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Abstract: The world today is experiencing an enormous increase in data traffic, coupled with
demand for greater quality of experience (QoE) and performance. Increasing mobile traffic
leads to congestion of backhaul networks. One promising solution to this problem is the mo⁃
bile edge network (MEN) and consequently mobile edge caching. In this paper, a survey of
mobile edge caching using machine learning is explored. Even though a lot of work and sur⁃
veys have been conducted on mobile edge caching, our efforts in this paper are rather focused
on the survey of machine learning based mobile edge caching. Issues affecting edge caching,
such as caching entities, caching policies and caching algorithms, are discussed. The ma⁃
chine learning algorithms applied to edge caching are reviewed followed by a discussion on
the challenges and future works in this field. This survey shows that edge caching can reduce
delay and subsequently the backhaul traffic of the network; most caching is conducted at the
small base stations (SBSs) and caching at unmanned aerial vehicles (UAVs) is recently used
to accommodate mobile users who dissociate from SBSs. This survey also demonstrates that
machine learning approach is the state of the art and reinforcement learning is predominant.
Keywords: mobile edge caching; reinforcement learning; unmanned aerial vehicle

1 Introduction

The world is witnessing an astronomical growth of mo⁃
bile traffic and an ever-increasing demand from end us⁃
ers for high bandwidth and quality of experience (QoE)
because they do almost everything and share vast

amounts of data, documents, media, etc. on their mobile devic⁃
es. Mobile data traffic grew fast between 2011 and 2016 and is
estimated to increase to 49.0 exabytes per month by 2021 [1].
Increasing mobile traffic leads to congestion of backhaul net⁃
works, which further leads to a higher cost of operation and
maintenance, a lower quality of service (QoS), and inhibits data
delivery. The increasing demand for bandwidth coupled with
greater QoE and performances is beyond the current fourth gen⁃
eration (4G) technologies, and new solutions such as the fifth
generation (5G) technologies have emerged. In order to meet

the increasing data demands, small-cell networks will be wide⁃
ly deployed, which can achieve much higher throughput and
energy efficiency [2]. Mobile edge networks (MENs), as shown
in Fig. 1, are a promising solution to address the above issues
(increasing demand for bandwidth, congestion of backhaul net⁃
works, higher cost of operation and maintenance, a lower QoS,
demand for greater QoE and performance, etc.). By moving the
network functions and resources closer to end users (i. e., the
network edge), many benefits can be obtained, such as high da⁃
ta rates, low delay, improved energy efficiency, and flexible
network deployment and management [3]. One innovative pro⁃
posal to overcoming these challenges is caching the content.
While the two common locations for caching the content are at
the evolved packet core (EPC) and the radio access network
(RAN) [4]. Certain popular contents (e.g., on-the-air TV series
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and popular music) are frequently requested; such contents
can be cached during off-peak times at the network edge, such
as at base stations (BSs) and even user devices [5]. Then the
contents are distributed to requesters through high-rate and
low-cost mobile edge networks rather than transmitted through
the backhaul network repeatedly.
There is an emerging paradigm shift towards the use of un⁃

manned aerial vehicles (UAVs) to assist the traditional cellular
networks in wireless communications to provide connectivity
from the sky to ground users. Such communication from the
sky is expected to be a major component of beyond 5G cellular
networks. When mobile users move outside the cell coverage
areas, the cached contents may not be effectively distributed to
the users. In addition, when a user hands over to a new cell,
the contents requested may not be cached, leading to extra de⁃
lay and bandwidth consumption due to the caching in the new
BS or long-distance fetch from the content server. Also, in
drone cells, the limited fronthaul capacity can hardly satisfy
the demands of data-craving services [6]. To alleviate the pres⁃
sure of small cells and reduce the cost of densely deployed
small base stations (SBSs), UAVs can be exploited to assist
small cells in providing high-speed transmission due to their
low cost and high mobility. UAV-aided wireless networks can
establish wireless connections without infrastructure, realize
larger wireless coverage, and achieve higher transmission rate.
This makes it suitable for many practical applications, such as
terrestrial BS offloading [7], emergency response and public

safety [8], Internet of Things (IoT) communi⁃
cations [9], [10], and massive machine type
communications [11]. A lot of surveys have
been conducted on edge caching over the
years. In [12], various cache management
systems were suggested to enhance the per⁃
formance of mobile Ad hoc networks (MA⁃
NETs). The authors of [13] presented a
comprehensive overview of the recently pro⁃
posed in-network caching mechanisms for
information centric networks (ICNs). They
described each caching mechanism in de⁃
tail, presented examples to illustrate how it
works and extensive simulations, and dis⁃
cussed the remaining research challenges.
The authors of [14] provided a review of the
caching problems in ICNs, with a focus on
on-path caching. To this end, a detailed
analysis of the existing caching policies and
forwarding mechanisms that complement
these policies were given in [14]. The pa⁃
per [15] grouped the most interesting cach⁃
ing techniques with regard to different archi⁃
tectures, considering the cases and the qual⁃
ity of the solutions.
Additionally, the survey [12] outlined var⁃

ious cooperative caching schemes in wireless sensor networks
(WSN) and classified them in distinct categories based on type
of approach applied. Maintaining cache consistency is as im⁃
portant as caching data. This paper also gave a brief overview
of various cache consistency models. GLASS et al. [16] devel⁃
oped a unique taxonomy for cache discovery, surveyed a repre⁃
sentative set of MANET-based cooperative caching schemes,
and classified the associated cache discovery techniques with⁃
in the taxonomy. Using this classification, they then highlight⁃
ed the various cache discovery techniques that have been uti⁃
lized, analyzed their potential in addressing the specific chal⁃
lenges that occur when deploying non-safety applications with⁃
in vehicular Ad hoc networks (VANETs), and identified gener⁃
al pitfalls that should be avoided. In [17], a survey of cache
management strategies in ICNs was presented along with their
contributions and limitations, and their performance was evalu⁃
ated in a simulation network environment with respect to cache
hit, stretch ratio, and eviction operations. Some unresolved
ICN caching challenges and directions for future research in
this networking area were also discussed.
The paper [18] provided a systematical survey of the state-of-

the-art caching techniques that were recently developed in cel⁃
lular networks, including macro-cellular networks, heteroge⁃
neous networks, device-to-device networks, cloud-radio access
networks, and fog-radio access networks. In particular, its au⁃
thors gave a tutorial on the fundamental caching techniques
and introduced caching algorithms from three aspects, i. e. ,

▲Figure 1. Architecture of a mobile edge network.
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content placement, content delivery, and joint placement and
delivery. They also provided comprehensive comparisons
among different algorithms in terms of different performance
metrics, including throughput, backhaul cost, power consump⁃
tion, and network delay; finally, they summarized the main re⁃
search achievements in different networks and highlighted
main challenges and potential research directions. A detailed
survey on the emerging technologies to achieve low latency
communications was presented in [19], considering three differ⁃
ent solution domains: RAN, core network, and caching; a gen⁃
eral overview of major 5G cellular network elements such as
software defined network (SDN), network function virtualiza⁃
tion (NFV), caching, and mobile edge computing (MEC) capa⁃
ble of meeting latency and other 5G requirements was also pre⁃
sented. Finally, [20] presented an overview of caching in wire⁃
less networks and then provided a detailed comparison of tradi⁃
tional and popularity-based caching. The attributes of videos
and the evaluation criteria of caching policies were discussed,
some of the recent works on proactive caching, focusing on pre⁃
diction strategies, were summarized, and an insight into the po⁃
tential opportunities and challenges as well as some open re⁃
search issues enabling the realization of efficient deployment
of popularity-based caching as part of the next-generation mo⁃
bile networks were provided.
⋅ Even though a lot of work and surveys have been done on

mobile edge caching [13]– [15], this survey is focused on the
study of machine learning based mobile edge caching.
⋅ We discuss the issues that affect cach⁃

ing in mobile edge networks in general and
the use of UAVs to cache contents intro⁃
duced.
⋅ We discuss learning techniques ap⁃

plied to caching in mobile edge networks.
The rest of the paper is organized as fol⁃

lows. Section 2 outlines some of the issues
that affect edge caching. Section 3 discuss⁃
es learning based caching schemes and
Section 4 analyzes the challenges and fu⁃
ture directions. Conclusions are drawn in
Section 5.

2 Mobile Edge Caching
Many caching schemes pose such ques⁃

tions as where to cache, what to cache, and
how to cache. Answers to these questions
provide us with better caching solutions. A
lot of research work has been done in try⁃
ing to answer some of the above questions
using various methods. Heuristic, stochas⁃
tic and various optimization techniques
have been applied on caching solutions.
As the network gets so dynamic and com⁃

plex, such methods become too difficult and complex to be im⁃
plemented, hence the introduction of machine learning in the
caching solutions to mobile edge caching (architecture shown
in Fig. 2). In this section, we will survey the research efforts
that have been made in the mobile edge networks. The related
issues include caching entities, content description, caching
policies, content delivery, and so on.
2.1 Caching Entities
Caching units can be deployed in many places of a mobile

network, such as the core network, RAN, user devices and cur⁃
rent UAVs, to cater for mobile users. Currently the widely de⁃
ployed places of caching is the EPC [4]. By caching content at
the mobile core network, the mobile traffic can be reduced.
The caching places at the edge network are discussed as fol⁃
lows.
1) Macro BS (MBS) caching: In heterogeneous networks,

MBSs have more coverage areas and can serve more users.
Caching at the MBS can obtain better cache hit probability.
CAO and CAI in [21] investigated a context-aware proactive
caching problem in a heterogeneous network consisting of a
single MBS with grid power supply and multiple small-cells
with energy harvesting, aiming to maximize the service ratio at
the SBSs. The authors of [22] presented Wolpertinger architec⁃
ture for content caching at the macro base station. The pro⁃
posed framework aims at maximizing the long-term cache hit
rate and it requires no knowledge of the content popularity dis⁃

▲Figure 2. Architecture of edge caching.
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tribution. Furthermore, Context-aware data caching in the het⁃
erogeneous small cell networks (HSCNs) with MBS caching
was proposed in [23], [35] to reduce the service delay for end
users.
2) SBS caching: SBSs are densely deployed in next genera⁃

tion heterogeneous networks. Therefore, caching at SBSs is an⁃
other good choice since the SBSs are more close to end users
and usually provide higher data rates. Many researchers [18],
[21], [24] have studied the performance of caching at SBSs.
3) Device caching: device-to-device (D2D) communication

is one of the key technologies in 5G networks. The storage re⁃
sources in mobile devices can be exploited. The QoE of users
can be greatly improved by caching contents in mobile devices
if the caching strategy is carefully designed. In [25], the D2D
caching problem was modeled as a multi-agent multi-armed
bandit problem and Q-learning was used to learn how to coordi⁃
nate the caching decisions. Several D2D caching schemes
with the application of learning techniques have been proposed
[26]–[29].
4) UAV caching: A new trend of caching entity is the use of

UAVs as a flying BS to cache popular contents that would be
able to serve mobile users. The authors of [6] solved the prob⁃
lem of content caching with multi UAVs while considering the
user mobility by using a novel algorithm based on the machine
learning framework of conceptor-based echo state networks. In
this framework, the agent is able to learn the mobility patterns
and request distributions of the users; based on that, it can pre⁃
dict the contents for caching at the UAVs and the location of
the UAVs, and can effectively deliver the contents to the us⁃
ers. Additionally, the liquid state machine is used to maximize
the queue stability requirements of users while caching the
contents at the UAV [30].
2.2 Caching Policies and Algorithms
To decide what to cache, the caching policies and algo⁃

rithms are used in the edge networks and the popularity of con⁃
tent should be considered to maximize the hit probability of
cache, i. e. , the probability that the content requested by users
is cached in the edge networks. Even though content populari⁃
ty can be grouped into Static [31] and Dynamic [28], [32], the
static ones cannot reflect the real content popularity which is
time varying so the dynamic one is more realistic and suitable
for the learning based caching schemes. The commonly used
popularity model is the Zipf model observed in web cach⁃
ing [33].
A host of caching policies and algorithms have been pro⁃

posed in mobile caching. Some of the conventional caching
policies in wired networks are also applicable in wireless net⁃
works. In addition, new schemes such as learning based poli⁃
cies and cooperative caching policies are also proposed. The
literature [16] reviews in detail the conventional caching poli⁃
cies and forwarding mechanism in information centric net⁃
works.

1) Conventional versus learning based caching policies: Con⁃
tent replacement policies such as the least frequently used
(LFU) and least recently used (LRU) have been adopted in a
large number of caching policies [16]. These strategies are
simple and efficient with uniform size objects. However, these
policies ignore the download latency and size of objects. An⁃
other proactive caching policy used in content delivery net⁃
works is the most popular video (MPV) policy, which caches
the most popular videos based on the global video popularity
distribution [34]. However, the cache size of the RAN is very
limited compared to that of CDN. The hit probability achieved
by MPV policy could be too low for RAN caches. On the other
hand, the content popularity is time-varying and is not known
in advance. Therefore, the track and estimation of timely con⁃
tent popularity is an important issue. Based on machine learn⁃
ing technology, learning based caching polices were proposed
in [35]. The authors in [35] solved the problem of distributed
caching in SBSs from a reinforcement learning view. By adopt⁃
ing coded caching, the caching problem is reduced to a linear
program that considers the network connectivity and the coded
caching scheme performs better than the uncoded scheme.
The authors in [36] solved the cache replacement problem with
a Q-learning based strategy.
2) User preference based policies: In [34], the authors pro⁃

posed a user preference profile (UPP) based caching policy. It
is observed that local video popularity is significantly different
from national video popularity and users may show strong pref⁃
erences toward specific video categories. The UPP of each us⁃
er is defined as the probability that a user requests videos of a
specific video category.
3) Non-cooperative versus cooperative caching: Some of the

existing caching policies decide the content to cache at each
base station without considering the cooperation among BSs.
In [34], the proposed scheme makes caching decision based on
the UPP of active users in a specific cell without considering
the impact of caches in other cells. In [36], the cache replace⁃
ment problem modeled as Markov Decision Process (MDP) is
solved in a distributed way using Q-learning method, without
exchanging extra information about cached data between the
BSs. This strategy outperforms the conventional ones such as
the LFU, LRU and randomized strategy. However, a lot of ex⁃
isting works have studied the cooperation among cache entities
when designing the caching policies [26], [37]–[40].
2.3 Caching of Different File Types
The most common file types for caching is multimedia files

such as popular videos and audio files [26], [38], [41]. One es⁃
sential trait of multimedia data is that many users have the
same affinity for popular contents, thus caching of such con⁃
tents aid in improving the hit rate. The Internet of Things is
one of the main use cases of the next generation 5G networks.
IoT refers to a large number of“things”(devices, objects, hu⁃
mans and animals with unique IDs) connected via the Internet
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tribution. Furthermore, Context-aware data caching in the het⁃
erogeneous small cell networks (HSCNs) with MBS caching
was proposed in [23], [35] to reduce the service delay for end
users.
2) SBS caching: SBSs are densely deployed in next genera⁃

tion heterogeneous networks. Therefore, caching at SBSs is an⁃
other good choice since the SBSs are more close to end users
and usually provide higher data rates. Many researchers [18],
[21], [24] have studied the performance of caching at SBSs.
3) Device caching: device-to-device (D2D) communication

is one of the key technologies in 5G networks. The storage re⁃
sources in mobile devices can be exploited. The QoE of users
can be greatly improved by caching contents in mobile devices
if the caching strategy is carefully designed. In [25], the D2D
caching problem was modeled as a multi-agent multi-armed
bandit problem and Q-learning was used to learn how to coordi⁃
nate the caching decisions. Several D2D caching schemes
with the application of learning techniques have been proposed
[26]–[29].
4) UAV caching: A new trend of caching entity is the use of

UAVs as a flying BS to cache popular contents that would be
able to serve mobile users. The authors of [6] solved the prob⁃
lem of content caching with multi UAVs while considering the
user mobility by using a novel algorithm based on the machine
learning framework of conceptor-based echo state networks. In
this framework, the agent is able to learn the mobility patterns
and request distributions of the users; based on that, it can pre⁃
dict the contents for caching at the UAVs and the location of
the UAVs, and can effectively deliver the contents to the us⁃
ers. Additionally, the liquid state machine is used to maximize
the queue stability requirements of users while caching the
contents at the UAV [30].
2.2 Caching Policies and Algorithms
To decide what to cache, the caching policies and algo⁃

rithms are used in the edge networks and the popularity of con⁃
tent should be considered to maximize the hit probability of
cache, i. e. , the probability that the content requested by users
is cached in the edge networks. Even though content populari⁃
ty can be grouped into Static [31] and Dynamic [28], [32], the
static ones cannot reflect the real content popularity which is
time varying so the dynamic one is more realistic and suitable
for the learning based caching schemes. The commonly used
popularity model is the Zipf model observed in web cach⁃
ing [33].
A host of caching policies and algorithms have been pro⁃

posed in mobile caching. Some of the conventional caching
policies in wired networks are also applicable in wireless net⁃
works. In addition, new schemes such as learning based poli⁃
cies and cooperative caching policies are also proposed. The
literature [16] reviews in detail the conventional caching poli⁃
cies and forwarding mechanism in information centric net⁃
works.

1) Conventional versus learning based caching policies: Con⁃
tent replacement policies such as the least frequently used
(LFU) and least recently used (LRU) have been adopted in a
large number of caching policies [16]. These strategies are
simple and efficient with uniform size objects. However, these
policies ignore the download latency and size of objects. An⁃
other proactive caching policy used in content delivery net⁃
works is the most popular video (MPV) policy, which caches
the most popular videos based on the global video popularity
distribution [34]. However, the cache size of the RAN is very
limited compared to that of CDN. The hit probability achieved
by MPV policy could be too low for RAN caches. On the other
hand, the content popularity is time-varying and is not known
in advance. Therefore, the track and estimation of timely con⁃
tent popularity is an important issue. Based on machine learn⁃
ing technology, learning based caching polices were proposed
in [35]. The authors in [35] solved the problem of distributed
caching in SBSs from a reinforcement learning view. By adopt⁃
ing coded caching, the caching problem is reduced to a linear
program that considers the network connectivity and the coded
caching scheme performs better than the uncoded scheme.
The authors in [36] solved the cache replacement problem with
a Q-learning based strategy.
2) User preference based policies: In [34], the authors pro⁃

posed a user preference profile (UPP) based caching policy. It
is observed that local video popularity is significantly different
from national video popularity and users may show strong pref⁃
erences toward specific video categories. The UPP of each us⁃
er is defined as the probability that a user requests videos of a
specific video category.
3) Non-cooperative versus cooperative caching: Some of the

existing caching policies decide the content to cache at each
base station without considering the cooperation among BSs.
In [34], the proposed scheme makes caching decision based on
the UPP of active users in a specific cell without considering
the impact of caches in other cells. In [36], the cache replace⁃
ment problem modeled as Markov Decision Process (MDP) is
solved in a distributed way using Q-learning method, without
exchanging extra information about cached data between the
BSs. This strategy outperforms the conventional ones such as
the LFU, LRU and randomized strategy. However, a lot of ex⁃
isting works have studied the cooperation among cache entities
when designing the caching policies [26], [37]–[40].
2.3 Caching of Different File Types
The most common file types for caching is multimedia files

such as popular videos and audio files [26], [38], [41]. One es⁃
sential trait of multimedia data is that many users have the
same affinity for popular contents, thus caching of such con⁃
tents aid in improving the hit rate. The Internet of Things is
one of the main use cases of the next generation 5G networks.
IoT refers to a large number of“things”(devices, objects, hu⁃
mans and animals with unique IDs) connected via the Internet
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that can share data. Thus the caching of IoT data (sensory and
any kind of data including multimedia data) is also important
for reducing the total traffic load as the IoT data volume is in⁃
creasing and IoT data have different characteristics such as
short lifespan of the data as compared to multimedia data
[42], [43].
2.4 Mobility versus Static User Awareness
User mobility is a unique feature of wireless networks, thus

it should be considered in caching at the network edge. Many
works have been done on this issue. The authors in [44] pro⁃
posed a temporal-spatial recommendation policy, which can
guide mobile users to request their preferred files in proper
time and place, so as to make local popularity peakier. Here
the assumption was that the user preference, the impact of the
recommendation on request probability, and the mobility pat⁃
tern are unknown. Hence, they resorted to deep reinforcement
learning to optimize the recommendation and caching policy.
User mobility in the caching policies was also considered in
[29] and [45].
2.5 Impact on System Performance
1) Capacity: Existing works on edge caching have proved

that caching at the network edge can significantly improve sys⁃
tem capacity. For example, the solution proposed in [34] can
improve capacity by 3 times compared to having no cache in
the RAN.
2) Delay: Caching at the network edge can significantly re⁃

duce content delivery delay due to the proximity of caches to
end users. In [26], the reinforcement learning cooperative con⁃
tent caching scheme significantly reduced content download⁃

ing latency and improved content cache hit rate when com⁃
pared with other popular caching schemes. In [39], the authors
investigated a delay minimization problem by jointly consider⁃
ing the spatiotemporal variation of content variation, the cost of
content sharing between user devices, and the cost of coopera⁃
tive caching among BSs, using a two-stage multi-armed bandit
learning based online cooperative algorithm.
3) Spectral efficiency: a deep reinforcement learning (DRL)

based algorithm was developed for coded caching enabled Fog
RAN (F-RANs) in [46] to provide high spectral and energy effi⁃
ciency. With the help of new designed fog access points (F-
APs), F-RANs can take the full advantage of local caching ca⁃
pabilities, which relieves the load of fronthaul and reduces
transmission delay. In [47], a cache content management poli⁃
cy was proposed, which exploited the popularity of the contents
in order to increase the chances of D2D communications.
With extensive simulations in [47], it was observed that the
proposed Q-learning algorithm indeed learns by reserving near-
optimal number of resource blocks (RBs) to serve the data rate
requirement at each distributed D2D controller (DDC) and that
the one-and two-hop modes of D2D transfer effectively reduces
the load on eNB by transferring a maximum 49% of the re⁃
quired data to the user equipment (UE). A summary of the is⁃
sues affecting edge caching is shown in Table 1.

3 Learning Based Caching
The traditional optimization techniques become complex

and difficult to solve due to the complex nature of the caching
problems. Therefore, the machine learning approaches are in⁃
troduced into solving these kinds of problems. Machine learn⁃

▼Table 1. Summary of literatures on edge caching

Work Area

Caching entities

Content popularity

Caching policies and algorithms

Caching file types
Mobility awareness

Problem

Literature

[15], [21], [23], [31], [37], [47], [49], [51]–[53]
[18], [21]–[25], [28], [29], [31], [35]–[38], [41], [43], [44], [46], [49], [50], [52]–[54]

[25]–[29], [39], [47], [51], [55]
[6], [30], [55], [56]

[31]
[6], [21], [22], [24], [26]–[29], [32], [34]–[36], [39]–[41], [44], [45], [49], [50]–[52], [54]–[57]

[16], [34], [48]
[28], [29], [34], [44], [52], [58]

[6], [21]–[30], [35]–[41], [43]–[47], [49]–[51], [53]–[57]
[34]

[22], [23], [26], [28], [30], [37]–[40], [51], [54], [55], [57]
[6], [21]–[24], [26]–[30], [32], [34]–[41], [44]–[47], [49]–[51], [53], [55], [57]–[59]

[42], [43], [48], [59]
[6], [29], [30], [44], [45], [48], [49], [51], [52]

[23], [24], [26], [27], [34], [37]–[39], [41], [43], [46], [50], [52], [55], [58]
[22]–[26], [37], [44]

[35], [36], [39]–[41], [45]–[47]
[6], [34], [49], [58],

Key Points

Macro base station (MBS)
Small base station (SBS)

Device
Unmanned aerial vehicle (UAV)

Static model
Dynamic model

Conventional caching policies
User preference based polices
Learning based policies
Non-cooperative policies
Cooperative policies
Multimedia data

Internet of Things (IoT) data
Spatial and temporal properties of user mobility

Delay
Hit rate

Backhaul/fronthaul
Quality of experience (QoE)
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ing techniques are generally grouped into the supervised learn⁃
ing, unsupervised learning, and reinforcement learning. This
section will discuss the application of these learning tech⁃
niques in caching.
3.1 Supervised Learning Based Caching
The majority of practical machine learning uses supervised

learning. Supervised learning uses an algorithm to learn the
mapping from input variables X to the output variable (Y =
f (X ) ) based on example input-output pairs. The goal would
be a model that would approximate the mapping function so
well that when you have new input data (X), you can predict
the output variables (Y) for that data.
VARANASI and CHILUKURI [48] proposed a differentiat⁃

ed edge caching scheme called FlexiCache for vehicle to any⁃
thing (V2X) communication, aiming at increasing the QoS of
the network; kernel ridge regression (KRR) is used to predict
the proportion of cache to be allocated to each traffic type, for a
desired QoS parameter.
CHEN, et al. [30] used the liquid state machine to solve the

problem of joint caching and resource allocation in a network of
cache-enabled UAVs that serve wireless ground users over the
Long Term Evolution (LTE) licensed and unlicensed bands.
SHEN et al. [49] considered caching selected contents of

SBSs in an ultra-dense network (UDN). The cache efficiency
problem is formulated as a system backhaul load minimization
problem, which is hard to be solved for the highly random con⁃
tent demands. Therefore, the cache strategies based on ma⁃
chine learning (K-means and K-Nearest Neighbour (K-NN))
were proposed to tackle this difficult problem from the perspec⁃
tive of exploiting the potential of mobile traffic data. Other ma⁃
chine learning schemes include [23], [38], [40], [50], etc.
3.2 Unsupervised Learning Based Caching
For unsupervised learning, you only have input data (X) and

no corresponding output variables. The goal of unsupervised
learning is to learn more about data by modeling the underly⁃
ing structure or distribution in the data. The algorithms are
left to their own devices to discover and present the interesting
structure in the data. Examples are found in the literatures
[27], [28], [32], and [49].
In [49], the K-means clustering algorithm was used to fully

uncover hidden spatio-temporal patterns of content requests at
SBSs, and achieve personalized inter-cluster cache and predic⁃
tive intra-cluster cache. Then, the K-NN classi fi cation algo⁃
rithm was introduced to categorize the constantly emerging
new contents and cache them in the corresponding cluster peri⁃
odically with high accuracy and low complexity.
The authors in [27] proposed an ef fi cient learning-based

caching algorithm operating together with a non-parametric es⁃
timator to minimize the average transmission delay in D2D-en⁃
abled cellular networks. It is assumed that the system does not
have any prior information regarding the popularity of the files,
and the non-parametric estimator is aimed at learning the in⁃

tensity function of the file requests. An algorithm was devised
to determine the best <file,user> pairs that provide the best de⁃
lay improvement in each loop to form a caching policy with
very low-transmission delay and high throughput. This algo⁃
rithm was also extended to address a more general scenario, in
which the distributions of fading coefficients and the values of
system parameters potentially change over time.
In order to learn user preference, the authors of [28] mod⁃

eled the user request behavior resorting to probabilistic latent
semantic analysis and the model parameters are learned by the
expectation maximization algorithm. They found that the user
preferences are less similar and the activity level and topic
preference of each user change slowly over time. Based on this
observation, they introduced a prior knowledge-based learning
algorithm for user preference, which can shorten the learning
time.
Based on SDN, the authors of [32] proposed a deep-learning-

based content popularity prediction (DLCPP) to achieve the
popularity prediction. DLCPP adopts the switch’s computing
resources and links in the SDN to build a distributed and recon
figurable deep learning network. For DLCPP, they initially de⁃
termine the metrics that can reflect changes in content popular⁃
ity. Each network node collects the spatial-temporal joint dis⁃
tribution data of these metrics. Then, the data are used as in⁃
put to stacked auto-encoders (SAE) in DLCPP to extract the
spatiotemporal features of popularity. Finally, the popularity
prediction is transformed into a multi-classi fi cation problem
through discretizing the content popularity into multiple classi⁃
fications. The Softmax classifier is used to achieve the content
popularity prediction.
3.3 Reinforcement Learning Based Caching
In reinforcement learning, an agent is able to learn from its

environment and take some action so as to maximize some no⁃
tion of cumulative reward with or without a model. The authors
of [22], inspired by the success of DRL in solving complicated
control problems, presented a DRL-based framework with Wol⁃
pertinger architecture for content caching at the base station.
The proposed framework is aimed at maximizing the long-term
cache hit rate, and it requires no knowledge of the content pop⁃
ularity distribution. SUNG et al. [37] applied reinforcement
learning (Q-learning) to the content replacement problem in a
wireless content delivery network (WCDN) with cooperative
caching to maximize the hit ratio based on a multi-agent Q-
learning scheme.
CHENG et al. [52] proposed a novel localized deterministic

caching framework, based on machine learning techniques. By
introducing the concept of the rating matrix, they first proposed
a new Bayesian learning method to predict personal preferenc⁃
es and estimate the (individual content request probability)
ICRP. This crucial information was then incorporated into
their caching strategy for maximizing the system throughput, or
equivalently, minimizing the download latency, where a deter⁃
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ministic caching algorithm based on reinforcement learning
was proposed to optimize the content placement. The authors
of [42] presented fundamentals of caching, major challenges,
relevant state of the art, and a description of their current ap⁃
proaches. They showed directions of using machine learning
for caching in the IoT.
Additionally, the authors of [58] proposed a multi-agent rein⁃

forcement learning (MARL)-based cooperative content caching
policy for the MEC architecture when the users’preference is
unknown and only the historical content demands can be ob⁃
served. They formulated the cooperative content caching prob⁃
lem as a multi-agent multi-armed bandit problem and proposed
a MARL-based algorithm to solve the problem. In [26], the
D2D caching problem is modeled as a multi-agent multi-armed
bandit problem and use Q-learning to learn how to coordinate
the caching decisions. The user devices can be independent
learners if they learn the Q-values of their own actions, or joint
action learners if they learn the Q-values of their own actions
in conjunction with those of other UEs. The authors of [25]
presented Stimulable Neural Network (SNN)-Cache that lever⁃
ages SNN to utilize the inter-relationships among sequenced re⁃
quests in caching decision, evaluated SNN-Cache using an
ICN simulator, and showed that it decreases the load of content
servers significantly compared to a recent size-aware cache re⁃
placement algorithm (up to 30. 7%) as well as the traditional
cache replacement algorithms.
Furthermore, SADEGHI et al. [57] introduced a novel ap⁃

proach to account for space-time popularity of user requests by
casting the caching task in a reinforcement learning (RL)
framework for heterogeneous networks (Hetnets). HE et al.
[51] formulated an optimization problem to maximize the net⁃
work operator’s utility while considering the trust-based social

networks specifically with MEC, in-network caching and D2D
communications under the umbrella of a 3C framework using a
deep reinforcement learning approach. An integrated frame⁃
work that can enable dynamic orchestration of networking,
caching and computing resources to improve the performance
of next generation vehicular networks was studied in [60] and
in this framework, the resource allocation strategy is formulat⁃
ed as a joint optimization problem and DRL is used for prob⁃
lem solving. The authors of [61] dealt with an information-cen⁃
tric virtualized network for smart cities with a deep Q learning
approach for caching. There are other reinforcement based
caching schemes proposed in [26], [29], [43], [44], [46], [50],
and [59]. Table 2 summarizes some of the machine learning
techniques applied to mobile edge caching.

4 Challenges and Future Directions
Like traditional networks, wireless networks are faced with

similar challenges like communication cost, storage and com⁃
putation. The major challenge of caching is the limited storage
space. Because of this, a caching scheme must carefully con⁃
sider the caching decision and replacement techniques to over⁃
come the challenge and improve the performance such as back⁃
haul traffic, latency, and throughput of the network.
4.1 Online Caching
Caching has the content placement phase during which the

content is placed in the caching unit and the content delivery
phase during which the content is actually delivered to the
end user (entity). At some point in the life span of the con⁃
tent, the content may require updating. One efficient caching
update is update during the content delivery phase rather

▼Table 2. A summary of machine learning techniques applied to edge caching

Type of Machine Learning

Supervised learning

Unsupervised learning

Reinforcement learning

Literature
[6]
[30]

[22], [49]
[48]

[38], [40], [50]
[23]
[25]

[27], [28], [32], [49]
[27], [28]
[32]
[57]

[44]–[46], [51]
[60]

[22], [34], [37], [43]
[26], [58]
[21]
[52]

Algorithm
Eco state network
Liquid state network

K-Nearest Neighbour (KNN)
Kernel ridge regression (KRR)

Deep learning
Convolutional neural network (CNN)
Stimulable neural network (SNN)

K-means
Greedy based algorithm

Stacked auto encoders (SAEs) deep learning
Q-learning

Deep Q-learning
Double-dueling-deep Q-network

Actor critic
Multi agent Q-learning

Post decision state based approximate RL (PDS-ARL)
Discrete learning automata (DLA)
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than the content placement phase. This is known as online
caching. Online caching together with machine learning pres⁃
ents itself as an important direction in the future cache re⁃
search.
4.2 UAV Caching
A major problem of mobile edge caching is the mobility of

users. Mobile users tend to dissociate themselves from their
associated base stations. The advent of UAV caching and ma⁃
chine learning techniques in the future 5G networks would
help to solve this bottleneck by employing UAVs as flying
base stations to help to proactively cache content for such mo⁃
bile users. The UAV can assist cellular networks or can be a
complete UAV network on their own depending on the appli⁃
cation.
4.3 Context Awareness
The mobile edge networks are advantageous in exploiting

context information (user location, other surrounding users,
and resources in the environment). The real time context
aware applications could be accomplished with the use of ma⁃
chine learning by collaborations among MEC platforms.
4.4 Virtualization
In the future 5G networks, different service providers would

be providing different services with different QoS and QoE.
Network infrastructure are expensive, so there is the need for
the research into providing virtual networks that would be able
to efficiently share and utilize the underlying physical infra⁃
structure.
4.5 Integration
The architecture of mobile edge networks involves resources

such as computing, storage and communications. The efficient
integration of these resources to achieve the optimal perfor⁃
mance for all users and applications is an ongoing research di⁃
rection that is not concluded. More comprehensive resource al⁃
location schemes need to be developed.

5 Conclusions
This paper surveys and summarizes the research efforts

made on the mobile edge caching and communication resourc⁃
es. The related issues of caching are discussed. Additionally,
machine learning based caching schemes are discussed and
summarized. In this survey, we group the machine learning
based caching into reinforcement learning and other learning
techniques. We realize that reinforcement learning is more
widely used because of its ability to interact and learn from the
environment with or without a model. The more recent UAV
caching is also introduced which is able to deal with mobile us⁃
ers that request content. Finally, the challenges and future
works on mobile edge caching are discussed.
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