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Abstract: Converged communication and radar sensing systems have attained increasing at⁃
tention in recent years. The development of converged radar-data systems is reviewed, with a
special focus on millimeter/terahertz systems as a promising trend. Firstly, we present histori⁃
cal development and convergence technology concept for communication-radar systems, and
highlight some emerging technologies in this area. We then provide an updated and compre⁃
hensive survey of several converged systems operating in different microwave and millimeter
frequency bands, by providing some selective typical communication and radar sensing sys⁃
tems. In this part, we also summarize and compare the system performance in terms of maxi⁃
mum range/range resolution for radar mode and Bit Error Rate (BER) /wireless distance for
communication mode. In the last section, the convergence of millimeter/terahertz communica⁃
tion-radar system is concluded by analyzing the prospect of millimeter-wave/terahertz tech⁃
nologies in providing ultrafast data rates and high resolution for our smart future.
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1 Introduction

The invention of radio ushered the history of mankind
into a new era, and wireless communication and radar
sensing are two prominent types of radio applications.
Radar detection plays an important role in our daily

life. Up to date, it has been used to cover different aspects of
requirements with its distinctive properties. For instance,
SHERRIF et al. used 94-GHz Frequency Modulated Continu⁃
ous Wave (FMCW) radar to invent a powered wheelchair in
2017 which can help the handicapped to improve their mobili⁃
ty when facing some inconvenient phenomena, such as enter⁃
ing in a building with non-barrier-free areas [1], and ZHANG
et al. realized hand gesture recognition using double channels
5. 8 GHz Doppler-radar [2].
In order to recognize targets more accurately, the tendency

pushes the radar frequency into higher bands, such as the
millimeter-wave band, even the terahertz band. Besides
that, millimeter-wave and terahertz are indeed more resistant
to fog, snow, and other natural conditions than presently
available laser radar. The first application of the millimeter
wave in the radar was traced back in 1958, when C. W. TOL⁃
BERT used a millimeter radar to successfully receive 8. 6
mm (34. 8 GHz) and 4. 3 mm (69. 7 GHz) signals reflected
from a phantom target [3]. After that, many researchers de⁃
voted themselves to explore this specific area. For example,
an active millimeter-wave radar system operated over the fre⁃
quency band 15– 40 GHz was used to obtain information
about the structure of dressing materials and hand support
cast [4], and a millimeter-wave radar permits short-range,
high-resolution detection and imaging of the airport movement
area for safety [5].
Moreover, the fast growing industry researches for remote

sensing applications, such as Light Detection And Ranging
(LIDAR), which can provide high resolution and be used for
the mapping and monitoring of wetland to monitor sea levels.
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By comparison, terahertz sensing technology has some advan⁃
tages, as terahertz waves provide better capability of penetrat⁃
ing some materials, less atmospheric disturbance as well as
less difficulty in tracking the beam.
The territory of wireless communication was traced back to

1880, when Alexander invented and patented a particular tele⁃
phone that conducted audio conversations wirelessly over mod⁃
ulated light beam. In the modern era of wireless communica⁃
tion, 5G technologies are currently widely researched in the
international academia and industry, targeting a downloading
speed of up to 10 Gbit/s. However, it has been reported that
by 2020, the number of connecting wireless devices will ex⁃
ceed more than 20 million, which must have a stringent de⁃
mand of more frequency spectrum resources.
Moving forward, new technologies to converge communica⁃

tion-radar systems would be highly appreciated. Definitely,
this further development will not only enable the efficient us⁃
age of the spectrum, but also bring about many benefits includ⁃
ing architecture unification and simplification, functional re⁃
configuration, energy enhancement, as well as cost reduction.
The early work on fusing wireless communication and radar
sensing was reviewed in 1987, when the NASA space shuttle
orbiter was operated either as a radar system for rendezvous
with other space vehicles, or as a two-way communication sys⁃
tem with the ground through the tracking and data relay satel⁃
lite system [6]. After that, the converged radar-communica⁃
tion system has made tremendous progress and combined with
numerous emerging technologies for enhancing its perfor⁃
mance. Up to date, the radar resolution in such joint systems
has been retained up to centimeter level [7], and the data rate
gets to over 10 Gbit/s in a photonic system [8].
The rest of this paper is organized as follows. An overview

of convergence technology for joint system design is reviewed
in Section 2. Several selective demonstrations of joint systems
and their performances comparison are presented in Section
3. In Section 4, a concept of integrating millimeter-wave/tera⁃
hertz radar sensing and wireless communication is highlight⁃
ed. Finally, we give the conclusion in Section 5.

2 Overview of Convergence Technology for
Converged Systems
Under specific circumstances, it is quite difficult to precisely

combine different functions required to operate communication
and radar systems simultaneously. To cope with this problem,
convergence operations are typically done using reconfigurable
circuits based on software programming, and hence provide a
good flexibility to implement joint system operation together.
2.1 Communication-Radar Convergence Schemes
Table 1 summarizes some typical single and multi-carrier

communication-radar convergence schemes that have been re⁃
cently proposed in [7], [9]–[18]. Integrating wireless and sens⁃

ing functions within a single platform helps reduce system cost
and complexity as well as increase operational reliability. For
single carrier systems, communication and radar signals are di⁃
vided into the frequency domain [17], code domain [7], [19] and
time domain [18], [20], [21], while multiple carrier techniques
are also employed to achieve multifunctionality [22]. The code
domain (spread spectrum) in single carrier systems is a popular
technique that was first implemented for two-way transmission
system for vehicular communication and ranging applications
[23]. Spread spectrum techniques have been exploited for con⁃
vergence functions such as direct-sequence spread spectrum
(DSSS) [7], [23]– [26] and Chirp Spread Spectrum (CSS) [19].
Code based schemes provide secure communication and high
resolution ranging at the price of excessive spectrum resources
utilization for data communication. Moreover, different users
share the same frequency band simultaneously but using differ⁃
ent codes, which is beneficial for multiuser application scenari⁃
os. However, the spread spectrum techniques have two main
disadvantages for radar ranging and Doppler estimation. One is
limited peak to side-lobe ratio caused by imperfect autocorrela⁃
tion features of codes and the other is a huge computational time
required by the spread spectrum technique for Doppler process⁃
ing. Generally, the spread spectrum technique is more complex,
costly and less efficient in view of system implementation.
Similarly, in multicarrier systems, the Orthogonal Frequen⁃

cy-division Multiplexing (OFDM) technique is the most favor⁃
able choice and has been widely used for communication and
radar systems. The main advantage of OFDM technique is
that it resolves the problem of radar ranging and Doppler pro⁃
cessing [27], [28] compared with its counterparts. In recent
years, several signal processing techniques have been pro⁃
posed and implemented. In the beginning, matched filters
were used to execute range and Doppler estimation in [29]–
[34]. OFDM processing algorithms were proposed [35]– [38]
to counter low dynamic range and preserve the resolution and
processing gain of correlation based processing method. Ad⁃
vanced OFDM algorithms for joint range and Doppler estima⁃
tion have much higher dynamic range than the spread spec⁃
trum approach in view of high Signal-to-noise Ratio (SNR) lev⁃
el. Moreover, the OFDM technique is efficient in estimating
the Doppler frequency from the target range. The OFDM tech⁃
nique requires complex signal processing, and high peak-to-
average power increases its implementation cost and still hin⁃
ders its widespread applications.
Time domain duplex has also attracted research interest due

to its high spectral efficiency, easy system implementation and
low cost [18], [20], [21], [39], [40]. This scheme minimizes mu⁃
tual interference as radar and communication functions operate
independently. Subsequently, various kinds of waveforms and
modulation techniques for converged systems can be applied,
respectively, according to the application scenarios.
On the other hand, Radio-over-Fiber (RoF) technology has

also become the exciting research area for military and high
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speed sensing applications [41]. The OFDM technique has al⁃
so been used in RoF system for efficient utilization of spec⁃
trum and less inter-symbol interference. Recently, 30 GHz
converged OFDM communication and radar sensing system
has been reported in [8].
Generally, radar systems can be classified as Continuous-

wave (CW) and pulsed modes. FMCW and Linear Frequency
Modulated (LFM) pulses are categorized under CW and pulse
radar, respectively. FMCW radars have been widely used in
the automobile field, and have their distinctive features of low⁃
er emission-peak-power, simple modulation and signal pro⁃
cessing, and low cost. The FMCW radars have been demon⁃
strated in synthetic aperture radar systems [42], radar imaging
[43]– [45] and range localization [46], [47]. Another impor⁃
tant kind of CW radar is Frequency-Stepped Continuous
Wave (FSCW), as demonstrated in [48], [49]. FSCW tech⁃
nique is more suitable for Ground Penetrating Radar (GPR)
since it has such advantages as wide dynamic range, high
mean power, low noise figure and probably the most important
one, the possibility of shaping the power spectral density [50].
It is important to note that FMCW and FSCW radar waveforms
are mostly used in time domain duplex scheme due to its low
cost and easy implementation.
With regard to pulse radar systems, pulse modulation realiz⁃

es signal oscillation that only occurs at a specified time inter⁃
val. LFM signals have been widely used in pulse radar sys⁃
tems [51], [52] featuring some advantages, such as non-sensi⁃
tive to the Doppler frequency shift of echo, simple radar signal

processing, superior range resolution, and radial velocity reso⁃
lution. Besides that, Non-Linear Frequency Modulation
(NLFM) [53], phase encoding [54], and time-frequency encod⁃
ing [55] are supplement technologies of pulse modulation.
In converged systems, digital modulation techniques have

also been employed for better quality and efficient communi⁃
cation and hence achieve good system performance. Digital
modulation provides benefits over analog modulation includ⁃
ing available bandwidth and has better noise immunity. In
this paper, we generally discuss the modulation techniques
listed in Table 1. The Pulse Position Modulation (PPM) for⁃
mat, implemented non-coherently, is suitable for optical com⁃
munication. However, this format has multipath interference
and synchronization problem. Differential Quadrature Phase-
shift Keying (DQPSK) technique has been used to avoid the
problem associated with lack of phase synchronization be⁃
tween transmitter and receiver. Continuous Phase Modulation
(CPM) modulates the data bits in a continuous manner and
therefore has high spectral efficiency. This is particularly im⁃
portant in wireless communication where bandwidth is expen⁃
sive. Similarly, other simple modulation formats like Binary
Phase Shift Keying (BPSK), On-Off Keying (OOK) and fre⁃
quency Shift Keying (FSK) have been commonly used in wire⁃
less and optical communication. Both BPSK and OOK have
the same bandwidth and not suitable for high data rates appli⁃
cations. The FSK technique occupies more spectrum and is
used for high frequency radio applications. The MSK format
encodes each bit as a half sinusoid and reduces non-linear dis⁃

▼Table 1. Summary of fusion technology

Electronics

Photonics

Method Type

Joint Waveform

Time-Domain Duplex

---

System Type

Single Carrier

Multiple Carrier

---

Multiple
Carrier

Domain
Frequency

Code

---

Time

---

Radar Mode
Pulse (DSSS)
Pulse (DSSS)

Pulse
Pulse (DSSS)
Pulse (CSS)
Pulse (OFDM)

Pulse
Pulse (OFDM)
CW (SFCW)
Trapezoidal
FMCW
FMCW

Trapezoidal
FMCW

Pulse (OFDM)

Communication Mode
ASK
MSK
DQPSK
PPM
QPSK
PSK
CPM
OFDM
DPSK
BPSK
FSK
PSK

16-QAM

Year
2002
2016
2007
2010
2011
2017
2017
2009
2015
2011
2008
2013

2017

Reference
[23]
[12]
[17]
[7]
[16]
[11]
[13]
[60]
[14]
[9]
[18]
[15]

[8]

ASK: Amplitude Shift KeyingBPSK: Binary Phase Shift KeyingCPM: Continuous Phase ModulationCSS: Chirp Spread SpectrumDPSK: Differential Phase Shift KeyingDQPSK: Differential Quadrature Phase⁃shift Keying

DSSS: Direct⁃Sequence Spread SpectrumFMCW: Frequency Modulated Continuous WaveFSK: Frequency Shift KeyingMSK: Minimum⁃shift KeyingOFDM: Orthogonal Frequency⁃Division MultiplexingPPM: Pulse Position Modulation

PSK: Phase Shift KeyingQAM: Quadrature Amplitude ModulationQPSK: Quadrature Phase Shift KeyingSFCW: Stepped Frequency Continuous Wave
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erated OFDM signal is up-converted and amplified in the an⁃
alog front-end section. The transmitted signal bandwidth is
7– 8 GHz, aiming at airborne radar sensor networks. The
experimentally obtained range resolution is about 0. 30 m,
which agrees very well with theoretical range resolution. It
should be noted that the effective bandwidth is only 500
MHz when calculating the theoretical range resolution. In
addition, data transmission capability is 57 Mbit/s by using
64 sub-carriers.
3.3 Duplex Time-Domain

System
Fig. 3 shows a pro⁃

posed time domain duplex
system based on Trapezoi⁃
dal Frequency Modulated
Continuous Wave (TFM⁃
CW) for radar and Binary
Phase Shift Keying
(BPSK) for communica⁃
tion [9].
In the radar mode, a Di⁃

rect Digital Synthesizer
(DDS) is used to deal with
the transmitted signal,
which is then filtered and
up converted to an Inter-
mediate Frequency (IF) sig⁃
nal. Further, the IF signal
is split into two portions:
one is converted to a Radio
Frequency (RF) signal and
then radiated via the trans⁃
mitting antenna; the other
is preserved for demodula⁃
tion. On the receiver side,
the reflected RF wave cap⁃
tured by the receiver anten⁃
na is converted back into
the IF domain after amplifi⁃
cation, which as a result is
mixed with the preserved
one for evaluating the
range and velocity of the
target.
In the communication

mode, the modulated sig⁃
nal is transmitted in the
same way as in the radar
mode. The BPSK modula⁃
tion format is selected for
enhancing the noise and
distortion tolerance.

This system operates within the frequency range from
24. 075 GHz to 24. 175 GHz. The demonstrated data rate is
50 Mbit/s with measured BER of less than 10-6, and mean⁃
while, the maximum detectable radar range is 100 m with a
range resolution of 1. 5 m, which indicates the maximum
measurable velocity is approximately 260 km/h.

Fig. 4a represents the physical photograph of the radar
mode of duplex time domain system and shows six targets
and their arrangements in front of the system. Fig. 4b shows

tortion. On the other hand, the Quadrature Amplitude Modu⁃
lation (QAM) format supports high data rate applications and
has been widely used in modern wireless and optical fiber
communications. Various combinations of amplitude and
phase have been employed to achieve high data rates.
Hence, it is important to choose an appropriate combination

of modulation formats, which should enable system optimiza⁃
tion and performance improvement.
2.2 Single Carrier and Multiple Carrier Systems
Converged communication-radar systems can be also classi⁃

fied on the basis of carrier types, such as single carrier and
multiple carrier. Certainly, both of these two methods have
their respective advantages and drawbacks.
From Table 1, we can see that single-carrier systems have

been paid more attention due to their simplicity, more stability
and relatively mature technology compared with other systems
[12], [16], [17]. However, their drawbacks are obvious as
well. Spectrum overlapping between radar and communica⁃
tion signals, particularly with data transmission at high data
rates, may lead to inter-symbol interference, and as a conse⁃
quence the system is not extensively used.
Multiple-carrier based schemes, especially OFDM has been

widely used in the wireless communication system, as it shows
superiority compared with single-carrier in terms of high spec⁃
tral efficiency, strong rigidity to inter-symbol and inter-chan⁃
nel interference. However, OFDM technology uses subcarrier
modulation, which consequently requires costly and complex
transceiver design and implementation. The OFDM tech⁃
nique has also been proposed in the design of radar waveform
[56], and has been demonstrated in a Multiple Input and Mul⁃
tiple Output (MIMO) radar system [57], for multiple target de⁃
tection and estimation [58] and drone detection [59], etc. It is
worthwhile to note that an OFDM based radar system does not
have the range-Doppler estimation which may have serious in⁃
fluence on the precision of range finding [27], [28].

3 Demonstration of Various Joint Systems
In past years, several converged communication and radar

systems have been developed. In this section, we selectively
present some joint systems that operated in different micro⁃
wave and mm-wave frequency bands. Single and multi-carri⁃
er based converged systems listed in Table 1 are simple and
low cost design and provide more consistent performance for
both radar and communication modes. Moreover, their practi⁃
cal implementation and system performance of both communi⁃
cation and sensing functions are also discussed and their per⁃
formance will be compared at the end of this section.
3.1 Single Carrier System
As an example, a single transceiver was proposed to work for

two modes in [7], serving as a communication device and a lo⁃
cation detector simultaneously. Fig. 1 shows the experimental

system based on PPM that was conducted for communication
and accurate location finding based on time reversal pro⁃
cess. In this setup, the communication and radar mode rang⁃
es are 10 m and 3 m respectively. A 60-GHz system with ap⁃
proximately 300 ps pulse width and modulated signal almost
of 3 GHz bandwidth obtained an experimental result for a da⁃
ta rates of up to 200 Mbit/s with measured bit error rate
(BER) of less than 10-6. This system prototype realizes 10 m
wireless communication and a radar range resolution of
12. 4 cm within the scope of 3 m. To alleviate the multipath
interference, a synchronizer was used in the setup to syn⁃
chronize the incoming signals received from other sensors.
3.2 Multiple Carrier System
As aforementioned, MIMO technology has been widely used

in both communication and radar systems [10]. MIMO system
typically uses OFDM. This multiplexing technique is used to
ensure the separation of each frequency component in order to
overcome multi-path interference, which is challenging for the
implementation of MIMO systems [57]. For illustration pur⁃
pose, an OFDM based system is presented here [60].

Fig. 2 shows the joint system based on MIMO technology
and this system was setup in the laboratory range of 5 m for
both radar and communication modes although the communi⁃
cation mode range could be made more than 10 m. The gen⁃

LNA: Low-Noise AmplifierMPA: Medium Power AmplifierSHA: Sampling and Hold Amplifier
SYN: SynchronizerVCO: Voltage Controlled Oscillator

▲Figure 1. A 60-GHz joint communication and radar system based on
Pulse Position Modulation (PPM) technique [7].
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erated OFDM signal is up-converted and amplified in the an⁃
alog front-end section. The transmitted signal bandwidth is
7– 8 GHz, aiming at airborne radar sensor networks. The
experimentally obtained range resolution is about 0. 30 m,
which agrees very well with theoretical range resolution. It
should be noted that the effective bandwidth is only 500
MHz when calculating the theoretical range resolution. In
addition, data transmission capability is 57 Mbit/s by using
64 sub-carriers.
3.3 Duplex Time-Domain

System
Fig. 3 shows a pro⁃

posed time domain duplex
system based on Trapezoi⁃
dal Frequency Modulated
Continuous Wave (TFM⁃
CW) for radar and Binary
Phase Shift Keying
(BPSK) for communica⁃
tion [9].
In the radar mode, a Di⁃

rect Digital Synthesizer
(DDS) is used to deal with
the transmitted signal,
which is then filtered and
up converted to an Inter-
mediate Frequency (IF) sig⁃
nal. Further, the IF signal
is split into two portions:
one is converted to a Radio
Frequency (RF) signal and
then radiated via the trans⁃
mitting antenna; the other
is preserved for demodula⁃
tion. On the receiver side,
the reflected RF wave cap⁃
tured by the receiver anten⁃
na is converted back into
the IF domain after amplifi⁃
cation, which as a result is
mixed with the preserved
one for evaluating the
range and velocity of the
target.
In the communication

mode, the modulated sig⁃
nal is transmitted in the
same way as in the radar
mode. The BPSK modula⁃
tion format is selected for
enhancing the noise and
distortion tolerance.

This system operates within the frequency range from
24. 075 GHz to 24. 175 GHz. The demonstrated data rate is
50 Mbit/s with measured BER of less than 10-6, and mean⁃
while, the maximum detectable radar range is 100 m with a
range resolution of 1. 5 m, which indicates the maximum
measurable velocity is approximately 260 km/h.

Fig. 4a represents the physical photograph of the radar
mode of duplex time domain system and shows six targets
and their arrangements in front of the system. Fig. 4b shows

DDS

Low⁃PassFilter QuadratureModulator IFCoupler IFAMP IFBPF Mixer RF BPF PA Tx BPF
s(t)

Tx Front⁃End Tx ANT

Rx ANT
r(t)

Rx BPFLNARxCoupler

RFLOPowerSplitterReferenceSignal

IF VGA IF BPF

Mixer
Rx Front⁃End

QuadratureDemodulator

IFLODataInformation

Laptop

ControlSignal

USB
ARM

Low⁃PassFilter

I
Q

ADC

ADC

DAC

DAC

×

I
Q

×

▲ Figure 2. A joint radar and communication system based on Orthogonal Frequency-Division Multiplexing
(OFDM) Multiple Input and Multiple Output (MIMO) technique [60].
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▲Figure 3. A joint communication and radar system based on Binary Phase Shift Keying (BPSK) technique [9].
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signing a well-structured converged system.

4 Towards a Millimeter-Wave/Terahertz
Converged Radar and Communication
System
Based on the technical survey above, we can see converged

millimeter-wave systems have exhibited better capacity for
both radar and communication modes, supporting better rang⁃
ing resolution and higher data rates. This is fully understand⁃
able since there are larger frequency bandwidth available in
the higher frequency bands. In fact, this is believed to be the
technical tendency from both industrial and academic sides,
exploring high frequency bands (millimeter-wave, even tera⁃
hertz (100 GHz–10 THz)).
For sake of high resolution radars systems in the future, mil⁃

limeter wave/terahertz for radar sensing can provide superior
performance compared to microwave. Millimeter wave/tera⁃
hertz sensors have such distinctive features as larger band⁃
width enabling better ranging resolution, low possibility of in⁃
terception and interference, and smaller antenna size than low
frequency microwave. Millimeter wave radar systems have
been recently well-developed for automotive applications at
24 GHz and 77 GHz [68], [69], and most recently, a terahertz

photonic radar has been re⁃
ported as its potential of en⁃
abling mm-scale range resolu⁃
tion [70].
On the other hand, to ac⁃

commodate the ever increas⁃
ing wireless data stream, the
overall data rate is expected
to reach beyond 100 Gbit/s,
and eventually Tbit/s; in this
context, the carrier frequency
naturally goes into the milli⁃
meter-wave and terahertz fre⁃
quency regions [71]. Recent⁃
ly, a lot of efforts are devoted
to broadband terahertz wire⁃
less communications, and
several demonstrations of be⁃
yond 100 Gbit/s in the tera⁃
hertz band have been report⁃
ed, attributed to the extreme⁃
ly broad terahertz bandwidth
available [72]–[75].
Up to date, millimeter-

wave and terahertz have been
explored for either radar or
communication purposes,
however, the converged sys⁃
tem in such high frequency is
not demonstrated yet. This

thrusting area needs more breakthrough from academia and in⁃
dustry to develop converged systems based on emerging tech⁃
nologies in near future. Therefore, more technological prog⁃
ress in mm-wave/terahertz is essential for our smart future.
The previous work on the converged systems in the micro⁃

wave band has opened a door for the researchers to to develop
new converged systems based on modern technologies. More⁃
over, the features of millimeter and terahertz wave technolo⁃
gies can provide a solution to a cost-effective, simple and
light, and high bandwidth converged system to support higher
date rates compared with microwave technology-based system.

5 Conclusions
The convergence of communication and radar sensing func⁃

tions within a single platform is expected to provide a better
solution to a low cost and high efficiency multi-functional sys⁃
tem. In this paper, we have overviewed the technological
trend of converged communication-radar systems. We have al⁃
so presented the convergence technology and summarized sev⁃
eral typical converged systems operating in the microwave and
millimeter-wave bands. Future convergence work for making
the terahertz wireless communication systems robust in differ⁃

the frequency estimation by using a Fast Fourier Transform
(FFT) with zero padding.
3.4 RoF System
In the past decades, microwave photonics has gained a lot

of attention due to its attractive capacity of delivering“last
mile”wireless signals. This technology potentially supports
large bandwidth, and is capable of generating high frequency
signals with better performance in a noisy environment [61],
[62]. Therefore, RoF technology has been extensively used
for both radar systems and communication systems [63]–
[67]. For instance, a system based on RoF technology was
proposed to perform both communication and radar sensing
functionalities, as shown in Fig. 5 [8]. In the radar mode, it
uses OFDM technique with 10. 1 GHz bandwidth. With re⁃
spect to the wireless communication mode, an Arbitrary
Waveform Generator (AWG) is first used to generate a 7 GHz
IF signal with 3. 62 Gbaud 16-QAM on a single carrier. The

IF carrier of 7 GHz is then up-converted to 31 GHz, filtered
to eliminate the side-band spurious noise, and modulated on⁃
to 1. 55 μm light via an Mach-Zehnder Modulator (MZM)
and transmitted over the fiber. The modulated light signal af⁃
ter fiber transmission is detected by a Photodiode (PD) and
then eventually emitted to free space. The system realizes
up to 14. 5 Gbit/s data rate within distance of 10 m and the
minimum ranging resolution of 5 cm.
3.5 Performance Comparison
Here we summarize and compare performance of the dem⁃

onstrated communication and radar systems, as presented in
Table 2.
As we can see, the dual mode 60-GHz system for automo⁃

tive applications in [7] supports a better data rate compared
to other electronic joint systems. In the communication
mode, this system has a confined range of 10 m due to seri⁃
ous absorption of oxygen for V-band and U-band frequency

signals. Similarly, for the ra⁃
dar mode, it has a superior
range resolution of 12. 4 cm
by exploring 3 GHz band⁃
width. The 24-GHz integrat⁃
ed radio and radar system in
[9] has dissimilar perfor⁃
mance compared with [7]. A
joint system with the operat⁃
ing frequency range of 7–8
GHz shows an average per⁃
formance and a worse BER
of 5×10-2 compared with all
the other systems. From
above discussion, we con⁃
clude that the technologies
for converged systems still
need more maturity for bet⁃
ter performance. The emerg⁃
ing technologies including
mm-wave and terahertz facili⁃
tate a better feasibility of de⁃
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signing a well-structured converged system.

4 Towards a Millimeter-Wave/Terahertz
Converged Radar and Communication
System
Based on the technical survey above, we can see converged

millimeter-wave systems have exhibited better capacity for
both radar and communication modes, supporting better rang⁃
ing resolution and higher data rates. This is fully understand⁃
able since there are larger frequency bandwidth available in
the higher frequency bands. In fact, this is believed to be the
technical tendency from both industrial and academic sides,
exploring high frequency bands (millimeter-wave, even tera⁃
hertz (100 GHz–10 THz)).
For sake of high resolution radars systems in the future, mil⁃

limeter wave/terahertz for radar sensing can provide superior
performance compared to microwave. Millimeter wave/tera⁃
hertz sensors have such distinctive features as larger band⁃
width enabling better ranging resolution, low possibility of in⁃
terception and interference, and smaller antenna size than low
frequency microwave. Millimeter wave radar systems have
been recently well-developed for automotive applications at
24 GHz and 77 GHz [68], [69], and most recently, a terahertz

photonic radar has been re⁃
ported as its potential of en⁃
abling mm-scale range resolu⁃
tion [70].
On the other hand, to ac⁃

commodate the ever increas⁃
ing wireless data stream, the
overall data rate is expected
to reach beyond 100 Gbit/s,
and eventually Tbit/s; in this
context, the carrier frequency
naturally goes into the milli⁃
meter-wave and terahertz fre⁃
quency regions [71]. Recent⁃
ly, a lot of efforts are devoted
to broadband terahertz wire⁃
less communications, and
several demonstrations of be⁃
yond 100 Gbit/s in the tera⁃
hertz band have been report⁃
ed, attributed to the extreme⁃
ly broad terahertz bandwidth
available [72]–[75].
Up to date, millimeter-

wave and terahertz have been
explored for either radar or
communication purposes,
however, the converged sys⁃
tem in such high frequency is
not demonstrated yet. This

thrusting area needs more breakthrough from academia and in⁃
dustry to develop converged systems based on emerging tech⁃
nologies in near future. Therefore, more technological prog⁃
ress in mm-wave/terahertz is essential for our smart future.
The previous work on the converged systems in the micro⁃

wave band has opened a door for the researchers to to develop
new converged systems based on modern technologies. More⁃
over, the features of millimeter and terahertz wave technolo⁃
gies can provide a solution to a cost-effective, simple and
light, and high bandwidth converged system to support higher
date rates compared with microwave technology-based system.

5 Conclusions
The convergence of communication and radar sensing func⁃

tions within a single platform is expected to provide a better
solution to a low cost and high efficiency multi-functional sys⁃
tem. In this paper, we have overviewed the technological
trend of converged communication-radar systems. We have al⁃
so presented the convergence technology and summarized sev⁃
eral typical converged systems operating in the microwave and
millimeter-wave bands. Future convergence work for making
the terahertz wireless communication systems robust in differ⁃

the frequency estimation by using a Fast Fourier Transform
(FFT) with zero padding.
3.4 RoF System
In the past decades, microwave photonics has gained a lot

of attention due to its attractive capacity of delivering“last
mile”wireless signals. This technology potentially supports
large bandwidth, and is capable of generating high frequency
signals with better performance in a noisy environment [61],
[62]. Therefore, RoF technology has been extensively used
for both radar systems and communication systems [63]–
[67]. For instance, a system based on RoF technology was
proposed to perform both communication and radar sensing
functionalities, as shown in Fig. 5 [8]. In the radar mode, it
uses OFDM technique with 10. 1 GHz bandwidth. With re⁃
spect to the wireless communication mode, an Arbitrary
Waveform Generator (AWG) is first used to generate a 7 GHz
IF signal with 3. 62 Gbaud 16-QAM on a single carrier. The

IF carrier of 7 GHz is then up-converted to 31 GHz, filtered
to eliminate the side-band spurious noise, and modulated on⁃
to 1. 55 μm light via an Mach-Zehnder Modulator (MZM)
and transmitted over the fiber. The modulated light signal af⁃
ter fiber transmission is detected by a Photodiode (PD) and
then eventually emitted to free space. The system realizes
up to 14. 5 Gbit/s data rate within distance of 10 m and the
minimum ranging resolution of 5 cm.
3.5 Performance Comparison
Here we summarize and compare performance of the dem⁃

onstrated communication and radar systems, as presented in
Table 2.
As we can see, the dual mode 60-GHz system for automo⁃

tive applications in [7] supports a better data rate compared
to other electronic joint systems. In the communication
mode, this system has a confined range of 10 m due to seri⁃
ous absorption of oxygen for V-band and U-band frequency

signals. Similarly, for the ra⁃
dar mode, it has a superior
range resolution of 12. 4 cm
by exploring 3 GHz band⁃
width. The 24-GHz integrat⁃
ed radio and radar system in
[9] has dissimilar perfor⁃
mance compared with [7]. A
joint system with the operat⁃
ing frequency range of 7–8
GHz shows an average per⁃
formance and a worse BER
of 5×10-2 compared with all
the other systems. From
above discussion, we con⁃
clude that the technologies
for converged systems still
need more maturity for bet⁃
ter performance. The emerg⁃
ing technologies including
mm-wave and terahertz facili⁃
tate a better feasibility of de⁃
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ent indoor environments will be highly appreciated, e. g. , the
precise imaging capabilities of radar sensing in the terahertz
range can assist terahertz communications system to optimize
the indoor scattering environment by providing reflection pa⁃
rameters of different objects, as well as to help radio channel
modeling in a particular indoor scenario.
For sake of better ranging resolution and higher data rates,

the technical tendency in the near future is expected to ex⁃
plore mm-wave/terahertz high frequency bands for such con⁃
verged systems, from both industrial and academic sides,
while a lot of research is still needed to push convergence
forward.
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