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Abstract: Deep learning is driving a radical paradigm shift in wireless communications, all
the way from the application layer down to the physical layer. Despite this, there is an ongoing
debate as to what additional values artificial intelligence (or machine learning) could bring to
us, particularly on the physical layer design; and what penalties there may have? These ques⁃
tions motivate a fundamental rethinking of the wireless modem design in the artificial intelli⁃
gence era. Through several physical-layer case studies, we argue for a significant role that ma⁃
chine learning could play, for instance in parallel error-control coding and decoding, channel
equalization, interference cancellation, as well as multiuser and multiantenna detection. In
addition, we discuss the fundamental bottlenecks of machine learning as well as their poten⁃
tial solutions in this paper.
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1 IntroductionWith the launch of commercial 5G mobile networks in
2019, the research of wireless communications is
now well on the way towards Vision 2030 and be⁃
yond. Today, the picture of future wireless commu⁃

nications is becoming much clearer than ever. According to
ITU Network 2030 Working Group [1], future networks should
be architected to support holographic communications and
smart connectivity, providing seemingly zero latency, guaran⁃
teed ultra-reliability (e. g. 99. 9999%), massive Internet of
Things (IoT) connectivity, and Tbit/s wireless speed. Commu⁃
nication networks are no longer only a medium for information
flow, but also act as distributed computers to form over-the-top
(OTT)-like platforms to provide services (such as computing-as-

a-service and design-as-a-service) for vertical users. To
achieve this goal, wireless technologies should be fundamental⁃
ly re-designed to be able to fully explore the spectrum; as such,
this is driving the development of extreme physical-layer
(PHY) technologies, which are able to handle wireless systems
with many nonlinearities, due to the use of very-high order
modulations, unexploited mmWave or THz bands, and/or low-
cost electronic components (such as low-noise amplifiers
(LNAs), mixers, oscillators and low-resolution analog-to-digital
converters (ADCs)). Moreover, PHY solutions should be made
scalable to the number of connected devices; and they should
be parallel computing ready, as future high-performance com⁃
puting technologies (including future quantum computing tech⁃
nology) rely highly on the parallel computing power.
With such a big picture in mind, machine learning or more

specifically, deep learning can play a significant role in the
PHY design, at least from the following five aspects:
1) Conventional PHY algorithms, particularly for wireless re⁃

ceivers, are mostly not parallel computing ready. For instance,
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most of the linear or nonlinear coherent receivers (such as lin⁃
ear zero-forcing, minimum mean-square error, lattice reduc⁃
tion, and sphere decoding) require either channel matrix inver⁃
sions or channel matrix decompositions, which are difficult to
execute in an efficient and parallel manner. This can cause a
bottleneck for the implementation of advanced channel equaliz⁃
ers or multiuser detectors at the receiver side. An exception
could be the matched-filter algorithm, which is of low-complex⁃
ity and parallel computing architecture. On the other hand,
matched filtering is often too suboptimum for most wireless ap⁃
plications. One might also argue for parallel computing abilities
of brute-force search, likelihood ascent search, or Tabu search.
However, those algorithms trade off complexity for parallel com⁃
puting, and thus they are not cost-effective solutions. In this pa⁃
per, we will study the merits of deep-learning assisted solutions,
with specific to their inborn parallel computing ability.
2) Conventional hand-engineered PHY algorithms face the

fundamental trade-off between performance and complexity.
Optimum algorithms are often too complex to implement and
low-complexity algorithms are often too suboptimum. Deep-
learning assisted PHY algorithms have the potential to achieve
(near- )optimum performances with low computation complexi⁃
ties. We argue for the merits of performance-complexity trade-
off when using deep learning.
3) Current PHY technologies are designed for linear commu⁃

nication channels and they are not optimized for future wire⁃
less systems often operating in nonlinear conditions. Nonlin⁃
ear systems are often much harder for mathematical analysis,
and in general, we even do not know their channel capacities.
Hand-engineered approaches for PHY design and optimization
are currently very challenging; and this is where deep learning
can be of much assistance.
4) Sensing and communication is an emerging concept in

the scope of network automation. Basically, wireless net⁃
works are able to capture environmental changes through lo⁃
cal and remote sensors or even live video records, based on
which networks can adapt their operating states for optimum
uses of their local radio resources. On the PHY layer, envi⁃
ronmental information can be translated into channel-side in⁃
formation through machine learning [2], and this can be use⁃
ful for advanced modem functions such as adaptive modula⁃
tion, coding and beamforming. In addition, machine learning
can play a central role in building and reconfiguring state ma⁃
chines for local networks through extensive online back⁃
ground learning.
5) Since Shannon’s ground-breaking work on communica⁃

tion theory reported in 1948, most telecommunications re⁃
search effort has been targeting the Level A problem, i. e. ,
how accurately can the information-bearing symbols be con⁃
veyed from one point to another? In the academic domain,
this research problem has been almost saturated. In the in⁃
dustrial domain, it is very challenging to apply the outcome of
Level A research so as to satisfy the growing demand of future

wireless networks in terms of smart connectivity, providing
seemingly zero latency and perceived infinite capacity.
Therefore, it is perhaps the right time to revisit or invest more
research effort on the Level B problem, i. e. , how precisely
do the symbols of communication convey the desired mean⁃
ing? This problem goes well beyond traditional source encod⁃
ing practices; as for now, source encoders are expected to un⁃
derstand the meaning of objects instead of just the probability
distribution. A simple example of the Level B problem is il⁃
lustrated in Fig. 1, where the picture on the left-hand side is
the original picture for transmission. Instead of compressing
the picture using current codec processing methods, source
encoders that have been trained to understand the meaning of
the picture could send a textual description, such as“a white
background picture, with a mother kangaroo carrying her ba⁃
by in her pouch.”The receiver then rebuilds the picture
based on the meaning of the received symbols; this can be
termed semantic communications, which involves heavy use
of artificial intelligence/machine learning in semantic source
encoding and decoding.
Certainly, we shall be able to find more merits and interest⁃

ing topics when applying artificial intelligence/machine learn⁃
ing in wireless communications; some are already under fast
development and some are just emerging. In the following sec⁃
tions, our discussion will be mainly focused on points 1), 2),
and 3), as they are suitable for both current and future commu⁃
nication networks. We will also discuss fundamental bottle⁃
necks when applying deep learning to wireless modem design.
The rest of this paper is organized as follows. Section 2 out⁃

lines the principles of deep learning assisted modem design in
the wireless communication physical layer. Section 3 provides
the design details of three practical physical layer applica⁃
tions. Section 4 provides further discussions and open re⁃
search problems. Section 5 draws the conclusion.

2 Principles of Deep Learning Assisted Mo⁃
dem Design
By deep learning, we often mean machine learning through

deep artificial neural networks (ANNs). An ANN is called
deep when it has two or more hidden layers. Mathematically,

▲Figure 1. A simple example of Level B communication problem (se⁃
mantic communication).
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the main function of each hidden layer is to perform classifica⁃
tion of input vectors which might be referred to as perception
in the artificial intelligence domain. If each output neuron
yields a binary-type output, a hidden layer, consisting of L neu⁃
rons, is able to classify at least L clusters. When a hidden lay⁃
er is trained according to the nearest-neighbor rule, the ma⁃
chine is able to learn optimum classifications [3]. One might
also employ the k-nearest neighbor rule to train the hidden lay⁃
er, and in this case, the machine can form at most 2L clusters.
This is a possible way to scale up ANN when input vectors
have to be partitioned into clusters that are growing exponen⁃
tially. However, we will have to trade off the classification ac⁃
curacy.
Prior to studying deep learning assisted wireless modem de⁃

sign, let us have a brief review of the PHY procedure of point-
to-point communications (Fig. 2). Basically, signal waveforms
are drawn from a finite-alphabet set, say A, with the size J. Af⁃
ter going through the fading channel, received waveforms in
their discrete-time equivalent form are vectors forming an infi⁃
nite set. The role of receivers is to map the received vectors
back onto the finite-alphabet set A. This procedure mimics the
ANN-based classification procedure, as described above. In⁃
deed, it is rather straightforward to replace the receiver box in
Fig. 2 with an ANN black-box. The input vectors are formed
by received waveforms combined with the channel state infor⁃
mation, as they together form a bijection to the original wave⁃
form set A. Alternatively, the input vectors can be channel-
equalized signals which also form bijection with the original
waveform set A. The bijection allows the ANN black-box to be
trained through supervised learning. In fact, this example is not
the only way to apply deep learning for modem designs. It is al⁃
so possible to replace both the transmitter and receiver with
their corresponding ANN black-boxes, so as to form an autoen⁃
coder which can be trained end-to-end for joint transmitter and
receiver design [4], [5]. Theoretically, a shallow-ANN (i. e. an
ANN with a single hidden layer) would be sufficient to perform
signal classification at the receiver side, as a receiver is nor⁃
mally a single-task classifier. Joint transmitter and receiver de⁃
signs (autoencoders) are different, as they need at least one hid⁃
den layer at the transmitter side to construct the waveform set
and another hidden layer at the receiver side to carry out corre⁃

sponding signal classification. Here, the implication is that
deep-ANN is more meaningful when a PHY module or proce⁃
dure can have a breakdown of two or more different tasks; or
otherwise, a shallow-ANN would be more than enough. This is⁃
sue will be further elaborated in Section 3.
In addition to the ANN architecture, ANN training algo⁃

rithms or methods are crucial when improving machine learn⁃
ing efficiency. Analogous to ANN-assisted machine learning
practices in the general artificial intelligence domain, it is al⁃
ways important to pay particular attention to the following three
aspects:
1) Weighting vectors (including biases) in each hidden layer

should be carefully initialized. They are often randomly gener⁃
ated according to a certain independent probability distribu⁃
tion within a certain range, which can vary from case to case in
practical applications. Specific to modem design, we should
bear in mind that those weighting vectors during training be⁃
come reference vectors for the eventual signal classification.
Therefore, they should be initialized in a way that facilitates
the capture of the characteristics of communication signals by
machines.
2) Activation functions must be carefully selected to improve

the optimality or efficiency of ANN-assisted machine learning.
For instance, Softmax(. ) is suitable for small-scale ANNs to
adopt the nearest-neighbor rule in machine learning. This en⁃
ables Euclidean-distance optimality when training a hidden lay⁃
er. Moreover, Softmax(. ) allows machines to produce soft out⁃
puts that are often useful for soft-demodulation and decoding
practices. Alternatively, we can employ Sigmoid(. ) to scale up
ANNs when they are expected to handle massive-region classi⁃
fications. Certainly, we will have to pay for the classification
optimality. For more information, a relatively comprehensive
list of activation functions as well as their descriptions can be
found in [6].
3) Backpropagation (BP) is essential at the ANN training

stage to recursively update neuron weighting vectors, with the
aim of minimizing the loss function such as the mean-square
error, mean absolute error or categorical cross-entropy between
the ANN output and labeled training target, depending on the
applications. A commonly used BP method is called mini-
batch gradient descent, which randomly picks up a certain
number of training samples from the entire training data set on
each training iteration. Compared to another commonly used
BP algorithm called batch gradient descent, mini-batch gradi⁃
ent descent can significantly reduce computational complexi⁃
ties, particularly when the path to the desired minima is quite
noisy.

3 Deep Learning Assisted Modem Designs
and Their Merits
In this section, we will offer three case studies on deep-

learning assisted wireless modem design and argue for their ad⁃
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▲ Figure 2. Block diagram of the physical-layer (PHY) procedure of
point-to-point communication.

05



Special Topic To Learn or Not to Learn: Deep Learning Assisted Wireless Modem Design

XUE Songyan, LI Ang , WANG Jinfei, YI Na , MA Yi, Rahim TAFAZOLLI, and Terence DODGSON

ZTE COMMUNICATIONS
December 2019 Vol. 17 No. 4

vantages in computing latency reduction, remarkable complexi⁃
ty-performance trade-off, as well as robustness to nonlinear
physical distortions.
3.1 Case Study 1: Deep Learning Assisted Parallel Decod⁃

ing of Convolutional Codes
Error-control codes often have a serial computing architec⁃

ture in nature due to correlations amongst codeword bits. This
fact is challenging the design of parallel-computing ready de⁃
coding algorithms. Recent advances towards ANN-assisted de⁃
coders are mainly based on recurrent neural networks [7], [8]
and there is a clear show of advantages in performance-com⁃
plexity trade-off. Here, we review a more recent contribution
in this domain, which proposes to the employment of feed-for⁃
ward neural networks for low-complexity parallel decoding of
convolutional codes [9].
The basic idea is to partition a long convolutional codeword

into a number of pieces, forming so-called sub-codewords.
When the length of sub-codewords is sufficiently long, there ex⁃
ists a bijection between sub-codewords and their correspond⁃
ing original information bits, subject to an initial state uncer⁃
tainty. As depicted in Fig. 3a, sub-codewords are first decod⁃
ed in parallel using a list maximum-likelihood decoder (List-
MLD), and then initial state uncertainties are removed through
the sub-codeword merging process, referred to as a two-stage
decoding process that can be implemented in parallel. In this
case study, the role of the ANN is to replace the List-MLD al⁃

gorithm at the sub-codeword decoding stage, as the latter is of
very high computation complexity. Fig. 3b illustrates the
ANN training procedure, where the sub-codeword decoder is
modelled as a deep-ANN black-box. The input vector is the
noisy version of all possible sub-codewords, and the output vec⁃
tor is the corresponding estimate of the original information
bits. It is worthwhile highlighting that the training set of input
vectors should be carefully defined so as to incorporate the ef⁃
fect of initial state uncertainty (as detailed in [9]), as this is cru⁃
cial for the sub-codeword merging stage. Moreover, it is sug⁃
gested to partition a long convolutional codeword evenly, as in
this case we only need to train one ANN block-box and can re⁃
use it for all sub-codewords, thus resulting in an efficient way
to reduce the training complexity.
Fig. 4 illustrates the bit reliability of convolutional decoders

in additive white Gaussian noise (AWGN), considering a half-
rate non-recursive convolutional code with a codeword length
of 64. The illustrated simulation results are only for Eb/N0=4dB and similar conclusions can be drawn for other Eb/N0 values[9]. The ANN black-box was trained at Eb/N0=2 dB. Whencomparing the parallel decoder with the conventional MLD, it
can be seen from Fig. 4 that they have no difference in bit reli⁃
ability; and thus, the parallel decoder is optimum. Moreover,
due to the parallel computing nature, the parallel decoder has
the potential to reduce computing latency, subject to the num⁃
ber of sub-codewords. When the sub-codeword decoder is real⁃
ized through the ANN black-box described in Fig. 3b, we can
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There are three hidden layers, with each employing Rectified Linear Unit (ReLU) activation function; the output layer is equipped with sigmoid activa⁃
tion function, which outputs the estimated original information bits.
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see a little bit of a performance loss in bit reliability (around
0. 03%); this is mainly due to using an insufficient number of
epochs during the ANN training stage. Nevertheless, the com⁃
putation time for sub-codeword decoding is reduced by around
95%. It is clear that ANN helps to achieve a very good com⁃
plexity-performance trade-off. In addition, the ANN decoder
can be executed fully in parallel and this is an additional ad⁃
vantage for latency reduction.
3.2 Case Study 2: Deep Learning Assisted Multiuser OFD⁃

MA Frequency Synchronization
Consider a multiuser frequency-synchronization problem in

the context of orthogonal frequency-division multiple-access
(OFDMA) uplink communications, where transmitters experi⁃
ence independently generated carrier-frequency-offsets
(CFOs), due to oscillator instability or Doppler-induced ran⁃

dom frequency modulations. This problem involves two sub-
problems. One is the multiuser-CFO estimation and the other
is multiuser detection (MUD) or multiuser interference (MUI)
cancellation given the CFO estimates. Multiuser-CFO estima⁃
tion can be implemented by employing either pilot-assisted ap⁃
proaches or blind approaches that exploit statistical behaviors
inherent in signal waveforms. When CFO estimates are as⁃
sumed available at the transmitter side, each transmitter can
carry out CFO pre-compensation, individually. However, link-
level latency will be a considerable issue due to the CFO feed⁃
back delay. Alternatively, multiuser frequency synchronization
can also be carried out at each individual user domain (e.g. , sub-
band) using the filterbank approach, which can be combined
with iterative parallel interference cancellation (PIC). Howev⁃
er, such a method is vulnerable to the CFO estimation accura⁃
cy and it could introduce extra baseband processing latency in⁃
to the system.
Fig. 5 illustrates a deep-learning assisted multiuser frequen⁃

cy synchronization approach, named classification-and-then-
MUD (CAT-MUD) in [10]. The deep-ANN has two functional
layers: one is responsible for multiuser-CFO classification and
the other is for the MUI cancellation. The CFO classifier is
employed to tell the CFO sub-range where transmitters’CFOs
fall in. This is very different from the conventional CFO esti⁃
mation in the sense that the classifier only estimates the CFO
range instead of CFOs. With the estimated CFO sub-range in⁃
dex, received signals are then fed into the MUD layer for the
MUI cancellation; please find a detailed introduction of CAT-
MUD in [10].
Fig. 6 illustrates the overall system performance (in block-

error rate, BLER) for OFDMA systems, where 4 transmitters
evenly share 32 subcarriers. Original information bits are first
modulated into 16-QAM symbols and then transmitted through
an 8-tap frequency-selective Rayleigh fading channel (3GPP
Channel Model A). To be more robust to CFO classification er⁃
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rors, the switch depicted in Figure 5 can simultaneously turn
on multiple adjacent MUD branches. Figure 6 shows that the
3-branch model achieves the best performance-complexity
trade-off. It outperforms the conventional PIC approach by
around 3 dB in Eb/N0 and offers comparable performances withthe CFO-free case at low and moderate SNRs (such as Eb/N0<15 dB).
3.3 Case Study 3: Deep Learning Assisted Coherent MI⁃

MO Detection
Multiuser multiple-input multiple-out (MU-MIMO) signal

detection over noisy fading channel is mathematically an inte⁃
ger least-squares (ILS) problem, which aims to minimize the
pairwise Euclidean distance between the transmitted signal
multiplied by channel matrix and the received signal [11].
Concerning the optimal MLD solution to be computationally
expensive, the usual practice is to employ linear channel
equalization algorithms, such as the matched filter (MF), zero
forcing (ZF) and linear minimum mean-square error
(LMMSE), to trade off the optimality for lower computational
complexity. However, linear algorithms are often too sub-opti⁃
mum due to their use of symbol-by-symbol detection. There⁃
fore, enormous research efforts have been paid in the last two
decades to achieve the best performance-complexity trade-off
through the use of non-linear algorithms (e. g. , Vertical-Bell

Laboratories Layered Space-Time (V-BLAST) [12], Linear
Minimum Mean-Square Error-Successive Interference Cancel⁃
lation (LMMSE-SIC [13], and so on). The problem is that
most of the non-linear algorithms are too complex for current
DSP technology and do not lend themselves well to parallel
computing. This goes against the trend of computing technol⁃
ogy development.
Deep learning assisted solutions have demonstrated their po⁃

tential for offering computational complexity close to linear re⁃
ceivers, without compromising the detection performance.
Moreover, most of the deep learning algorithms are parallel
computing ready. According to the ways of utilizing channel
state information at the receiver side (CSIR), deep-learning so⁃
lutions can be divided into two categories: channel equaliza⁃
tion and learning (CE-L) mode (Fig. 7a) and direct learning
(Direct-L) mode (Fig. 7b). The difference is that the CE-L
mode employs ANN black-box after channel equalization, and
the Direct-L mode takes both CSIR and received signal as the
input vector for signal classification.
A major advantage of the CE-L mode lies in the use of chan⁃

nel equalization for multiuser signal orthogonalization. Hence,
the input vector to the ANN black-box is effectively a noisy
version of the transmitted signal vector. By such means, the
CE-L mode can turn the ANN classification problem from the
vector level to the symbol level. However, the performance of
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the CE-L mode is limited by the symbol-by-symbol MLD
bound. Theoretically, the Direct-L mode is able to achieve the
optimum MLD performance for the vector-level classification.
In addition, the Direct-L mode does not need channel equaliza⁃
tion. This is a remarkable advantage as channel equalizers of⁃
ten require channel matrix inversions which do not support par⁃
allel computing. On the other hand, the Direct-L model is not
a scalable approach with the size of MIMO, due to ANN’s re⁃
duced classification ability with the growth of multiuser inter⁃
ferences.
Fig. 8 illustrates a novel deep-ANN approach, where a

multi-layer modularized ANN is combined with PIC to scale
up the Direct-L mode. This approach is called DNN-PIC in
[14]. Basically, the entire ANN consists of a number of cas⁃
caded PIC layers, with each layer employing a group of identi⁃
cal pre-trained DNN-PIC modules for signal classification
and interference cancellation. Therefore, multiuser interfer⁃
ence decreases linearly with the feed-forward procedure, and
the last layer is able to provide a better classification of MU-
MIMO signals.
Fig. 9 compares the average bit-error-rate (BER) performance

between conventional MU-MIMO receivers and the DNN-assist⁃
ed solutions. For the CE-L and Direct-L mode, the ANN was
trained at Eb/N0=5 dB. For the DNN-PIC approach, the ANN
was trained at three different Eb/N0 points (i. e. Eb/N0=0 dB,

5 dB and 10 dB), and were optimally selected in the commu⁃
nication procedure in order to obtain the best achievable per⁃
formance. Simulation results show that deep learning mod⁃
ules largely improve the detection performance of the MF-
based receiver (around 8 dB at BER of 10-3) due to better use
of the sequence-detection gain. For both the ZF and LMMSE
receiver, the sequence-detection gain vanishes since channel
equalization orthogonalizes multiuser signals. Meanwhile,
the Direct-L mode significantly outperforms all CE-L modes
and this result confirms the accuracy of the theoretical analy⁃
sis. Finally, the proposed DNN-PIC approach further im⁃
proves the BER performance of the Direct-L approach by
around 1. 5 dB. The performance gap between the DNN-PIC
and the MLD receiver is only about 0. 2 dB. Again, it should
be emphasized that the DNN-PIC approach is parallel com⁃
puting ready.

4 Discussion and Research Challenges
Although deep learning has achieved widespread empirical

success in many areas, the applications of deep learning for
wireless communication physical layer design are still at the
early stage of research and engineering implementation. In
this section, we list several fundamental bottlenecks together
with the potential future research directions.

DNN⁃PIC
Module 2

DNN⁃PIC
Module 2

DNN⁃PIC
Module 2

DNN⁃PIC
Module 1

DNN⁃PIC
Module M

DNN⁃PIC
Module M

Direct⁃L
Mode

DNN⁃PIC Module (Hidden)

h̆(2)0,1

Direct⁃L
Mode

DNN⁃PIC Module (Output)

Layer 1 Layer 2 Layer M

h

y

… …

… DNN⁃PIC
Module M

h̆1

x̂(2)1

y(2)0,1

h̆(M - 1)1,2,...,M - 1

y(M - 1)1,2,...,M - 1

x̂(M )0
h̆(M - 1)1,2,...,M - 1

x̂(M )0

x̂(M )M - 2

x̂(M )M - 1
h̆(1)0

y(1)0

DNN-PIC: Deep Neural Network–Parallel Interference Cancellation

▲Figure 8. Block diagram of the DNN-PIC approach.
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1) Training set overfitting.
Overfitting is a modeling problem which occurs when a func⁃

tion too closely fits a limited data set [15]. In PHY, it could re⁃
fer to the case that an ANN-assisted receiver trained for a spe⁃
cific wireless environment (or channel model) is not suitable
for another environment (or channel model). It is a severe
problem since a deep learning solution with limited generaliza⁃
tion capability is less useful in real practice. However, this is⁃
sue can be viewed more positively if deep learning algorithm
can be used to optimize wireless receivers integrated into ac⁃
cess points based on their local environments.
2) Scalability of DL-based solutions.
In machine learning theory, scalability refers to the effect

of an increasing training data set on the computational com⁃
plexity of a learning algorithm. For instance, the ANN solu⁃
tion in Fig. 7b has its learning capacity rapidly degraded
with the growth of transmit antennas [14]. The current ap⁃
proach to mitigate this problem is by means of training the
ANN with channel equalized signals (Fig. 7a). However, in
this case, ANN-assisted receivers are not able to exploit maxi⁃
mally the spatial diversity-gain due to the multiuser orthogo⁃
nalization enabled by channel equalizers, and the perfor⁃
mance goes far from optimum. To tackle this issue, novel
deep learning algorithms with good scalability are required
(and expected) in the future.

3) Training strategies and performance evaluation.
Deep learning for wireless communication is a new research

area and people lack experience in training strategies. For ex⁃
ample, the optimal training SNR points for different PHY sce⁃
narios remain unknown [15]. In [9], it can be observed that the
training of an ANN at relatively high SNRs gives an excellent
generalization performance at low SNR regime in AWGN chan⁃
nel. However, when wireless channel becomes fading [14], the
learned PHY feature at high SNR regime can no longer indi⁃
cate the feature of low SNRs. A potential solution is to train
ANNs at different SNR regimes separately and then merge the
results together, but this solution introduces additional training
complexities and requires SNR estimation. A related question
is whether there is a more appropriate way to measure the train⁃
ing process in PHY solutions. It is well known that ANN train⁃
ing aims to minimize a given loss function, and we consider
that an ANN is well trained if the loss is converged to an ideal
state. On the other hand, PHY performance is normally mea⁃
sured by BER or SER. In most of the ANN-assisted PHY solu⁃
tions, we make a hard decision on ANN outputs to obtain the
bit-level (or symbol-level) estimates. However, the loss func⁃
tion might not be able to accurately indicate the training prog⁃
ress when complicated PHY scenarios are considered (e. g. ,
high-order modulation and fast fading channel). In [14], the
authors introduce a method which measures the training prog⁃
ress by computing the average BER/SER over the last few
training epochs, and the estimated BER performance is shown
to be very close to the validation performance. In general, the
training strategies, especially for PHY applications, are worthy
of investigation in future research.
4) Hardware implementation.
Currently, most of the ANN-assisted PHY solutions are

still in their software simulation stages, but hardware imple⁃
mentation normally requires more practical considerations
[16]– [18]. Apart from the channel model and data set that
we have discussed in the previous sections, power consump⁃
tion also needs to be considered since the ANN training pro⁃
cess often involves very high computation cost. The aim of re⁃
ducing ANN learning expenses has recently motivated a new
research area on the non von Neumann computing architec⁃
ture.

5 Conclusions
This paper presents several promising ANN-assisted PHY

applications. The idea lies in the use of ANNs to replace parts
of the conventional signal processing blocks in the communica⁃
tion chain. It is shown that ANN-assisted approaches achieve
competitive performance in terms of both reliability and laten⁃
cy in various applications. More importantly, deep learning of⁃
fers us a fundamentally new way to design and optimize the
conventional communication systems. A wide range of open
challenges need to be solved and theoretical analysis is also ex⁃
pected in future research.
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▲Figure 9. Average BER as a function of Eb/N0 for uncoded 4-by-8 mul⁃
tiuser multiple-input multiple-out (MU-SIMO) system with BPSK modu⁃
lation.
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