approach tackles the issue

from the perspective of communication, by trading the estima⁃
tion accuracy for better communication efficiency. In particu⁃
lar, by noticing that practical applications of machine learning
often do not require very high accuracy, one can compress the
high-dimension trained gradients (which can include millions
of coefficients) into low dimension surrogates via different lev⁃
els of quantization[18–19]. As a result, the packet size to encap⁃
sulate the trained results can be significantly reduced, which
not only saves the radiated power at each device, but also fa⁃
cilitates the decoding process at the server. It is noteworthy
that to balance the tradeoff between communication cost and
training accuracy, the level of quantization shall be adapted to

the particular location of a user. For instance, for users locat⁃
ed in proximity to the edge node, they can conduct less quanti⁃
zation and maintain the high accuracy of the results, while for
those located far away, they shall compress the trained results
more aggressively in order to succeed the communication and
engage in the training process.
A complete process of model compression is illustrated in

Fig. 3; we can see that it is feasible to remove a number of
links with small weights in the neural network. Moreover,
some neurons with only a few connections can also be muted.
The architecture compression can thus transform the learning
model into a sparse version, which can achieve almost the
same performance as the original neural network. Another part
is associated with the gradient compression, as the generated
forms of parameters are often continuous with long digits,
which are not suitable for the transmissions via wireless chan⁃
nels. By using appropriate quantization methods, the data vol⁃
ume of the update results can be significantly reduced, which
not only saves the power consumption of end-user devices, but
also facilitates the decoding procedure at the server side. To
mitigate the impact of quantization noise, sophisticated param⁃
eter strategies are also necessary to minimize the model accu⁃
racy loss. It is worthwhile to mention that due to potential fail⁃
ure and retransmissions, the weights before and after the en⁃
coding/decoding process may appear in different orders. None⁃
theless, the server can still leverage the sequential number to
rearrange the weights before the global aggregation.
3.3 Advanced Communication and Networking Techniques
It has become a consensus that the communication efficien⁃

cy is also one of the first-order concerns of federated learning,
particularly due to the fact that the training involves a vast

number of end-user device communications
through a limited wireless bandwidth. In that
respect, the technologies that enhance the spec⁃
tral efficiency can be a critical solution to this
dilemma. Specifically, the development of new
technologies, e. g., the massive multiple input
multiple output (MIMO), full duplex or non-or⁃
thogonal multiple access (NOMA), that are able
to support more channel accesses over the
same bandwidth will facilitate the deployment
of federated learning. For instance, by deploy⁃
ing an excessive number of antennas at the
base station, multiple devices can be simulta⁃
neously selected for parameter update in each
round of communication, which, as demonstrat⁃
ed by a number of literatures, can help acceler⁃
ate the convergence of federated learning algo⁃
rithm. In a similar spirit, one can also leverage
the techniques from full duplex or NOMA to in⁃
crease the number of updates collectible in
each global aggregation and hence speedup the▲Figure 2. Test accuracy of federated learning under different scheduling policies.
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training process. Besides, the ultra-reliable low latency com⁃
munication (URLLC) that reduces the latency in the transmis⁃
sion is also a good candidate for more real-time learning tasks.
A joint design that takes in the processing power and commu⁃
nication capability from both sides will also enhance the oper⁃
ation efficiency[15–16], [20–22].
Aside from communication efficiency, advanced networking

technology is also important for the federated learning. In gen⁃
eral, the federated learning involves a central server that or⁃
chestrates the training process and receives the contributions
of end-user devices. Being as a central player, the server also
represents a potential point of great failure[10]. As such, even
though large companies or organizations can take this role in
certain applications, a reliable and powerful central server
may not always be available in more collaborative learning
scenarios. Moreover, the server may even become a bottleneck
when the number of clients is very large. To that end, it is sug⁃
gested to replace communication with the server by a more dis⁃
tributed manner, namely peer-to-peer communication between
individual devices. For that reason, advanced device-to-de⁃
vice (D2D) communication and interference management
schemes can be a dominant factor to the overall performance.
The self-organized networking techniques may have signifi⁃
cant influence on the performance.
3.4 Privacy Preserving Technologies
Despite the raw data is not explicitly shared in the context

of federated learning, it is still possible for adversaries to re⁃
trieve the original information to an approximation extend, es⁃

pecially when the learning architecture and parameters are
not completely protected. In fact, due to the share nature of
wireless medium, the intermediate results such as parameter
update from an optimization algorithm are exposed during the
transmission, which may leak out private information. More⁃
over, the existence of malevolent users may incur further secu⁃
rity issues. Therefore, the design of federated learning into a
mobile edge system needs further protection of parameters as
well as investigations on the tradeoffs between the privacy se⁃
curity-level and the system performance[23].
In the federated learning process, there exists several fatal

points that have privacy and security issues. We enumerate
them into the following categories[14].
3.4.1 Privacy Protection at User Side
In a federated learning algorithm, end users need to itera⁃

tively upload their learning results to the edge server for glob⁃
al aggregation, but these users may not trust the server since a
curious entity might take a look at the uploaded parameter to
infer the underlined information. To address this concern, the
end users can employ some privacy-preservation technologies
as follows.
1) Perturbation: The idea of perturbation is adding noise to

the uploaded parameters by clients. This line of work often us⁃
es differential privacy[24] to obscure certain sensitive attributes
until the third party is not able to distinguish the individual,
thereby making the data impossible to be restored so as to pro⁃
tect user privacy.
2) Dummy: The concept of dummy method stems from the

▲Figure 3. Basic flow of model compression in the federated learning system.
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location privacy protection. By sending dummy model parame⁃
ters along with the true one to the server, the end users can
thus hide their contribution during training. Because of the ag⁃
gregation processed at the server, the system performance can
still be guaranteed.
3.4.2 Privacy Protection at Server Side
After collecting the updated parameters from the end-user

devices, the server generally performs a weighted average to
produce a new model. However, when the server broadcasts
the aggregated parameters back to the users, the information
may leak out as there may exist eavesdroppers. Thus, protec⁃
tions at the server side are also of significance.
1) Privacy-enabled aggregation: While the general purpose

of aggregation at the server side is to produce an improved
learning model, it is possible to scramble parameters before
aggregating or enlarging the set of collected clients, which can
prevent the adversaries or untrusted server from inspecting cli⁃
ent information according to the aggregated parameters.
2) Secure multi-party computation (SMC): The central idea of

SMC is to use encryption to increase protection of user updates,
instead of only revealing the sum after a sufficient number of
updates. Specifically, SMC is a four-round interactive protocol
optionally enabled during the reporting phase of a given com⁃
munication round. In each protocol round, the server gathers
messages from all devices, and then uses the set of device mes⁃
sages to compute an independent response and return to each
device. The third round constitutes a commit phase, during
which devices upload cryptographically masked model updates
to the server. Finally, there is a finalization phase during which
devices reveal sufficient cryptographic secrets to allow the serv⁃
er to unmask the aggregated model update.
3.4.3 Security Protection for Learning Framework
This aspect mainly considers the model stealing

attacks. In particular, any participant in the train⁃
ing process may introduce hidden backdoor func⁃
tionality into the global model, e.g., to ensure that
an image classifier assigns an attacker-chosen la⁃
bel to images with certain features, or that a word
predictor completes certain sentences with an at⁃
tacker. Consequently, there are also some protect⁃
ing measures on the security design for this.
1) Homomorphic encryption: Homomorphic en⁃

cryption aims to protect the parameter exchange
process via encryption mechanism, by means of en⁃
coding the parameters before upload, and to trans⁃
mit along with the public-private decoding keys for
the intended entity to decipher.
2) Back-door defender: This is a crucial issue

with the federated learning, as a malicious user
may act as an innocent user but injecting certain
parameters to pollute the global parameter. In con⁃

sequence, other end-user devices may encounter severe mal⁃
functioning and breakdown. Therefore, effective approaches
shall be developed to protect the users from these attacks.
In order to illustrate the impact of malicious attacks on the

performance of federated learning, we carry out an experiment
(Fig. 4[14]). Particularly, a convolutional neural network (CNN)
is set up with 30 end-user devices participated in, whereas the
malicious clients will upload fake values of parameters in
each communication round. It can be seen that the system per⁃
formance can significantly curtail by malicious attacks, and
even enter a breakdown when there are too many malicious cli⁃
ents participating in. As such, security is of significant to the
performance of federated learning.
While we have listed out several concerns on the implemen⁃

tation of federated learning and the approaches to address
these issues, another important practical consideration for fed⁃
erated learning is the composability of these methods. The
schemes of tackling each of these aspects shall not be devised
in isolation but need to be combined with each other. For in⁃
stance, the efficient learning algorithm will need to be de⁃
signed in consideration of learning efficiency as well as priva⁃
cy preserving. Also, the model compression shall also be con⁃
tended with privacy preserving.

4 Potential Applications and Future Trends
The future trends of mobile edge networks are to integrate

the supply and demand of services, being able to identify a
particular application to the network and respond promptly.
By employing the federated learning as an operational system
to the network architecture, a more intelligent network system
can be foreseen in the future[2].

▲Figure 4. Performance of federated learning with different malicious users.
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From the perspective of network architecture, the federat⁃
ed learning can be integrated with content caching and edge
computing at the edge of a mobile network to reduce back⁃
haul traffic loads. The general idea of caching at the network
edge is, when availed with a priori information of each indi⁃
vidual preference distributions, to optimally place the de⁃
sired content resource in the edge server so as to respond to
user request more swiftly. It thus simultaneously enhances the
energy efficiency, reduces the service latency, and relieves
the backhaul load. Despite such benefits, the gain from cach⁃
ing alone is only pronounced when the users’preference dis⁃
tributions are a priori and highly homogeneous, i.e., the users
tend to request the same contents. These two constraints, how⁃
ever, are less likely to be satisfied in next-generation wire⁃
less applications that possess a higher degree of heterogene⁃
ity. On one hand, the users’preference distributions vary
drastically across time and space, thus making them extreme⁃
ly difficult to be estimated and tracked, especially when the
number of mobile devices becomes large. On the other hand,
in practice, the users’preference distributions are highly di⁃
verse due to the personality differences. Therefore, conven⁃
tional model-base designs may not be suitable for such a task
because it is not capable of considering multitude of factors
that influence content popularity. Moreover, directly access⁃
ing the privacy-sensitive user data for content differentiation
may not be possible in practice. Federated learning with the
premise of utilizing the locally trained models rather than di⁃
rectly accessing the user data seems to be a match made in
heaven for content popularity prediction in proactive caching
in wireless networks. For instance, in augmented reality
(AR), federated learning can be used to learn certain popular
elements of the augmentations from the other users without
obtaining their privacy-sensitive data directly. This popular
information is then pre-fetched and stored locally to reduce
the latency.
From the perspective of resource management[6], the feder⁃

ated learning paradigm can be used to improve the spectrum
sensing efficiency, and thus fl exible and adaptive sharing
and reuse strategies can be implemented to the communica⁃
tion system. Apart from the radio access, the next-generation
network needs to deal with more volatile traf fi c conditions.
Along with the warp speed of progress of mobile applica⁃
tions, different types of traf fi c, which may be bursty, long-
lasting, or with short packet size, coexist in the network. Con⁃
sequently, centralized strategies, where information about
traffic pattern is gathered in the database of a server to infer
the circumstance, may not always be appropriate. Therefore,
the future of network traffic management will be dependent
on the decentralized training approaches such as the federat⁃
ed learning. In this context, the on-device training can pro⁃
vide more real-time reaction to schedule the traffic of the
most appropriate users. A specific instance of application is
the coexistence of dedicated short-range communication and

cellular-connected vehicle-to-everything in the same intelli⁃
gent transport systems.
Finally, from the perspective of end user applications, fed⁃

erated learning is expected to find many landing grounds.
For instance, by equipping sensors with federated learning
algorithms, one can construct a local Internet-of-Things (IoT)
network with intelligent monitoring system that can quickly
identify certain events and quickly respond to them. Hospi⁃
tals, if endowed with a federated learning system for disease
monitoring, might increase the doctors’intention to share in⁃
formation and prevent certain catastrophe in the early stage.
In the area of retailing, the federated learning system can le⁃
verage data from a wild range of entities to increase the accu⁃
racy of prediction on demands, and thus help providers/own⁃
ers prepare supplies in a proper manner. In self-driving cars,
information related to traffic can be learned through vehicles
on the road using federated learning and stored in the road-
side units, which facilitates the efficiency of an autonomous
driving operation system.
Notably, a number of future studies immediately follow

from the above discussions. For instance, one can investi⁃
gate how to adopt the federated learning to inference the dis⁃
tribution of local demand so as to provide appropriate guid⁃
ance on the allocation of caching contents on the network
edge that can reduce communication burden. In the context
of mobile resource management, how to leverage the federat⁃
ed learning to extract the individual traffic distributions to
further benefit the allocation of global spectral resources is
also a concrete direction. To sum up, the integration of feder⁃
ated learning and mobile edge network can provide a unified
platform to support a variety of applications, and we also ad⁃
vocate for subsequent studies to build up the federated intel⁃
ligence ecosystem.

5 Conclusions
In this paper, we provided an overview to the federated

learning system. Specifically, we elaborated the basic architec⁃
ture of the federated learning model and the salient features,
in particular the non-i.i.d. and unbalanced dataset, unreliable
and limited communication resource, as well as privacy and
security issues, that distinguish it from the conventional ones.
Furthermore, we presented a number of practical approaches
that enable the implementation of federated learning into a mo⁃
bile edge system. Among them, we emphasized the importance
from aspects of algorithm design, model compression and com⁃
munication efficiency. Lastly, we presented several applica⁃
tions that are most foreseeable to benefit from applying feder⁃
ated learning. In summary, we believe that federated learning
is one of the building blocks in achieving an intelligent net⁃
work and we expect that more interesting research issues will
appear in this area.
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