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Abstract: Without any prior information about related wireless transmitting nodes, joint
estimation of the position and power of a blind signal combined with multiple co⁃ fre⁃
quency radio waves is a challenging task. Measuring the signal related data based on a
group distributed sensor is an efficient way to infer the various characteristics of the
signal sources. In this paper, we propose a particle swarm optimization to estimate mul⁃
tiple co ⁃ frequency“blind”source nodes, which is based on the received power data
measured by the sensors. To distract the mix signals precisely, a genetic algorithm is
applied, and it further improves the estimation performance of the system. The simula⁃
tion results show the efficiency of the proposed algorithm.
Keywords: Particle Swarm Optimization (PSO); Genetic Algorithm (GA); spatially dis⁃
tributed sensor; blind signal detection
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1 Introduction
s mobile broadband traffic and end ⁃ user demands
continue to grow, the radio frequency spectrum has
become an expensive and limited resource for wire⁃
less communications. Therefore, how to reasonably

allocate spectrum resources, avoid conflicts, and detect inter⁃
ference have become an extremely worthwhile research issue.
Spatially distributed sensor networks can effectively detect a
certain frequency band in a certain area [1]. The power infor⁃
mation can be bused in a variety of applications, such as in⁃
door positioning, interference detection, signal recognition, and
cognitive radio systems. As a major threat to wireless communi⁃
cations, interference creates significant usage and financial im⁃
pact on users and operators. Interference is generally pro⁃
cessed by several related techniques, such as interference mon⁃
itoring, interference detection and isolation, interference classi⁃
fication, interference localization, and interference mitigation.
Interference localization is what we are concerned about.

General interference signals are blind source signals, with
unknown transmission power, which also brings difficulties to
interference location [2]. For some communication systems, in⁃

terference sources can cause very serious consequences if they
cannot be located and eliminated in real time [3]. For instance,
the signals in the communication based train control system
(CBTC) communicate with the base station in the 2.4 GHz pub⁃
lic band and are easily interfered by other devices in the same
band. Especially when there are non⁃protocol signals in the en⁃
vironment, the system signals may be interfered by them. Once
the same frequency signals are mixed, the signal sources are
difficult to locate. Therefore, it is necessary to use appropriate
methods to detect blind signals. Currently, common spectrum
sensing techniques include matched filter detection, cyclosta⁃
tionary detection, and energy detection, which are mainly
based on physical layer signal processing. Several methods
were proposed to solve the problem of blind signal detection,
by the use of a path loss model. The most used is the theoreti⁃
cal analysis method of using received power measurements at
spatially distributed monitors [4], [5], [6]. Some scholars have
proposed a method to detect the co⁃ frequency blind signal by
using the topology of the receiver and the mathematical models
[6]. Some methods use k⁃means clustering algorithm combined
with Particle Swarm Optimization (PSO) to estimate the posi⁃
tion of nodes [2]. Other methods use SDR equipment for inter⁃
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ference detection [7]. From the simulation results, the PSO has
better adaptability and performance when dealing with such in⁃
terference problems [8], [9]. The PSO has caught great atten⁃
tion and various improved algorithms are continuously pro⁃
posed, such as the local PSO through changing the topology of
the particle population. There are some methods combined
with other algorithms such as Genetic Algorithm (GA) and clus⁃
tering algorithms to improve performance [10], [11]. The PSO
is then extended to use for the multi⁃objective estimation prob⁃
lem [10]. Genetic algorithms are also widely used in smart ap⁃
plications [12]- [14]. Similarly, improvements to genetic algo⁃
rithms have never stopped, such as the elite genetic algorithm,
adaptive genetic algorithm, multi ⁃ objective genetic algorithm,
and hybrid genetic algorithm [15]-[18].

However, there are few works concerning the data ⁃ driven
method using sensors or detecting equipment.

According to the received signal power measurement and
free⁃space path loss model, the sensor network can be utilized
to estimate the relative position of the target node based on the
mutual measurements from other nodes in the network. A natu⁃
ral question that then arises is what if only the general path
loss model is utilized, this makes it infeasible to locate one or
multiple co ⁃ frequency nodes when the transmit power is un⁃
known [19], [20].

In this paper, we utilize the sensor measurement data which
contains the spatial diversity of the source signals to estimate
the unknown node’s coordinates and power based on a pro⁃
posed particle swarm optimization algorithm. We formulate the
sum of squared error of the mathematical model of the sensor
system as the objective function of the PSO algorithm and find
the minimum value. According to the path loss model and the
limited range of the spatially distributed sensor receiving area,
the unknown nodes’transmit power range is estimated. The
major contributions are listed as follows:

1) We use spatially distributed sensor networks and PSO to
study the joint estimation of the position and power of multiple
unknown nodes. In the absence of transmitter power informa⁃
tion, a unique estimation method is proposed based solely on
the received power information on the sensor. For locating mul⁃
tiple co ⁃ frequency unknown nodes, the received power is the
superposition of the co ⁃ frequency unknown nodes power. The
mathematical model of this sensor system is non ⁃convex, and
the function has multiple minimum points. We reduce the
range of the objective function solution by pre ⁃ estimating the
power and coordinates of unknown nodes to reduce the number
of local optimal solutions and improve the accuracy of joint es⁃
timation.

2) We find that the ratios of power between unknown nodes
will affect the final estimate of the algorithm. To avoid the
wrong estimation of the PSO, we designed a unique GA and
combined it with the PSO, which greatly reduced the probabili⁃
ty of the error estimation of the PSO and improved the estima⁃
tion performance of the system. When a signal has higher pow⁃

er, it is easy to obtain a smaller estimation error. However, the
signal with lower power cannot be estimated accurately. The
greater the ratio of the power of the signals, the more pro⁃
nounced this phenomenon is. Moreover, when multiple signal
power values are similar, the PSO may be confused. In this
case, the PSO algorithm cannot distinguish the phenomenon of
each signal because the PSO falls into the local optimal solu⁃
tion. Therefore, we combine the GA with the PSO algorithm to
avoid the pre ⁃ matureness of the algorithm and enable it to
jump out of the trap of the local optimal solution.

Through simulation, we found that the combined perfor⁃
mance of PSO has been significantly improved after combining
GA. The estimated error is reduced by a maximum of 0.6 m,
and the estimation accuracy is improved by nearly 30%. Com⁃
pared with the PSO with the exhaustive method, the perfor⁃
mance gap is about 30%.

The rest of this paper proceeds as follows. Section 2 intro⁃
duces the system model. The PSO algorithm improved accord⁃
ing to system characteristics is proposed in Section 3. Section
4 mainly deals with unique GA and the method combined with
PSO. In Section 5, the algorithm combined with the proposed
PSO and GA is simulated and verified. Section 6 concludes
this paper.

2 System Model
We assume a scenario where there are M transmitters and N

sensor nodes within a certain square area. There is no reflec⁃
tive medium in the area, and there will be no multipath effect.
In general, spatially distributed sensor networks are placed ac⁃
cording to a certain spatial topology. This usually enables the
system to have better estimation performance and to prelimi⁃
narily position the target node. However, in order to make the
study without loss of generality, we randomly placed the sensor
in the hypothetical area and recorded its coordinates. The loca⁃
tions of the transmitters and sensors are represented in Carte⁃
sian coordinates. The uppercase notation denotes the coordina⁃
tion and power of transmitters such as ( X1,Y1 ) and ( PT1, while
the lowercase denotes the coordinates and power of sensors
such as ( x1, y1 ) and ( pr1 ). For example, a diagram of the square
region containing M transmitters and N receivers is shown in
Fig. 1. Here, we only consider the line⁃of⁃sight channels from
each transmitter to each sensor.

pr = PT

βda , (1)
where d denotes the Euclidean distance between the transmit⁃
ter and the sensor, pr denotes the measured power of sensor, PTdenotes the transmitted power of the blind signal, and β is a
known constant selected based on the carrier frequency and
the antenna structure. In practice, α ∈ [ 2, 6 ] depending on the
environment. Here, we make the value of α = 2 . Since the esti⁃
mation system only utilizes the received power level of the sen⁃
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sor, we do not consider short⁃ term fading.
2.1 Multiple Transmitter System

Since we chose PSO as the primary tool to solve joint estima⁃
tion problems, we transform the system model into an objective
function that serves as the basis for particle search. We define
that the objective function is the sum of the squared difference
between the actual measured power of each sensor and the pre⁃
dicted received power based on the estimated transmitter pow⁃
er and coordinates and causes the population of particles to
search for its minimum value.

F =∑
i = 1

N ( )pr, i -∑
j = 1

M PT, j
βdα

i, j

2

, (2)

where pr, i denotes the measured power of sensor i. PT, j denotesthe transmitted power of the transmitter j. dα
i, j denotes the Eu⁃

clidean distance between the transmitter j and the sensor i. Our
objective function is not convex concerning the estimated trans⁃
mitter locations. Note that there may be many local optimal so⁃
lutions when the number of sensor nodes is small, and the esti⁃
mation error does not approach zero endlessly as the number of
sensor nodes increases.

3 Particle Swarm Optimization
PSO is a population⁃based evolutionary algorithm. The clas⁃

sical PSO is used for balancing the weights of a neural net⁃
work. The basic unit of the PSO population is the particle. The
algorithm forms the search behavior through the interaction be⁃
tween each particle. Each particle represents a solution to the
objective function and corresponds to a fitness function value.
The merits of the fitness function value directly determine the
quality of the solution. The target position is considered a glob⁃
al optimal solution.

PSO has two important concepts:
1) Exploration means that particles leave the original search

trajectory to a certain extent and search in a new direction,
which reflects the ability to develop into unknown regions.

2) Exploitation refers to the fact that particles continue to
perform more detailed searches on the original search trajecto⁃
ry to some extent.

Population searches for optimal solutions in exploration and
development. To control these two kinds of search better, the
inertia weight is introduced. Its value can adjust the global and
local search ability of PSO. When α is large, global optimiza⁃
tion ability tends to be strong. On the contrary, the local search
ability is enhanced. In this paper, we utilize the equation with
inertia weights. The topology of the population directly deter⁃
mines the way in which particles interact. The classical PSO is
a global topology and the learning samples for each particle are
all other particles in the population. Subsequently, scholars
proposed a variety of local PSO algorithms with excellent per⁃
formance, and found that local PSO algorithm has better perfor⁃
mance in local search. But what our system needs most is the
global search ability of the algorithm. Therefore, it is more ap⁃
propriate for us to choose a global topology.

We generate a certain number of particle populations, and
then initialize the particles and randomly generate their speeds
and positions. All particles are initialized, giving them random
values in each dimension, as shown in Equ. (3), where k is the
number of the particle and j is the number of the transmitter.
Then we calculate the fitness function value of each particle ac⁃
cording to Equ. (4), where Fk denotes the fitness function of
particle k. i is the number of the sensor, and update the parti⁃
cles’speeds and positions according to Equs. (5) and (6) in
each iteration until the end of the algorithm. The equations and
pseudo code of the standard PSO (Algorithm 1) are as follows.
ì
í
î

ï

ï

xk = [ ]X k
1 ,Y k

1 ,Pk
T, 1, ...,X k

M,Y k
M,Pk

T,M

vk = [ ]Ẋ k
1 , Ẏ k

1 , Ṗ k
T, 1, ..., Ẋ k

M, Ẏ k
M, Ṗ k

T,M
, (3)

Fk =∑
i = 1

N ( )pr, i -∑
j = 1

M Pk
T, j

β [ ]( X k
j - xi )2 + (Y k

j - yi )2
2

, (4)

vk ( t + 1 ) = ω × vk ( t ) + c1 × r1 × ( pbestk ( t ) - xk ( t ) ) + c2 ×
r2 × ( gbest ( t ) - xk ( t ) ) , (5)
xk ( t + 1 ) = xk ( t ) + vk ( t + 1 ) , (6)

where vk ( t ) denotes the speed of particle k at iteration time t.
xk denotes the position of the particle k. The pbestk is the opti⁃
mal position experienced by the particle k. The pbest denotes
the position of the particle that operates optimally in the popu⁃
lation. c1 and c2 denote the acceleration constants of the parti⁃
cles. In order to make the particles have stronger self ⁃search⁃

▲Figure 1. M transmitters (question marks) and N sensors placed with⁃
in a certain square area.
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ing ability in the initial stage, they can converge to the global
optimum at the later stage. We linearize c1 and c2 so that c1 hasa larger initial weight and gradually decreases. And c2 is the
opposite.
ì

í

î

ïï

ïï

c1 = -t
T

+ 2
c2 = t

T
+ 1

. (7)

r1 and r2 are two random numbers distributed uniformly in [0,
1]. ω is generally a constant, and the linearly decreasing
weight is currently used more frequently as the value of the in⁃
ertia weight.

ω = ωmax - ( ωmax - ωmin ) × t

T
, (8)

where T denotes the total number of iterations and t denotes
the number of iterations that have taken place.

The population size of particles affects the performance of
the algorithm. Different estimation problems apply to different
population sizes, and it is generally proportional to the dimen⁃
sion of the objective function. Some results suggest that using
( 2m + 1 )2 particles work better, where m is the number of di⁃
mensions the objective function has. For our simulation, each
unknown transmitter needs to estimate three dimensions
( x, y,PT ). Therefore, for each additional transmitter, there are
three dimensions added. We need to change the population of
particles according to the different dimensions of the objective
function. Otherwise, too few particles may miss the global opti⁃
mal solution, while too many particles may produce many re⁃
peated results, reducing the efficiency of the algorithm. So we
use ( 2m + 1 )2 particles, which is enough for most of the esti⁃
mation problems. Using excess particles within the algorithm
can indeed make the estimation more accurate. However, it
will cause the algorithm calculation volume to increase, affect⁃
ing the overall performance of the system. In Section 4, with
the help of the exhaustive method, we use a large number of
particle population to approximate the estimation error limit of
the objective function in this paper.

Algorithm 1. Particle Swarm Optimization
1: Establish the objective: minimize {Fk}.
2: Initialize, randomly generated particle position and

velocity.
3: While t ≤ T // T is the maximum number of iterations
4: If Fk < pbestk then
5: pbestk = xk

6: If pbestk < gbest then
7: gbest = pbestk

8: End if
9: End if

10: Update particle. Update particle velocity and position
according to Equs. (5) and (6).

11: End While

To evaluate the effectiveness of the proposed joint estima⁃
tion technique, we attempted to simulate the performance of
three to twenty sensors and one to four transmitters based on
different systems. As mentioned earlier, each additional trans⁃
mitter will add 3⁃dimensions that need to be estimation to the
system. For the estimation problem, the number of equations
should be more than or equal to the estimated dimensions. In
other words, every time an unknown transmitter is added, at
least three receivers need to be added. Increasing the number
of transmitters and receivers does increase the computational
burden of the simulation, but the proposed method has no in⁃
herent limits to the dimensionality it can handle. However, as
the dimension increases, the performance of the PSO deterio⁃
rates. In the standard PSO, the learning object of each particle
is a particle in the population that has the best fitness function
value. When the dimensions are large, it is difficult to ensure
that the global⁃best particle can search for the optimal solution
in every dimension.

After a large number of simulation experiments using only
the particle swarm algorithm, we found that the ratio between
the powers of multiple transmitters had different effects on the
results. The impact can be divided into two situations. In each
case, the algorithm falls into a special local minimum. In the
first case, when there are two or more transmitters with similar
actual power, the particle swarm algorithm may easily match
the estimated power of one transmitter with the estimated posi⁃
tion of another transmitter with similar power. Because the ob⁃
jective function is a multi⁃dimensional estimate, when the esti⁃
mated value of some of the dimensions is close to the actual
value, the overall fitness function value is too small. The algo⁃
rithm tends to converge and falls into a local minimum.

In the second case, the high power transmitter estimates bet⁃
ter than the low power transmitter. This situation is caused by
the objective function. High⁃power transmitters have a greater
impact on fitness function values than low⁃ power transmitters.
Although the dimensions are synchronous estimates, the con⁃
vergence of various dimensions of the high power transmitter is
significantly faster than the dimensions of the low power trans⁃
mitter. When the various dimensions of the high⁃power trans⁃
mitter obtain relatively accurate estimates, the fitness function
value is already small and the algorithm tends to converge.

4 Genetic Algorithm
The genetic algorithm is a computational model that simu⁃

lates the natural evolution of Darwin’s biological evolution the⁃
ory and the biological evolution process of the genetic mecha⁃
nism. It is a method to search for optimal solutions by simulat⁃
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ing natural evolutionary processes. The GA begins with a popu⁃
lation that represents a potential solution set of problems,
while a population consists of a certain number of individuals
genetically encoded. Each is an entity with a characteristic
chromosome. Chromosomes are the main carrier of genetic ma⁃
terial, that is, a collection of multiple genes whose internal
manifestation is a combination of genes that determine the ex⁃
ternal representation of the shape of the individual. Therefore,
mapping from phenotype to genotype, that is, coding work,
needs to be implemented at the beginning. Since the work of
gene encoding is complex, we tend to simplify it. Here, we com⁃
bine GA and PSO, which share a population. Next, we geneti⁃
cally encode each particle according to the category of informa⁃
tion estimated on each dimension of the particle. The specific
gene coding method is shown in Fig. 2.

The figure shows the situation where there are two unknown
transmitters in the detection area. The coordinate ( X1,Y1 ) of
the transmitter 1 is used as a gene, and the coordinate ( X2,Y2 )
of the transmitter 2 is used as another gene, and the transmis⁃
sion power of each transmitter is independently used as a gene.

In this paper, the PSO and the GA share an objective func⁃
tion. After one iteration of the PSO, the particle population is
sent to the GA for a round of selection. We calculate the surviv⁃
al probability based on the fitness function value of each parti⁃
cle. Since the algorithm solves the problem of finding the mini⁃
mum value of the objective function, it can be considered that
the smaller the fitness function value is, the better the estima⁃
tion result of the particle is. We give a larger probability of sur⁃
vival for particles with smaller fitness function values, while
particles with larger fitness function values are given a lower
probability of survival.

Then, the roulette strategy and the elitism are joined to se⁃
lect the paternal particle population. The previously calculated
survival probability, at this time serving the roulette strategy, is
used to select the paternal particle population.

The genes in the GA do not necessarily reflect the nature of
the problem to be solved. Therefore, the genes are not necessar⁃

ily independent of each other. Simply hybridizing is likely to
destroy a better combination. In this way, the purpose of accu⁃
mulating better genes is not achieved, but the original good
genes are destroyed. Rudolph used the finite Markov chain the⁃
ory to prove that the Canonical Genetic Algorithm (CGA),
which uses only three genetic operators of crossover, mutation,
and selection (proportional selection), cannot converge to the
global optimal value.

Therefore, we added elitism to the algorithm, so that the par⁃
ticles with the best value of fitness function in the particle pop⁃
ulation output from the PSO are directly crossed into the proge⁃
ny particles without crossover, mutation, and selection.

It is assumed that the number of particle output from the
PSO to the GA is L, with L = ( 2m + 1 )2. We select 2 ( L - 1 )
paternal particles by roulette strategy. The two pairs are com⁃
bined to perform gene cross⁃interchange, and each pair of pa⁃
ternal particles produces only one progeny particle. The num⁃
ber of progeny particle population reaches L - 1, and finally,
the optimal particles retained by the elitism. The number of
particles guaranteed to be re ⁃ entered into the PSO is still L.
The specific roulette and elitism is shown in Algorithm 2.

Algorithm 2. Roulette and Elitism
1: Calculate Fk of each particle.
2: Select the particle k with the min(Fk) and output it to the

progeny population.
3: Calculate the survival probability:

Psurvival = ((max(Fk) + min(Fk)) - Fk (1 : L, 1)) /
sum((max(Fk) + min(Fk)) - Fk (1 : L, 1))

4: Create a roulette based on Psurvival.5: While ii ≤ 2(L - 1) // 2(L - 1) is the number of paternal
particles. And ii = 1.

6: Select a paternal particle by roulette
7: ii = ii +1
8: End While

Because the PSO is difficult to distinguish several blind
source signals with similar power, it is extremely easy to fall in⁃
to the local minimum. Therefore, when the genes are crossed,
we allow the coordinate loci to be interchanged and the power
loci can be interchanged, although this may make the progeny
particle gene obtained after the crossover completely different
from the paternal particle gene. Because of the existence of
elite strategies, we do not need to worry that the PSO will lose
the original possible correct estimation results.

We hope that when the PSO particles tend to converge, some
particles can still jump out of the existing estimation results.
The particles may quickly and accurately estimate the position
and power of the high ⁃power transmitter, especially when the
power difference between the two transmitters is very large.

▲Figure 2. The coordinate estimates of unknown node 1 are combined
into one gene. The coordinate estimates of unknown node 2 are com⁃
bined into one gene. Their respective power estimates are separated into
a single gene.

X1 Y1 X2 Y2 PT PT

1 2 3 4
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▲Figure 3. Particle gene exchange and genetic mutation process of two
unknown nodes.

Therefore, the entire PSO algorithm tends to converge when
the low power transmitter does not obtain an accurate estimate.
And the estimated result falls into a local minimum. So the de⁃
sign of genetic mutation becomes extremely critical. The muta⁃
tion may occur on any one or more genes of the particle, and
the mutation is completely random in the range of values of the
gene. We do not make any human intervention in the values
and direction of mutation. The mutation probability is set to in⁃
crease linearly with the number of iterations, as shown in Equ.
(9), where Pmuta denotes the mutation probability.

Pmuta = t
T

× 0.1 + 0.05. (9)
The specific operation of the particle group gene crossover

and mutation is shown in Fig. 3.
Referring to Fig. 3, the first two genes are the coordinate es⁃

timate genes, and the last two are the power estimate genes.
Each of the two paternal particles that exchange genes takes
out a coordinate estimate gene and a power estimate gene.
These four random genes are randomly combined to form prog⁃
eny particles with new gene sequences. Taking two unknown
nodes as an example, the genetic composition of the progeny
particles is 64 cases. And the genes of the progeny particles

are still arranged in the order of the genes of the paternal parti⁃
cles. Genetic mutation may also occur in progeny particles ob⁃
tained after crossing.

The computational complexity of the GA ⁃PSO algorithm is
indeed higher than the PSO algorithm. For the traditional PSO
algorithm, the time complexity is O ( N × m × ( 2m + 1 )2 × T ).
That is the product of the number of receivers, the number of
objective function dimensions, the total number of particles,
and the number of iterations. In the GA ⁃ PSO algorithm, the
main computational complexity still comes from the PSO part.
And iterations do not run the GA algorithm every time. Instead,
every other iteration of h runs the GA algorithm. Through simu⁃
lation experiments, we found that when the value of h is less
than 5, the algorithm works better. In the experimental part
that follows, our default h has a value of 5. Therefore, the time
complexity of the GA ⁃ PSO algorithm in this paper is O ( N ×
m × ( 2m + 1 )2 × T + (1 + 4( ( 2m + 1 )2 - 1 ) ) × T/5 ).

5 Simulation Results and Discussion
In this work, we set up a Monte⁃Carlo based simulation. We

jointly estimate the power and position of 2 unknown transmit⁃
ters. We fix the number of spatially distributed receivers to 20
and ensured that each receiver has the same weight and as⁃
sume that the size of the test area is 10 m×10 m.

Before performing the simulation, we must first make a basic
estimate of the power and location of the blind source nodes
within the system. Some scholars have proposed to use the re⁃
ceived power of spatially distributed receivers for clustering,
and use the k ⁃means algorithm to quickly narrow the search
range of PSO. However, this proposed method is for known
nodes with the same power. The problems we face are obvious⁃
ly much more complicated. When the power difference be⁃
tween two unknown transmitters is too large, we may no longer
be able to use clustering to determine the approximate location
of the blind source node. Because the blind source node with
low power is likely to disappear in the signal strength of the
high power blind source node. In this paper, we do not pre⁃esti⁃
mate the position of the particle in order to more directly show
the improvement of the performance of the PSO in dealing with
this kind of problem. But we still make a preliminary estimate
of the power of the unknown node. First, we set the lower limit
of the estimated power to zero. Then we select the transmitter
with the lowest received power, assuming that it is at the maxi⁃
mum distance from the transmitter (according to the estimated
area, dmax = 10 2). Substituting the minimum received power
and the maximum distance into Equ. (1), what is obtained is
the upper limit of the transmission power. Note that this upper
limit is the upper limit of the sum of the powers of multiple
transmitters.

In the simulation, we assume that the transmit power of the
unknown transmitter 1 is always 100 mw, while the transmit
power of the unknown transmitter 2 is from 10 mw to 90 mw.
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The power of each transmitter is still unknown to the system.
We use PT2/PT1 as the independent variable and the average es⁃
timation error as the dependent variable. In order to form a
comparison, we also add the position estimation error of the GA⁃
PSO algorithm under known power. At the same time, we use
the idea of the exhaustive method to maximize the particle pop⁃
ulation of the PSO (excellent performance), and test the lower
error limit of the objective function.

From Fig. 4, the estimation performance of the PSO algo⁃
rithm is greatly improved after adding the GA. Especially when
the value of PT2/PT1 is in the range of [0.3, 0.7]. The average er⁃
ror is reduced by up to about 0.6 m, and the overall perfor⁃
mance is increased by about 30%. However, when the power of
the unknown nodes is similar or the difference is large, the sys⁃
tem estimates that the performance improvement is slightly re⁃
duced. Compared with the results obtained by the exhaustive
method, the algorithm proposed in this paper still has a certain
gap and there is still room for improvement in the future. How⁃
ever, the difference between the joint estimate and the estimate
with known power is not very large.

As shown in Fig. 5, as PT2/PT1 gradually decreases, the dif⁃
ference between the estimation errors of the unknown node 2
and the unknown node 1 gradually increases. Although the ge⁃
netic PSO algorithm has reduced both, it cannot suppress this
trend. Fig. 6 shows the case where the power estimation error
varies with the ratio of PT2 and PT1. When the power of two un⁃
known nodes is similar, the power estimation error is only
about 10%. And when the power difference between the two is
large, the power estimation error is also steady.

The main reason for this trend is the design of the objective
function. High power transmitters have a greater impact on the
objective function than small power transmitters. Both PSO
and GA are algorithms for finding suboptimal solutions. They
only care if the fitness function value is small enough. As long
as the power and position estimates of a high power transmitter
are accurate, the fitness function value can be reduced to a
small enough. Therefore, even if the power and position of the
small power transmitter are not accurate enough, the algorithm
will tend to converge.

We also conduct an artificial observation analysis of the er⁃
ror results and find that there are still cases where the two un⁃
known nodes estimate the coordinate interchange because they
fall into the local minimum. Comparing the values of the fit⁃
ness function of the local minimum and the global optimal solu⁃
tion, it is found that their fitness function values are indeed
very close. The introduction of the GA algorithm can make the
algorithm jump out of the local minimum and can effectively
guide the estimated value to the global optimal solution. How⁃
ever, there is still no guarantee that it will not fall into other lo⁃
cal optimal solutions after jumping out. This shows that the ob⁃
jective function as a non⁃convex function has many non⁃inferi⁃
or solutions. In future research, we can extend this problem
from single⁃objective PSO to multi⁃objective PSO, and new de⁃
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velopment may be made.

6 Conclusions
Joint estimation of power and positions for blind signals is es⁃

sential to detect the co ⁃ frequency interference signal. We pro⁃
pose a data ⁃driven based PSO algorithm combined with a spe⁃
cial GA to estimate multiple co⁃frequency wireless blind source
nodes with different powers. To avoid the local minimum prob⁃
lem, we use GA to help particle population jump out of local
minima. The simulation results show that the proposed GA⁃PSO
algorithm has better estimation performance than the classical
PSO algorithm and can reduce the error distance by up to 30%.
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