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Abstract: The emerging unmanned aerial vehicle (UAV) technology and its applications have
become part of the massive Internet of Things (mIoT) ecosystem for future cellular networks.
Internet of things (IoT) devices have limited computation capacity and battery life and the
cloud is not suitable for offloading IoT tasks due to the distance, latency and high energy con⁃
sumption. Mobile edge computing (MEC) and fog radio access network (F-RAN) together with
machine learning algorithms are an emerging approach to solving complex network problems
as described above. In this paper, we suggest a new orientation with UAV enabled F-RAN ar⁃
chitecture. This architecture adopts the decentralized deep reinforcement learning (DRL) al⁃
gorithm for edge IoT devices which makes independent decisions to perform computation
offloading, resource allocation, and association in the aerial to ground (A2G) network. Addi⁃
tionally, we summarized the works on machine learning approaches for UAV networks and
MEC networks, which are related to the suggested architecture and discussed some technical
challenges in the smart UAV-IoT, F-RAN 5G and Beyond 5G (6G).
Keywords: unmanned aerial vehicle; machine learning; F-RAN; edge computing

1 Introduction

In the recent past, cellular technologies have become more
dynamic and improved the network infrastructure to the
satisfaction of end users. There are a number of ultra-
dense heterogeneous devices from individuals and organi⁃

zations, which are always generating and storing a huge
amount of data via sensors (edge Internet of Things (IoT) devic⁃
es) and applications [1]. When the massive Internet of Things
(mIoT) devices emerge, the data generated by various sensors
will increase exponentially. Due to the huge volume of the data
produced and different forms of conventional databases (with
structured and unstructured data), big data analysis has attract⁃
ed much attention in recent years and many organizations have
focused on the analysis of collected data to extract useful data
for making appropriate decisions [2]. The data generated from

billions of heterogeneous IoT sensors are sent to the cloud for
processing computing tasks, with a high cost of processing de⁃
lay and energy consumption. However, some IoT sensors data
need to be processed faster than the current processing capabil⁃
ity of clouds. To solve this problem, fog and edge computing
(FEC) is proposed to enable computing tasks processed at the
network edge of IoT [3]–[5]. Edge computing is a new emerg⁃
ing paradigm to solve IoT computation and resource allocation
problem in localized manner [5]. Fog computing is decentral⁃
ized computing paradigm, where a number of smart devices
which have a computational capacity are utilized [6], [7]. In
this paradigm, key issues were discussed about the require⁃
ment and deployment of fog connectivity environment due to
the existence of ultra-dense heterogeneous devices. Several
technical issues on fog computing such as deployment, simula⁃
tion, resource management, fault tolerance and services have
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been studied in [6], [8]–[13]. Even though fog computing and
edge computing both move the computation and storage to the
edge of the network, closer to end-nodes, their paradigms are
not identical [14]. The rapid development of diverse mIoT de⁃
vices such as wireless sensors, smart machines, and mobile us⁃
ers’applications enable the users to enjoy high quality of expe⁃
rience (QoE) and high quality of service (QoS) [5], [15], [16].
However, most of these applications are delay sensitive or real-
time applications, which need high computational capacity.
The edge devices could not compute each task due to the limi⁃
tation of battery and low computation capability, so it is diffi⁃
cult for them to implement these applications [17]. The FEC
can compute tasks of IoT devices and interplay with the cloud
server to provide better QoS and QoE to end users. Some works
were done on computation offloading to mobile edge computing
(MEC) servers and on resource allocation of the IoT devices to
maximize network performance and optimize the problem in ul⁃
tra-dense heterogeneous network [18]– [20]. For ultra-dense
IoT network system, a game theory computation offloading
framework was designed in [21] and [22], to minimize the over⁃
all computation overhead of the task on edge IoT devices.
Radio access network (RAN) provides connectivity to the

wireless terminals through wireless access points (base sta⁃
tions) and may use one or more radio access technologies
(RATs). The fog radio access network (F-RAN) is composed of
F-RAN nodes connected through a single or multiple RATs.
The F-RAN has a unique feature better than the cloud radio ac⁃
cess network (CRAN) and heterogeneous cloud radio access
network (H-CRAN), which helps maximize the use of edge IoT
devices of the network and improve network management and
optimization mechanisms [5], [23], [24].
Based on the report from Federal Aviation Administration

(FAA) [25], the fleet of drones will be more than doubled from
estimated 1. 1 million vehicles in 2017 to 2. 4 million units by
2022. Benefitting from connecting unmanned aerial vehicles
(UAVs) to cellular networks for better control and communica⁃
tions, the growth of the UAV market is expected to bring new
promising business opportunities for cellular operators. Mil⁃
lions of UAVs have been used to perform various services such
as public protection, disaster relief operation, surveillance ap⁃
plications, traffic management, commercial services, extending
the cellular-network coverage to remote areas, and acting as
flying base stations [26], [27]. The Third Generation Partner⁃
ship Project (3GPP) is exploring the challenges and opportuni⁃
ties for serving UAVs as a new type of User Equipment (UE),
called aerial UE. UAVs can facilitate the development of IoT
ecosystems for mIoT applications [28]. UAVs will be the fu⁃
ture of IoT because UAVs, at the beginning, efficiently replace
the connected sensors at rest with one device that is deploy⁃
able to different locations, capable of carrying flexible pay⁃
loads, re-programmable in mission, able to measure anything
from anywhere, easily deployed, and cost effective. In recent
years, a number of works have been done on either UAVs net⁃

works or their integration with cellular networks. Those works
focused on computation offloading, maximization of energy effi⁃
ciency, optimization of UAV trajectory and path planning,
throughput maximization of UE in UAV network, and terrestri⁃
al heterogeneous devices.
The authors of [29] summarized the journey of machine

learning in the last thirty years and the roles machine learning
played in the next-generation wireless network (NGWN) as a
road for achieving the ambitious goal of NGWN and as a tool
for managing the network complexity. The authors of [30] em⁃
phasized the role of diverse machine learning algorithms in dif⁃
ferent key issues of networking across different network tech⁃
nologies. Machine learning techniques are applied for funda⁃
mental problems in networking, including routing and classifi⁃
cation, traffic prediction, congestion control, QoS and QoE
management, resource and fault management, and network se⁃
curity. In [31], the authors studied the advanced machine
learning application in wireless communication for mobility
management in the network layer, resource management in the
MAC layer, and networking and localization in application lay⁃
er. The paper [32] discussed the future cellular networks or
wireless networks which support ultra-reliable and low-latency
communications, as well as the intelligent management for
mIoT devices in dynamic environment. Deep reinforcement
learning (DRL) approaches for cellular networks, next genera⁃
tion wireless networks and self-organization cellular networks
were reviewed in [29]– [34]. Recently, DRL has become one
of the mostly popular machine learning algorithms for edge
computing resource management and a suitable optimization
technique for radio access networks. DRL has recently been
used as an emerging tool for effectively solve various problems
and challenges in modern networks that are more decentral⁃
ized, ad-hoc, and autonomous in nature, such as heterogeneous
networks (HetNets), IoT, vehicle to vehicle (V2V) system, ma⁃
chine to machine (M2M) system, vehicle to everything (V2I)
system, self-organization cellular networks, and UAV net⁃
works [31].
Different non-deterministic polynomial-time hardness (NP-

hard) problems of UAV networks and UAV connected cellular
networks were optimized by adopting traditional optimization
techniques [35]– [38], [40]– [43]. However, traditional opti⁃
mization techniques are difficult to be applied for complex net⁃
work infrastructure and not suitable for the current and future
intelligent wireless networks. Recently, machine learning algo⁃
rithms have been used to easily optimize different problems in
UAV networks and UAV connected cellular networks [63]–
[66], [68], [69]. However, there are still challenges to using
machine learning algorithms for UAV networks which assist
the mIoT, public safety communication (PSC), and edge com⁃
puting.
The main contributions of this work are summarized as fol⁃

lows:
·We suggest a new orientation with UAV enabled F-RAN ar⁃
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chitecture. This architecture adopts the decentralized DRL al⁃
gorithm for edge IoT devices, which enables decision indepen⁃
dently made for offloading, resource allocation, and association
in the A2G network.
·We summarize the works on machine learning approaches
for UAV networks and MEC networks, which are related to the
suggested architecture.
·We discuss some technical challenges in the smart UAV-
IoT, F-RAN 5G, and B5G (6G).
The rest of the paper is organized as follows. We provide a

brief overview of UAV in wireless cellular networks and the
use of UAV for emergency situation and computation offload⁃
ing in Section 2. In Section 3, we review machine learning and
its classification. In Section 4, we present our orientation with
UAV-enabled F-RAN in MEC, which adopts the machine
learning algorithm. In Section 5, we present the works on com⁃
putation offloading and resource allocation using DRL in MEC
and UAV networks. In Section 6, we discuss technical chal⁃
lenges and future research directions of intelligent UAV en⁃
abled F-RAN at the edge level. We conclude the paper in Sec⁃
tion 7.

2 UAV in Wireless Cellular Networks
Currently, the use of flying UAV platform is popular; this

rapidly growing technology has attractive attributes such as mo⁃
bility, flexibility, and adaptive attitude, and has key potential
applications in wireless system. UAVs can be used as aerial
base stations (ABS) to enhance coverage, capacity, reliability,
and energy efficiency of wireless networks, as well as flying mo⁃
bile terminals in cellular network infrastructure. UAV can be
connected with cellular networks as new user equipment and
help increase the revenues for network operators.
The authors of [35] summarized the current state of UAV in

cellular communication system from different points of view.
Different types and characteristics of UAVs are available. A
number of industry-led initiatives depend on the standards of
cellular communications which support low-altitude UAVs for
enabling beyond Line of Sight (LoS) control and establishing a

reliable communication. The deployment of flying UAV base
stations is better than that of ground base stations for reducing
cost and minimizing electronics equipment of base stations.
The deployment of ABS faces different practical challenges
such as placement and mobility, but UAV flying base stations
can be easily deployed at optimum locations in 3D space; they
can potentially provide much better performance in different
parameters such as coverage, load balancing, spectral efficien⁃
cy, and user experience, compared to existing terrestrial based
solutions. UAV can act as flying base stations in the heteroge⁃
neous 5G environment and also support millimeter wave
(mmW) communications; it is collectively viewed as the nexus
of next-generation 5G cellular systems. UAV-enabled mmW
communications is a proposing application of UAVs, which can
establish LoS communication links to users [27]. UAVs can al⁃
so assist various terrestrial network infrastructure such as
mIoT, cellular, and vehicular networks (V2V, V2X, V2I) in dif⁃
ferent ways; for example, UAVs can improve the reliability of
wireless connection and scalability, replace destroyed bases
stations, compute different tasks of edge IoT devices, and relay
the data or signal into central network controller. Table 1 com⁃
pares terrestrial networks with base stations and UAV net⁃
works with bases stations.
UAV at the edge level in cellular networks has a major im⁃

pact on 5G and beyond. A single or multiple UAVs can com⁃
pute the tasks of edge IoT devices. The UAV used as relaying
and ABS which connect terrestrial smart mobile users with
edge servers in MEC have been studied in [36]. To minimizing
the average weighted energy consumption of the smart mobile
devices and the UAV, the authors of [37] studied the multi-cell
edge which is three adjacent cells served by three base sta⁃
tions; at the multi-cell edge, some of the users out of the radius
of the base stations are connected with UAV. The problems
are how to optimize the maximal sum rate of edge users by
avoiding the interference and how to improve QoS and optimize
UAV trajectory for the users who are out of network coverage
and served by UAV.
The recent literature works on UAV network and UAV as⁃

BS: base station UAV: unmanned aerial vehicle

▼Table 1. Comparison between UAV networks with base stations and terrestrial networks with base stations

Terrestrial Networks

Insufficient spectrum
Well defined energy constraints and models

Mainly static association
No timing constraints, with BS being always there

Terrestrial BS
Typical two-dimensional deployment

Mostly long-term and permanent deployments
Few and selected locations

Fixed and static
Not suitable for mobility tracking

UAV Networks

Insufficient spectrum
Elaborate and stringent energy constraints and models

Varying cell association
Hover and flight time constraints

UAV BS
By nature, three-dimensional deployment

Short-term and frequently changing deployments
Mostly unrestricted locations

Mobility dimension
Suitable for mobility tracking
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sisted cellular user or IoT focused on computation offloading,
resource allocation and path planning, and trajectory optimiza⁃
tion of either a single UAV or multi-UAV network. In all cas⁃
es, the UAV assists the terrestrial users or IoT devices in
offloading tasks and in requesting resources such as power,
computational resources and bandwidth. LIU et al. [38] de⁃
signed UAV-Edge-Cloud computing hybrid computing archi⁃
tecture to jointly optimize the computation offloading and rout⁃
ing problem for swarms of multi-UAV which are connected in
D2D forms. The architecture in [38] aims to minimize the
transmission delay and increase the computing capability be⁃
tween UAVs and mobile users. TI et al. [39] designed UAV
based Fog-Cloud-Computing (FCC) to minimize the computa⁃
tion and power consumption of all users, which can jointly opti⁃
mize the computation offloading, user-cloud/cloudlet associa⁃
tion, transition power allocation, and path planning of mobile
users. The UAV acts as a small distributed cloud and the local
BS as micro cloud server; both users and UAV are movable.
When the terrestrial network infrastructure encounters a nat⁃

ural disaster such as earthquake, volcano, landslide and ava⁃
lanche, UAVs can act as a network life saver, especially for
emergency situations. One of the popular communication tech⁃
nologies is PSC, which plays a critical role in saving lives,
property, and national infrastructure during natural or man-
made emergency [40]. This technology is developed for deliv⁃
ering critical real-time streams (video, voice) using predefined
spectrums. The UAV base station (UAVBS) or ABS, with LTE-
advanced capabilities, can be utilized for emergency restora⁃
tion and temporary expansion of public safety for disaster re⁃
covery [41]. ZHAO et al. [42] proposed a UAV-assisted emer⁃
gency network to replace the destroyed base station by estab⁃
lishing multi-hop D2D users in different cells and relay the sig⁃
nal for emergency vehicular communication. And it is a prom⁃
ising method for establishing emergency networks. The au⁃
thors of [43] studied how to replace destroyed base stations by
UAV base stations after creating multi-hop D2D communica⁃
tions. They also designed a UAV transceiver for managing
UAV uplink and downlink, extending the wireless coverage
and guaranteeing the QoS of UAV communications for IoT in
disasters.

3 Machine Learning: Overview
Machine learning is an application of artificial intelligence

(AI), which provides systems with the ability to automatically
learn and improve themselves from experience without being
explicitly programmed. It is essentially based on the premise
that machines should be furnished with AI that enables them
to learn from previous computations and adapt to their environ⁃
ment through experience [32], [44]. Machine learning began to
flourish in the 1990s. Before 1990s, logic-and knowledge-
based schemes, such as inductive logic programming and ex⁃
pert systems dominated the AI scene relying on high-level hu⁃

man-readable symbolic representations of tasks and logic. Re⁃
searchers in 2000s gradually renewed their interest on deep
learning (DL) with the aid of advanced hardware-based compu⁃
tational capacity and the machine learning paradigm became
popular at that time, supporting a wide range of services and
applications in different areas [32], [44], [45].
3.1 Various Types of Machine Learning
Machine learning algorithms can be classified into three

groups based on training data: supervised learning, unsuper⁃
vised learning, and reinforcement learning (RL)
The supervised learning algorithm enables machines to be

trained using labeled data. When dealing with labeled data,
both the input data and its desired output data are known to
the system. Supervised learning is commonly used in applica⁃
tions that have enough historical data. The algorithm is used
to infer a function that maps the input data to the output label
relying on the training of sample data-label pairs. Practically,
considering a set of N sample data label pairs in the form of
{(x1,y1 ) , (x2,y2 ) ,..., (xN,yN )}, where xn is the n-th sample input
data and yn represents its label. Let X = {x1,x2,...,xN} denotes
the input data set and Y = {y1,y2,...,yN} denotes the output la⁃
bel set. The sample pairs are independent and identically dis⁃
tributed (i. i. d. ). The learning algorithms aim for seeking a
function g ( x ) that yields the highest value of the score function
f ( x,y ), hence we have g ( x ) = argmaxy f ( x,y ). Supervised
learning algorithms can be widely used in the context of classi⁃
fication, regression and prediction.
The unsupervised learning algorithm enables machines to be

trained without labeled data. Unsupervised learning is typical⁃
ly about finding structure hidden in collections of unlabeled
data. By analyzing N input data X = {x1,x2,..., xN}, a pair of
popular methods have been conceived for revealing the under⁃
lying unknown features of N input data, namely density estima⁃
tion and feature extraction.
RL enables machines to learn what to and how to map situa⁃

tions to actions so as to maximize a numerical reward signal. It
is different from the above two algorithms and is currently the
most popular research topic in the field of machine learning.
There are elements which are necessary for reinforcement
learning such as agent, state, action in a given environment.
At each episode, the environment is in some state S and the
agent selects a legitimate action A. The system responds at the
next episode by moving into a new state S′ with a certain proba⁃
bility influenced both by the specific action chosen and by the
inherent transitions of the system. Meanwhile, the agent re⁃
ceives a corresponding reward r (S, A) from the system, as time
evolves. RL, an important branch of machine learning, is an ef⁃
fective tool and widely used Markov Decision Process (MDP)
method [46]. In RL process, an agent can learn its optimal pol⁃
icy through interaction with its environment. Q-learning is the
most effective method and widely used algorithm for RL. One

of the most popular and widely used learning techniques is
deep learning which allows the computer to build complex con⁃
cepts out of simpler concepts. It is a set of algorithms and tech⁃
niques that attempt to find important features of data and to
model its high-level abstractions [40]. However, the learning
process of RL takes a lot of time to reach optimal policy or gen⁃
erate best policy by exploring and generating knowledge of an
environment, and this circumstance is not suitable and inappli⁃
cable for complex large problems. An artificial neural network
(ANN) is a computational nonlinear model based on the neural
structure of the brain, which is able to learn to perform tasks
such as classification, prediction, decision-making, and visual⁃
ization. The basic model of a neuron is mathematically ex⁃
pressed as follows:

Zn (wn,bn,xn ) = f (bn +∑
i = k

J

xn k .wn k ) , (1)

where xn k is an input signal from a given neuron n to neuron i,
xn = [xn1, xn2, xn3,..., xnJ ] is a vector of the input signal of neuron
n, wnk is the corresponding input weight value, wn =
[wn1,wn2,wn3,...,wnJ ] is a vector of input weight of neuron n, Zn
is the output signal of neuron n, bn is the bias of neuron n, and
f ( ) is a nonlinear activation function. A bias value can shift
the activation function, which is critical for successful learn⁃
ing. The activation function in a neural network will represent
the rate of action potential ring in the cell of a neuron. An
ANN constructed using linear activation functions in (1) can⁃
not reach a stable state after training, and this problem can be
controlled by normalizing different activation functions such as
sigmoid function, tanh function, and rectified linear unit (Re⁃
LU) function.
3.2 Deep Reinforcement Learning
Deep learning was recognized as the first among the top ten

AI technology trends for 2018 [45] and is already the leading
machine learning technique successfully used in many scientif⁃
ic fields such as image recognition, text recognition, speech
recognition, audio and language processing, and robotics [32],
[44], [45]. Deep learning models are based on an ANN. As we
mentioned above, the application of RL is insufficient for the
current complicated problems. The combination of RL and
deep learning, known as deep reinforcement learning (DRL),
can break the limitation of RL in different areas. The DRL
takes the advantage of deep neural networks (DDN) to train the
learning process, improving the learning efficiency and perfor⁃
mance of RL algorithms.
Q-learning is one of the most common used RL algorithms.

It is an attempt to learn the value Q ( s, a) of a specific action
given to the agent in a particular state. Considering a table
where the number of rows represents the number of states, the
RL agent interacts with the environment to learn the Q-values,

based on which the agent takes an action. The Q-value is de⁃
fined as the discounted accumulative reward starting at a tuple
of a state and an action. Once the Q-values are learned after a
maximum episode, the agent can make a quick decision under
the current state by taking the action with the largest Q-value
and the number of columns represents the number of actions
which is called a Q-table [45], [47]. A large amount of state
and action space in the environment makes the Q-table unman⁃
ageable. In current real-world examples like cellular edge
computing, the state space is infinitely large. In order to elimi⁃
nate the shortcoming of Q-learning, a neural network is used to
predict the Q-values. One popular DRL algorithm is deep Q-
network (DQN), which uses DNN to approximate the values.
DQN is much more capable of generalization compared to the
Q-network. DQN inherits and promotes advantages of both re⁃
inforcement and deep learning techniques, and thus it has a
wide range of applications in practice such as game develop⁃
ment, transportation, and robotics [44], [45], [47]. The study of
DQNs has let too many improvements; new architectures have
been designed for better performance and stability, including
double DQN (DDQN), dueling DQN, and another asynchronous
DRL algorithms studied on this articles [47]-[49].

4 System Architecture of UAV Enabled F-
RAN
In the future, the ABS infrastructure will play a great role in

5G and beyond 5G communications. The ML algorithms ap⁃
plied in the current and future cellular technologies and aerial
networks will be used to manage the dynamic network environ⁃
ment. Figs. 1 and 2 depict the integration of UAV networks
and terrestrial networks, where resources from cloud networks
are accessed through the virtualized base band unit (VBBU).
In VBBU, the network resources which are used for both aerial
and terrestrial network infrastructures are virtualized in intelli⁃
gent manner. The resources are allocated in the infrastruc⁃
tures, depending on the network demands. We categorize the
architecture into three layers.
4.1 Layer 1
The H-CRAN that has cloud computing resources is deliv⁃

ered by server-based applications through digital networks or
the public Internet itself. The resources which are available on
cloud are far from edge IoT devices. Due to this, the edge IoT
devices need localized computational nodes and resources to
achieve features of 5G and B5G such as ultra-reliability, low-
latency and massive (ubiquitous) connectivity.
4.2 Layer 2
The virtual BBU pool is located at the data center and multi⁃

ple BBU nodes dynamically allocate resources to different net⁃
work operators. The resources are allocated to aerial networks
and terrestrial networks based on current network demands.
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of the most popular and widely used learning techniques is
deep learning which allows the computer to build complex con⁃
cepts out of simpler concepts. It is a set of algorithms and tech⁃
niques that attempt to find important features of data and to
model its high-level abstractions [40]. However, the learning
process of RL takes a lot of time to reach optimal policy or gen⁃
erate best policy by exploring and generating knowledge of an
environment, and this circumstance is not suitable and inappli⁃
cable for complex large problems. An artificial neural network
(ANN) is a computational nonlinear model based on the neural
structure of the brain, which is able to learn to perform tasks
such as classification, prediction, decision-making, and visual⁃
ization. The basic model of a neuron is mathematically ex⁃
pressed as follows:

Zn (wn,bn,xn ) = f (bn +∑
i = k

J

xn k .wn k ) , (1)

where xn k is an input signal from a given neuron n to neuron i,
xn = [xn1, xn2, xn3,..., xnJ ] is a vector of the input signal of neuron
n, wnk is the corresponding input weight value, wn =
[wn1,wn2,wn3,...,wnJ ] is a vector of input weight of neuron n, Zn
is the output signal of neuron n, bn is the bias of neuron n, and
f ( ) is a nonlinear activation function. A bias value can shift
the activation function, which is critical for successful learn⁃
ing. The activation function in a neural network will represent
the rate of action potential ring in the cell of a neuron. An
ANN constructed using linear activation functions in (1) can⁃
not reach a stable state after training, and this problem can be
controlled by normalizing different activation functions such as
sigmoid function, tanh function, and rectified linear unit (Re⁃
LU) function.
3.2 Deep Reinforcement Learning
Deep learning was recognized as the first among the top ten

AI technology trends for 2018 [45] and is already the leading
machine learning technique successfully used in many scientif⁃
ic fields such as image recognition, text recognition, speech
recognition, audio and language processing, and robotics [32],
[44], [45]. Deep learning models are based on an ANN. As we
mentioned above, the application of RL is insufficient for the
current complicated problems. The combination of RL and
deep learning, known as deep reinforcement learning (DRL),
can break the limitation of RL in different areas. The DRL
takes the advantage of deep neural networks (DDN) to train the
learning process, improving the learning efficiency and perfor⁃
mance of RL algorithms.
Q-learning is one of the most common used RL algorithms.

It is an attempt to learn the value Q ( s, a) of a specific action
given to the agent in a particular state. Considering a table
where the number of rows represents the number of states, the
RL agent interacts with the environment to learn the Q-values,

based on which the agent takes an action. The Q-value is de⁃
fined as the discounted accumulative reward starting at a tuple
of a state and an action. Once the Q-values are learned after a
maximum episode, the agent can make a quick decision under
the current state by taking the action with the largest Q-value
and the number of columns represents the number of actions
which is called a Q-table [45], [47]. A large amount of state
and action space in the environment makes the Q-table unman⁃
ageable. In current real-world examples like cellular edge
computing, the state space is infinitely large. In order to elimi⁃
nate the shortcoming of Q-learning, a neural network is used to
predict the Q-values. One popular DRL algorithm is deep Q-
network (DQN), which uses DNN to approximate the values.
DQN is much more capable of generalization compared to the
Q-network. DQN inherits and promotes advantages of both re⁃
inforcement and deep learning techniques, and thus it has a
wide range of applications in practice such as game develop⁃
ment, transportation, and robotics [44], [45], [47]. The study of
DQNs has let too many improvements; new architectures have
been designed for better performance and stability, including
double DQN (DDQN), dueling DQN, and another asynchronous
DRL algorithms studied on this articles [47]-[49].

4 System Architecture of UAV Enabled F-
RAN
In the future, the ABS infrastructure will play a great role in

5G and beyond 5G communications. The ML algorithms ap⁃
plied in the current and future cellular technologies and aerial
networks will be used to manage the dynamic network environ⁃
ment. Figs. 1 and 2 depict the integration of UAV networks
and terrestrial networks, where resources from cloud networks
are accessed through the virtualized base band unit (VBBU).
In VBBU, the network resources which are used for both aerial
and terrestrial network infrastructures are virtualized in intelli⁃
gent manner. The resources are allocated in the infrastruc⁃
tures, depending on the network demands. We categorize the
architecture into three layers.
4.1 Layer 1
The H-CRAN that has cloud computing resources is deliv⁃

ered by server-based applications through digital networks or
the public Internet itself. The resources which are available on
cloud are far from edge IoT devices. Due to this, the edge IoT
devices need localized computational nodes and resources to
achieve features of 5G and B5G such as ultra-reliability, low-
latency and massive (ubiquitous) connectivity.
4.2 Layer 2
The virtual BBU pool is located at the data center and multi⁃

ple BBU nodes dynamically allocate resources to different net⁃
work operators. The resources are allocated to aerial networks
and terrestrial networks based on current network demands.
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On this layer, the resources are virtualized into N network slic⁃
es which are found on cloud. The network virtualization allows
network resources to be sliced and granted to multiple tenants.
We assume the DRL is in decentralized manner and the fog-
edge network can make decisions independently based on the
local learning environment and inputs. The resulting decision
will then be sent to the central controller.
4.3 Layer 3
The main network operations such as DRL, resource man⁃

agement and computation offloading are performed at this lay⁃
er. It has three levels which are network controller, UAV-
small bases stations (SBS) and Edge IoT devices.
1) Level 1: The network controller (NC) is a central control⁃

ler of the two network infrastructures and a communication
platform where the aerial networks assist the terrestrial net⁃
works and DRL makes an intelligent coordination depending
on network traffic, emergency and resource scarcity. A macro
base station (MBS) with MEC server is used to manage resourc⁃
es which are allocated by the VBBU, allocate these resources
to different network operators, and make a decision about the

network condition for using DRL approach. To satisfy QoS and
QoE of heterogeneous connected edge devices in each slice,
the network will be assisted by UAV network in intelligent
manners. Under MBS there are a number of SBSs with local
servers in each small cell which are used to connect ultra-
dense heterogeneous devices.
2) Level 2: UAV and SBS at this level are used to assist the

communication in a given small cell mainly when the network
is congested at specific time and in emergency situations; UAV
acts as a flying base station to replace the destroyed BS and
perform computational tasks and recharge of edge IoT devices.
At this time the edge IoT devices are mainly wireless sensors,
wearable devices and surveillance cameras, which offload the
collected data into UAV for further analysis and decision mak⁃
ing. Therefore, we consider UAV enabled F-RAN in which the
UAV is considered as a flying remote radio head (RRH) or
base station with computation capability to assist the edge IoT
device. The UAV is part of cellular network; it recharges IoT
sensor batteries and also sends collected data to MBSs.
3) Level 3: Edge IoT devices at this level are ultra-dense

heterogeneous devices (mIoT devices), which are connected

H-CRAN
Resources

Layer 1

Layer 2

Layer 3

Virtual BBU

Virtualize Resources DRL

Level 1

Level 2

Level 3

NC NC-N
DRL Agent ClusterHead UAV-MBS

UAV-CH

IoT Devices
SBS

DRL Agent ClusterHead UAV-MBS

UAV-CH

IoT Devices
SBS

BBU:Base Band UnitCH: cluster headDRL: deep reinforcement learning
H-CRAN: heterogeneous cloud radio access networkIoT: Internet of ThingsMBS: macro-base station

NC: network controllerSBS: small bases stationUAV: unmanned aerial vehicle

▲Figure 1. UAV enabled fog radio access network (F-RAN) system architecture.
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with each other and SBSs. These devices share common re⁃
sources, exchange information with the nearest devices, and
have different interests. The MEC server may be crowed or
even damaged when the devices request resources and need to
offload their own tasks at the same time. The layer three has
more network traffic than other layers and the cooperation of
aerial network with terrestrial network is needed. The UAV as⁃
sists the edge IoT network when either the network coverage is
far from base station or some natural disaster has affected the
network.

5 Machine Learning Algorithms in Edge
Computing and UAV
In the current edge technology era, there is the sprite of di⁃

rect communication between devices which are connected with
the network infrastructures without travelling to base stations
or core networks. D2D communication system is one of the
most common networks and has been widely used in recent
years; it is a milestone on the road towards self-organization
and peer-to-peer (P2P) collaboration. Currently most of edge

IoT devices need computing latency-sensitive support, which
is not tolerable at the cloud level. In 2012, a group of research⁃
ers from Cisco proposed a new paradigm known as fog comput⁃
ing. Fog computing and edge computing appear similar since
they both involve bringing intelligence and processing closer to
UE. Most of the edge IoT devices have shortage of computa⁃
tional capacity and limitation of battery life. Due to this limita⁃
tion, the edge IoT devices may fail to perform different opera⁃
tions properly. However, using the emerging MEC paradigm,
the edge device can offload computation intensive tasks to the
MEC server in different ways. The study of computation
offloading and resource allocation in MEC and fog computing
is complicated system analysis because of mobility patterns, ra⁃
dio access interfaces, strong couplings among mobile users
with heterogeneities in application demands, QoS provisioning,
and wireless resources. A machine learning approach special⁃
ly using RL is a promising candidate to manage huge state
space and optimization variables, especially by using different
types of ANN.
DRL is an emerging tool for sophisticated problems in com⁃

munication and networking in IoT, MEC, HetNet, and UAV
networks. The network unities such as IoT devices, mobile us⁃

BS: base stationPSC: public safety communication RRH: remote radio headUAV: unmanned aerial vehicle VBBU: virtualized base band unitWAP: wireless access point

▲Figure 2. UAV enabled fog radio access network (F-RAN) and edge computing system model in public safety communication (PSC).
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ers, and UAVs need to make local and autonomous decisions,
like spectrum access, data rate selection, transmit power con⁃
trol, computation offloading decision, and base station associa⁃
tion, to achieve the goals of different networks including
throughput maximization, delay minimization, energy consump⁃
tion minimization, and UAV deployment. The main problem is
an uncertain and stochastic environment but the MDP model
can solve the problem using dynamic programming, value itera⁃
tion and RL [45]. LUONG et al. [31] studied the role of DRL
in communication and networking. DRL minimizes the com⁃
plexity of optimization and solves the problem in different per⁃
spectives. DRL allows network entities to learn and build
knowledge about the communication and networking environ⁃
ment. By using DRL algorithms, mobile users can learn opti⁃
mal policies for base station selection, channel selection, han⁃
dover decision, caching and offloading decisions, UAV deploy⁃
ment, path planning, and trajectory optimization without know⁃
ing channel model and mobility pattern. In [31], different top⁃
ics of the research works related to DRL were shown in per⁃
centages, for example, as the research in space communication
is 13%, Ad-hoc 19%, cellular network 31%, IoT network 9%,
and others 31%; the related issues to be solved were also pre⁃
sented in percentages, for example, the issues of wireless ca⁃
pacity is 19%, computation offloading 13%, rate control 8%,
network access 13%, data collection 9%, resource scheduling
9%, connectivity preservation 8%, and network security 12%.
Although there are a number of works on machine learning ap⁃
proaches for wireless communication networks [29], [31], [34],
there is no research focus on machine learning based UAV en⁃
abled F-RAN infrastructures yet.
5.1 Machine Learning Based Computation Offloading in

MEC
Edge IoT devices such as sensors and wearable devices have

a limited computational capacity, short life time of battery, and
storage. Due to this limitation, the IoT devices do not support
advanced applications such as face recognition and online gam⁃
ing (VR/AR). To tackle the problems in edge IoT devices and
also in the network, an offloading mechanism is used to offload
computational tasks and data to the nearest computational
nodes (MEC server, UAV, or local servers). The offloading of
data and computation tasks of the IoT devices can minimize
the processing delay and energy consumption, and may en⁃
hance security. Under this circumstance, there are some criti⁃
cal challenges to computation offloading, such as choosing a
computational node from multiple computational nodes and de⁃
termining the offloading rate. Selection of an overloaded com⁃
putational node also affects the computation time and energy
consumption of IoT devices. The previous works on computa⁃
tion offloading and resources allocation used heuristic or itera⁃
tion algorithms, but they have high complexity. Alternatively,
machine learning is a promising tool used for solving the com⁃
plex problem of computation offloading and resource alloca⁃

tion.
Recently, machine learning algorithms have been applied in⁃

to fog edge computing to minimize the optimization problems.
The authors of [50] proposed SDN NFV based DQN framework
for caching and computation offloading to achieve energy effi⁃
ciency in the network. The authors of [51] proposed a deep
learning-based offloading framework to minimize the offloading
cost for MEC networks. A deep supervised learning was also
modeled to obtain the optimal offloading policy for mobile us⁃
ers. The authors of [52] tried to solve the resource allocation
problems by joint optimization of caching, networking and com⁃
putation for video content compressing and encoding, using
feedforward neural network (FNN) based DQN. DDQN and du⁃
eling DQN approaches were proposed to improve the stability
and performance of the DQN algorithm [53]. A DQN frame⁃
work was also proposed for smart city applications, which is a
dynamic orchestration of caching, bandwidth and computation
to achieve QoS for different services [54].
The authors of [55] proposed offloading cellular traffic for

WLAN by adopting the DQL algorithm and MDP model to min⁃
imize energy consumption and mobile user cost. The MEC
server has a limitation of resources to allocate for all edge de⁃
vices; due to this, the MEC server also minimize cost and ener⁃
gy. In a vehicular network, there is a huge action space and
high complexity due to the vehicles’mobility and service de⁃
lay. In [56], a multi-time scale DQN framework is proposed to
minimize the system cost through jointly designing caching,
communication and computing. The authors of [57] proposed
DQN based joint optimization for computation offloading and
resource allocation in MEC-enabled cellular networks. And
the cost of delay and power consumption is accordingly mini⁃
mized for all mobile users. In cellular networks, a DQL based
optimal offloading policy was proposed to minimize the mobile
users’cost and energy consumption [58]. In [59], a virtualized
computation offloading framework using DRL was designed
and a DDQN based DQL algorithm was proposed for an agent
to learn the optimal offloading policy without prior knowledge
of the network environment in a dynamic manner. This work
also focused on the utility function by decomposing Q-function
and combining with DDQN; a novel online SARSA-based DRL
algorithm was proposed [59]. Besides, the computation offload⁃
ing of multiple MEC servers have been considered [60]–[62].
The authors of [60] designed Q-learning and fast DQL offload⁃
ing scheme to achieve optimal policy for IoT devices and ener⁃
gy harvesting capacity.
In [61], a two-layered DQL algorithm for offloading to maxi⁃

mize the utilization of cloud resources was studied; the first lay⁃
er uses a convolutional neural network (CNN) -based DQL
framework to estimate an optimal cluster for each computation⁃
al task and the second layer uses Q-learning to determine the
optimal serving physical machine in cluster. The authors of
[62] proposed distributed deep learning-based offloading
(DDLO) for multi-computing servers, users and tasks in MEC
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networks to minimize wireless device (WD) energy consump⁃
tion by offloading WD tasks to the MEC server or cloud and al⁃
locating bandwidth. Table 2 shows different machine learn⁃
ing algorithms in vehicular networks and cellular networks.
5.2 Machine Learning Based UAV Connected Cellular

Networks
The application of machine learning for UAV is known as the

drone system. Over the past years, many studies were conduct⁃
ed on either the integration of UAV networks with terrestrial net⁃
works or UAV networks in different application streams such as
energy efficiency, computation offloading, resource allocation,
and network coverage extension. However, Most of the previous
works solved the existed problems using heuristic algorithm.
The current research is focusing more on using machine learn⁃
ing algorithms to solve the aerial and terrestrial network integra⁃
tion for UAV assisted cellular networks, IoT, BSs and others to
achieve a specific goal in the network. The cellular connected
UAV will be a future hot research topic because it can integrate
with future cellular networks and machine learning approaches
to create a new intelligent aerial mobile user.
Many studies have been conducted on machine learning al⁃

gorithms used in UAV or cellular connected UAV networks for
optimizing UAV deployment, path planning, and trajectory as
well as improving energy efficiency, UAV coverage, through⁃
put, and resource allocation. GHANAVI et al. [63] proposed
the optimal 3D UAV deployment to implement UAV-BSs
which use RL to assist or serve the terrestrial network of mobil⁃
ity equipment for keeping the reliability of connection and in⁃
creasing the QoS of users. The authors of [64] proposed an effi⁃
cient 3D ABS positioning solution, in which DQN with DRL is
used to assist the terrestrial BS in a small cell where the BS is
overloaded and none of LoS exists for maximizing the spectra
efficiency of the system. In [65], proposed a novel framework
was proposed to deploy ABSs to assist overloaded or congested
base stations in small cells. Researchers also adopted the ma⁃
chine learning approach to tackle the problem of predicting the
traffic demand of each base station through previous histories,

based on which ABSs are deployed for serving users in small
cells and applying contract theory to jointly maximize the indi⁃
vidual utility of each BS and UAV. In [66], an ANN based op⁃
portunistic computation offloading framework was proposed,
the clustered UAV network assists a vehicular traffic network
and the ground controller predicts the response time of each
clustered UAV to offload intensive tasks. A clustered UAV
network can compute intensive tasks by itself or borrow the re⁃
sources from another cluster UAV network [66]. The authors
of [67] studied the model free RL algorithm using Q-learning to
optimize the trajectory of an UAV acting as a flying BS that
serves multiple terrestrial network users. And the UAV also
acts as an autonomous agent in the environment, learning the
trajectory for maximize the sum rate of transmission during
UAV flying time from one location to another location. CUI et
al. [68] studied a multi-agent RL using Q-learning and sto⁃
chastic game theory model for dynamic resource allocation in
multi-UAV connected multi-users. Each UAV acts as an agent
to make a decision independently for maximizing long-term re⁃
wards of each agent to provide reliable communications. Us⁃
ers, power levels and sub-channel selection strategies were al⁃
so jointly studied in [68]. For cellular connected UAVs in be⁃
yond 5G system, a DRL algorithm was proposed based on the
echo state network (ESN) for an interference aware path plan⁃
ning and management [69]. Each UAV acts as an agent that
uses deep ESN to learn optimal path, transmission power level
and cell association in each location of path and minimize se⁃
quence of time-dependent utility function. Authors of [69] also
studied energy efficiency, the control of UAVs, and the fair
covering of the active areas where the users are available and
the UAVs are required to act as base stations by the DRL algo⁃
rithm. In this work, the fairness index algorithm was applied to
control UAV network coverage to minimize UAV energy con⁃
sumption and improve UE QoS.

6 Challenges and Future Research Directions
According to the recent studies of various issues for future

CNN: convolutional neural network
CRN: cognitive radio network

DDQN: double deep Q-network
DQN: deep Q-network

FNN: feedforward neural network
MDP: Markov Decision Process

SARSA: state action reward state action

▼Table 2. Machine learning algorithms for computation offloading and resource allocation in vehicular networks and cellular networks

Paper

[50]
[52]
[53]
[55]
[56]
[57]
[58]
[59]
[60]

Network

CRN
Vehicular Network
Vehicular Network
Cellular System
Cellular System
Cellular System
Cellular System
Cellular System
Cellular System

Agent

Base station
Service Provider
Service Provider
Base Station
Mobile User
Base Station
Mobile User
Mobile User
Mobile User

Model

MDP
MDP
MDP
MDP
MDP
MDP
MDP
MDP

Game theory

Learning Algorithm

DQN using FNN
DQN using FNN
DQN using CNN
DQN using CNN
DQN using CNN
DQN using FNN
DQN using FNN
DDQN, SARSA

DQN using CNN, Q-learning
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generation network infrastructures, we outline some challenges
and future research directions for the integration of aerial net⁃
works and terrestrial networks with machine learning approach⁃
es in F-RAN, NFV and MEC paradigms.
6.1 Challenges
1) Machine learning used in virtualized UAV enabled F-

RAN: RL (commonly DQN, Q-Learning and others) in virtual⁃
ized MEC system has been used to tackle many issues at differ⁃
ent layers of cellular networks. Deploying the machine learn⁃
ing algorithms at different layers of virtualized H-CRAN of
UAV-enabled F-RAN will create the intelligence of the future
network infrastructure of 5G and beyond. However, in this sce⁃
nario there are a number of network infrastructure and con⁃
cepts. Handling this multi-paradigm concept is complex in the
current 5G technology and future 6G network.
2) Multi-agent in multi-layer UAV enabled F-RAN: Most of

the current studies of cellular mobile networks or MEC system
and UAV network focus on efficient resource allocation, energy
efficiency, computation offloading, and caching to minimize de⁃
lay and energy consumption or maximize revenue. The ma⁃
chine learning (commonly RL) algorithms have been used to
tackle these issues, but most of them use a single agent at the
base station or service providers. The recent years have wit⁃
nessed the rapid evolution of network infrastructure and tech⁃
nologies from one generation to another generation every ten
years. In the era of 5G, ultra-dense heterogeneous networks,
which consist of different layers of IoT or fog network that sup⁃
ports ultra-low-latency (ULL) devices, are connected to each
other at a given time step. In the future, beyond 5G or 6G (5G+
AI) will support intelligent Personal Edge (IPE), genome data⁃
base, autonomous health, sensors to AI fusion block-chain,
etc. [70]– [72]. To perform complex multi-dimensional tasks
in these networks, a multi-agent decentralized DRL approach
needs to be adopted. Adopting this concept in the UAV-en⁃
abled F-RAN multi-agent at each layer is somehow complex
and needs clear framework modeling.
3) Determination of the state of network traffic in different

small cells: In 5G and beyond 5G era, there is ultra-dense het⁃
erogeneous network with massive IoT devices and smart mo⁃
bile users which generate a huge amount of traffic in different
circumstances. These ultra-dense devices will be assisted by
UAV- cluster networks to satisfy the QoS and QoE rather than
terrestrial base stations. In the UAV connected cellular net⁃
work at lower layers such as fog or edge computing level, a sin⁃
gle UAV or multi-UAVs are deployed and heuristic algorithms
are used to identify network traffic in small cells, depending on
the UAV capacity and coverage area. However, such applica⁃
tion of machine learning in the dynamic network is unpredict⁃
able, has a large and continuous state space for making the de⁃
termination of the network traffic state in different cells, and
faces complex deployment of UAV-clusters.
4) Handover for transmitting data and task of mIoT devices

for emergency situations: One of the attractive and promising
paradigms of the UAV connected cellular network is acting as
a flying base station to assist the emergency service. In this sit⁃
uation, the mIoT devices would send computational tasks and
huge amount of request data traffic to the local base station at a
specific time step. However, after the occurrence of a natural
disaster, a good and intelligent handover framework is needed
to manage the handovers in a terrestrial network environment
in a disaster area. The application of machine learning algo⁃
rithms in the handover process is much suitable.
6.2 Future Research Directions
1) Distributed machine learning based virtualized UAV en⁃

abled F-RAN: One of the popular machine learning algorithm
frameworks in wireless communication and network is RL with
deep neuron network, which requires large amount of training.
Most of the time the large DNN is implemented at the central
network controller which has sufficient resources such as com⁃
putational capacity and is capable of training a large continu⁃
ous state space and action space in the dynamic network envi⁃
ronment. The central controller minimizes the burden of aerial
mobile users and IoT devices by considering the limitation of
capacities and capabilities. The main functionalities of UAV
networks and terrestrial or cellular networks can be integrated
with the central network controller. The virtualized DRL
framework for UAV enabled F-RAN or UAV connected cellu⁃
lar system is an open issue. The network traffic exchanges
from one layer to another and from aerial mobile users to terres⁃
trial mobile users (mIoT devices) are efficient.
2) Dynamic deployment of multi-UAV cluster in F-RAN: In

UAV networks, one of the open issues is UAV deployment in
optimal 3D placement for different dynamic terrestrial network
infrastructure. A number of previous works focused on UAV
deployment with optimization of trajectory, path planning, and
maximizing energy efficiency. Due to the dynamical network
infrastructure in 5G and beyond 5G (6G), such as the rapid
changes in coverage, the number of connected devices and net⁃
work platforms, the DRL based approach for optimal 3D place⁃
ment of UAV will be a necessity, with the integration of the cel⁃
lular or IoT network. Under this consideration, there are other
issues such as resource management (aerial mobile users and
terrestrial network devices), optimal computation offloading,
network coverage area, minimizing energy consumption of net⁃
work, and cell association to maximize flight time.
3) Machine learning based resource management in UAV-

Enabled F-RAN: A number of studies have been conducted on
resource management at different layers in cellular networks,
vehicular networks, and UAV networks to solve complex prob⁃
lems such as optimization, maximizing energy efficiency, re⁃
source allocation for UAV and bandwidth management. These
studies aim to maximize the revenue or minimize the cost of de⁃
lay and energy in the system. Other works that used heuristic
algorithms to tackle the complex problems in cellular net⁃
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works, vehicular networks, and fog and edge computing are
now adopting machine learning, commonly RL (DQN, Q-learn⁃
ing, DDQN, DDGP, Actor- critics) for resource management
and computation offloading. However, in the mixed network in⁃
frastructures such as UAV-enabled F-RAN, need to design a
machine learning based joint resource management and compu⁃
tation offloading framework.
4) Machine learning for dynamic deployment of ABS in

emergency (PSC): UAV plays a potential role in the future
promising paradigm for emergency situations known as PSC.
The current communication era heavily relies on the backbone
networks. For the failure of base stations due to natural disas⁃
ter or malevolent attacks, PSC is able to use machine learning
to deploy a group of multi-UAVs in ultra-dense HetNet archi⁃
tecture as ABSs that can dynamically replace the destroyed or
over-headed base stations in the terrestrial network. The
UAVs are used to support the reliable connection for edge IoT
devices, extend the network coverage, control the end user de⁃
vices, etc. from the communication perspective. If a destroyed
BS has the computational resource (local server), MEC server,
and power source that cannot be accessed by edge IoT devices,
the intelligent ABSs also replace the destroyed terrestrial BS to
conduct computing task and allocate transmission power to sat⁃
isfy the QoS and QoE of end users/IoT devices at the fog/edge
level of RAN networks.
5) Machine learning based mobility control of multi-UAV

connected cellular network/F-RAN: In a multi-UAV assisted
cellular network/F-RAN, the UAV flies from one location to an⁃
other location within the given time frame. At the time of
UAV’s flying over the terrestrial network, mobile users/IoT de⁃
vices will wait for long time to get access to the UAV terminal.
Due to this, the QoS and QoE of the network could be degrad⁃
ed. To tackle this issue, an intelligent machine learning based
model is designed for multi-UAV mobility management, where
the agents learn by themselves to adjust the mobility in the pre⁃
dicted location in the terrestrial network infrastructure. Be⁃
sides, the model also considers the terrestrial network connect⁃
ed devices such as mobile users, vehicle, and other mobility
environments. In this scenario, the management of resources
(computational, bandwidth, and energy) is also considered in
the mixed network infrastructures.

7 Conclusions
This paper presents a short review of the machine learning

used to solve complex problems in modern network infrastruc⁃
tures and suggests the machine learning based multi UAV-en⁃
abled F-RAN. First, we introduce F-RAN and UAV for the
current and future network technologies. Second, we discuss
UAV in cellular networks and its replacement of base stations
in terrestrial networks. Third, we review machine learning al⁃
gorithms and RL and suggest the machine learning based
UAV-enabled F-RAN framework architecture in H-CRAN net⁃

work infrastructure for computation offloading and resource al⁃
location. We also mention some previous works on edge com⁃
puting and UAV using RL with DNN to solve different prob⁃
lems such as resource allocation, computation offloading and
base station replacement in different networks. Finally, we out⁃
line the challenges and future research directions.
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