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Abstract: Reinforcement learning (RL) algorithm has been introduced for several de⁃
cades, which becomes a paradigm in sequential decision⁃making and control. The de⁃
velopment of reinforcement learning, especially in recent years, has enabled this algo⁃
rithm to be applied in many industry fields, such as robotics, medical intelligence, and
games. This paper first introduces the history and background of reinforcement learn⁃
ing, and then illustrates the industrial application and open source platforms. After
that, the successful applications from AlphaGo to AlphaZero and future reinforcement
learning technique are focused on. Finally, the artificial intelligence for complex inter⁃
action (e.g., stochastic environment, multiple players, selfish behavior, and distributes
optimization) is considered and this paper concludes with the highlight and outlook of
future general artificial intelligence.
Keywords: artificial intelligence; decision⁃making and control problems; reinforcement
learning

1 Introduction
einforcement learning (RL) originates from the tri⁃
al⁃and⁃error (TE) procedure, which was first con⁃
ducted in the animal learning by Thorndike in
1998 [1]. In 1954, the first concept of the compu⁃
tational model of TE was introduced [2]. Another

term“optimal control”was first used to control a dynamical
system to reach the goal of a controller. In the 1950s, Bellman
introduced the dynamic programming (DP) method to solve the
optimal control problems by the Bellman equation [3] and ex⁃
pressed this kind of control problems as Markov decision pro⁃
cesses (MDPs) [4]. Later on, Werbos [5] introduced an approxi⁃
mate dynamic programming method as adaptive critic designs
(ACDs) in 1977. After a decade, Sutton introduced the tempo⁃
ral difference (TD) method [6] in 1988, marking the point at
which the TE procedure and the control problem became inter⁃
related and then produced the field of traditional reinforcement
learning. In 1992, Watkins combined the TD learning and
MDPs together to solve the optimal policy, which is the well ⁃
known algorithm Q⁃learning [7]. In 1994, Rummery introduced
the on⁃policy version of TD learning as the state⁃action⁃reward⁃
state'⁃action' (SARSA) algorithm [8]. As for a general condition
in MDPs, Thrum introduced a partially observable Markov de⁃
cision process (POMDPs) and designed the Monte Carlo meth⁃
od [9] to solve it in 1999. At the same time, Sutton introduced
another policy ⁃ based perspective to solve the reinforcement
learning problems and proved the stochastic policy gradient

(SPG) [10] computational formula. In 2014, David Silver intro⁃
duced the deterministic policy gradient (DPG) [11], the es⁃
sence of which is to maximize the Q value function.

With the rapid development of deep learning, Google Deep⁃
Mind utilized the deep network to approximate Q value func⁃
tion to address the problem of continuous state space, which
was the origin of modern deep reinforcement learning and
called deep Q network (DQN) [12]. After that, several improve⁃
ments related to DQN emerged, such as double Q ⁃ network
[13], prioritized experience replay [14] and dueling network
[15]. In 2015, Google combined DQN and DPG to introduce
the deep deterministic policy gradient (DDPG) [16], which ex⁃
tended the deep reinforcement learning (DRL) method to con⁃
tinuous action space control problem. Besides that, Google Go⁃
rilla introduced the asynchronous distributed reinforcement
learning framework [17] in 2015. Further, John Schulman intro⁃
duced Trust Region Policy Optimization (TRPO) [18] that is ef⁃
fective for optimizing large nonlinear policies. The develop⁃
ment trajectory is shown in Fig. 1.

In the industry filed, Google’s DeepMind designed the Al⁃
phaGo and the AlphaZero to beat the best professional Go play⁃
ers KE Jie and LEE Sadol [19]. Then, more and more Atari
games and MuJuCo physic problems [20] and 3D maze games
[21] got great scores through deep reinforcement learning. In
2017, OpenAI announced that the reinforcement learning
agent could beat the best game player on the online game Dota
2. In 2018, Tencent introduced a hierarchical macro strategy
model [22] for a popular 5v5 multiplayer online battle (MOBA)
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▲Figure 1. The development trajectory of reinforcement learning technique.

game“Honor of Kings”to achieve a 48% winning rate against
human player teams which are ranked top 1%. In 2019,
Google’s DeepMind designed AlphaStar to beat two profession⁃
al players in Warcraft II.

2 Background

2.1 Preliminary
Reinforcement learning is a field of machine learning in⁃

spired by psychology, in which the optimal control problem fo⁃
cuses on how to make the agent take different actions in an en⁃
vironment to maximize the cumulative long ⁃ term returns. In
most situations, it is not possible for the agents to know the op⁃
timal action directly. In other words, the agent needs to inter⁃
act with the environment to learn the optimal policy with the
immediate reward feedback given and its reliability to the envi⁃
ronment makes the study challenging and interesting. The in⁃
teractions between the agent and environment are described by
three essential elements: state , action a and reward r , the rela⁃
tionship of which is illustrated in Fig. 2. The state of the envi⁃
ronment in the time step t is St. At the time the agent takes an
action At. Then the environment feedbacks a reward Rt and
transits to another state St + 1.The reinforcement learning task as Fig. 2 can be formulated
as a MDP M =< S,A,T,R >, where S is the state set of environ⁃
ment, A is the action set, T:S × A × S➝[ 0,1 ] is the state transi⁃
tion probability and R:S × A➝ is the immediate reward. A
policy π:S × A➝[ 0,1 ] is a mapping from states to probabili⁃
ties of selecting each possible action. If the agent follows a poli⁃
cy π, the probability of taking action a in state s is π( a|s ). The
goal of an agent is to learn the optimal policy π* in order to get

more long ⁃ term returns G =∑t = 0
∞ γtrt, where γ ∈ [ 0, 1 ] is the

discounted factor. The agent becomes farsighted when γ ap⁃
proaches 1 while the agent becomes shortsighted when γ is
close to 0.

The state value function is defined to measure the utility of a
state. For the MDP above, the state value function under the
policy π is defined as

Vπ ( s ) = π [ ]Gt|St = s = π
é

ë
ê

ù

û
ú∑

t = 0

∞
γtrt|St = s , (1)

where π [·] denotes the expected value of the random variable
return when the agent is under the policy π. Similarly, the state
⁃action value function is defined as

Qπ ( s,a ) = π [ ]Gt|St = s,At = a = π
é

ë
ê

ù

û
ú∑

t = 0

∞
γtrt|St = s,At = a . (2)

The agent always tries to find the optimal policy. A policy is
better than or equal to other policies if and only if the state val⁃
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▲Figure 2. The interaction between the agent and environment.
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▲Figure 3. The classification of different reinforcement learning methods.

A3C: Asynchronous Advantage Actor⁃Critic
DDPG: deep deterministic policy gradient

DQN: deep Q network
MDP: Markov decision process

SARSA: state⁃action⁃reward⁃state'⁃action'

ue function under this policy is greater than or equal to that un⁃
der other policies. In other words, the mathematical expression
can be formulated as

π ≥ π' ⇔ Vπ ( s ) ≥ Vπ' ( s ),∀s. (3)
Therefore, there always exists at least one policy that is bet⁃

ter than or equal to all the others, which is defined as the opti⁃
mal policy π*. The corresponding state value function and state
⁃action value function is denoted as

V * ( s ) = maxπ Vπ ( s ) ∀s, (4)
Q* ( s,a ) = maxπ Qπ ( s,a ) ∀( s,a ). (5)
Therefore, all kinds of reinforcement learning algorithms

tend to obtain the optimal policy. Based on the prior knowledge
of reward R and dynamic T, we can classify the methods into
model ⁃ based and model ⁃ free. The model ⁃ based methods can
have access to all the information of MDP, in which the well ⁃
known algorithm is dynamic programming (illustrated in the
next section). The model⁃free methods contain the Monte Carlo
and the temporal difference algorithms. The temporal differ⁃
ence algorithms can further be classified as the value ⁃ based
and the policy⁃based. The value⁃based methods find the opti⁃
mal policy through value function, in which the famous algo⁃
rithm is SARSA and Q⁃learning depending on whether it is on⁃
policy or off⁃policy. The other kind of policy⁃based algorithms
converges to the optimal policy through policy gradient. Be⁃
sides that, the policy ⁃based and value ⁃based methods can be
combined into the actor ⁃ critic methods. Through the deep
learning network, Q⁃ learning and actor ⁃critic methods can be
extended to DQN and DDPG in order to address large ⁃ scale
problems. The classification of different reinforcement learning

methods is shown in Fig. 3.
2.2 Reinforcement Learning Methods

In this section, we will illustrate the three basic reinforce⁃
ment learning methods: dynamic programming, Monte Carlo,
and temporal difference. The dynamic programming method
needs information about the reward and dynamic of the envi⁃
ronment, while the other two are model⁃free methods.
2.2.1 Dynamic Programming Method

The key idea of DP is utilizing the Bellman equation. We
can utilize DP to compute the value function illustrated above.
Based on the definition of the state value function, we can ob⁃
tain the Bellman optimality equation as

V * ( s ) = max
a ∈ A( s )Qπ* ( s,a ) =

max
a ∈ A( s ) π* [ ]Gt|St = s,At = a =
max
a ∈ A( s ) π* [ ]Rt + 1 + γGt + 1|St = s,At = a =
max
a ∈ A( s ) π [ ]Rt + 1 + γV * ( St + 1 ) |St = s,At = a =
max
a ∈ A( s )∑

s', r
p ( s', r|s,a ) [ ]r + γV * ( s' ) , (6)

where p ( s', r|s,a ) is the state transition probability under the
reward r, and γ ∈ [ 0, 1 ] is the discounted factor. Obviously, we
can obtain that the state transition probability p ( s'|s,a ) =∑r ∈ R

p ( s', r|s,a ). Then we will illustrate how to use DP to con⁃
verge to the optimal policy.

In the first step, we should compute the state value function
Vπ for any arbitrary policy π, which is called the policy evalua⁃
tion. Similar to Eq. (6), we can obtain the iterative equation as
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the updated rule
Vk + 1 ( s ) = π [ ]Rt + 1 + γVk ( St + 1 ) |St = s =
∑

a

π( a|s )∑
s', r

p ( s', r|s,a ) [ ]r + γVk ( s' ) . (7)
In this case, we can rigorously prove that Vk = Vπ is a fixed

point for this iterative equation. Therefore, the updated equa⁃
tion can converge to the state value function under any arbi⁃
trary policy π.

Then, we need to compute the optimal policy instead of an
arbitrary policy, called the policy improvement. Similarly, we
can take the action as a greedy way to obtain a new policy π'
that is better than or equal to the current policy π as

π' ( s ) = arg max
a

Qπ ( s,a ) =
arg max

a
π [ ]Rt + 1 + γVπ ( St + 1 ) |St = s,At = a =

arg max
a

∑
s', r

p ( s', r|s,a ) [ ]r + γVπ ( s' ) . (8)
It can be proved that the greedy policy π' is better than the

current policy π as Vπ ( s ) ≤ Vπ' ( s ),∀ s. So far, we can utilize
the policy evaluation to get the stable value function and then
policy improvement to obtain a better policy until the state val⁃
ue function and policy are both stable, which is called the poli⁃
cy iteration. Then, the current policy is obviously the optimal
policy and the value function is the optimal value function.
2.2.2 Monte Carlo Method

Monte Carlo method is a kind of model ⁃ free method, so we
cannot utilize the reward and state transition probability to
compute the state value function. Instead, the state value func⁃
tion is estimated by repeatedly generating episodes and averag⁃
ing the returns under policy π as

V MC
π ( s ) = π [ ]Gt|St = s . (9)

Although we do not utilize the information related to the
model, it must satisfy the assumption that for any states and ac⁃
tions, the sampling times must approach infinity. Only under
that condition, we can ensure that the Monte Carlo value func⁃
tion V MC

π converges to the true state value function. Then, we
need to modify the greedy method as ϵ ⁃greedy to take the poli⁃
cy improvement in order to guarantee the assumption:

π' ( a|s ) = ì
í
î

ï

ï

1 - ϵ + ϵ/ || A( S ) , if a = argmaxQπ ( s,ak )
ϵ/ || A( s ) , if a ≠ arg max

k
Qπ ( s,ak ) , (10)

where || A( s ) denotes the number of actions taken in the state
s. In this case, we can trade off the exploration⁃exploitation di⁃
lemma, but the policy of evaluation and exploration is differ⁃
ent, called the off⁃policy. The fact is that the off⁃policy method
is sometimes unstable in continuous state ⁃ space problems.
Therefore, we usually design the on⁃policy method through im⁃

portance sampling.
2.2.3 Temporal Difference Value⁃Based Method

Similar to the Monte Carlo method, the temporal difference
method is also a model ⁃ free method. However, what makes it
different from the Monte Carlo method is that it needs boot⁃
strapping, which means the estimated value function Vk + 1 is
updated based on the last estimated value function Vk. The sim⁃
plest temporal difference update is that

V ( st ) ← V ( st ) + α [ ]Rt + 1 + γV ( st + 1 ) - V ( st ) , (11)
where α ∈ ( 0, 1 ) is the learning rate. As the category in Monte
Carlo, the temporal difference method is also divided into on⁃
policy and off ⁃ policy, which are the well ⁃ known algorithms
SARSA and Q⁃learning.

In SARSA, we update the state⁃action value function for the
current policy and take the action based on the state⁃action val⁃
ue function. The algorithm can converge to an optimal policy
with probability 1 as long as all states and actions are visited
an infinite number of times. The update equation is

Q ( S,A ) ← Q ( S,A ) + α [ ]R + γQ ( S',A' ) - Q ( S,A ) , (12)
where S' and A' denote the next state and next action. It is obvi⁃
ous that the policy of evaluation and exploration is the same, so
SARSA belongs to the on⁃policy methods.

Q⁃learning is an off⁃policy method because the evaluation of
state⁃action value function is maximizing over all those actions
possible in the next state instead of the current Q function. The
update equation is

Q ( S,A )← Q ( S,A ) + α [ ]R + γ max
a

Q ( S',a ) - Q ( S,A ) , (13)
where S' denotes the next state and next action. The conver⁃
gence condition of Q⁃learning is the same as SARSA.
2.2.4 Temporal Difference Policy⁃Based Method

Although the value⁃based methods have made great achieve⁃
ment in many fields, such as robotics and video games, they
cannot be applied in the situation of continuous state and ac⁃
tion space. In this situation, there exists a new policy ⁃ based
method, in which the policy is explicitly represented by the
function approximator and updated based on the gradient of ex⁃
pected reward [10]. Let J ( π0 ) denote the performance objec⁃
tive as an expectation as

J ( π0 ) = ∫
S
ρπ ( s ) ∫

A
π0 ( a|s ) r ( s,a ) dads =

s~ρπ,a~πθ [ ]r ( s,a ) , (14)
where ρπ ( s ) is the discounted state distribution as ρπ ( s' ) =∫
s
∑t = 1

∝ γt - 1 p1 ( s ) p ( s → s', t,π ) ds. Policy gradient algo⁃
rithms search for a local maximum in J ( π0 ) by ascending the
gradient of the policy w.r.t. parameter θ as △θ = α∇θ J ( πθ ).

Sutton has proved the update rule of stochastic policy gradi⁃
ent as
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▼Table 1. Comparisons between reinforcement learning (RL) methods

DP: dynamic programming MC: Monte Carlo
SARSA: state⁃action⁃reward⁃state'⁃action'

▲Figure 4. Neural network of the deep Q⁃learning [12].

Convolution Convolution Fully connected Fully connected

∇θ J ( πθ ) = ∫
S
ρπ ( s ) ∫

A
∇θπθ ( a|s )Qπ ( s,a ) dads =

s~ρπ,a~πθ
[ ]∇θ log πθ ( a|s )Qπ ( s,a ) . (15)

The stochastic policy gradient is surprisingly simple and does
not depend on the gradient of the state distribution [10]. In
2014, David Silver [11] introduced DPG as

∇θ J ( πθ ) = ∫
S
ρπ ( s ) ∇θπθ ( s ) ∇αQ

π ( s,a ) |a = a = πθ( s )ds =
S~ρπ [ ]∇θπθ ( s ) ∇aQ

π ( s,a ) |a = πθ( s ) . (16)
The difference of DPG and SPG is that the essence of determin⁃
istic policy gradient is to maximize the Q value function, which
is similar to the value⁃based method.
2.2.5 Temporal Difference Actor⁃Critic Method

Actor⁃critic method combines the value⁃based method and
policy ⁃ based method, in which the actor network (policy net⁃
work) outputs the action selection and critic network (value net⁃
work) evaluates the performance of action. The well ⁃ known
DDPG algorithm utilizes the actor ⁃ critic idea to address the
continuous control problems [16]. In the part of actor, the pa⁃
rameter θQ is updated to maximize Q value and parameter θμ is
updated to make actor more likely to select this action. There⁃
fore, the updated rule is as

∇θμ J ≈ 1
N∑i

∇aQ
π ( s,a|θQ ) |

|
|
| s = si,a = μ( si )∇θμ μ ( s,θμ )

si

. (17)
As for the part of critic, it is similar to the DQN (illustrated

in the next section). The parameter is updated to minimize the
TD loss

L = 1
N∑i

( yi - Q ( si,ai|θQ ) )2 , (18)
where yi = ri + γQ' ( )si + 1, μ' ( )si + 1 | θμ' | θQ' .

Another benchmarking work Asynchronous Advantage Actor⁃
Critic (A3C) [17] is desired to solve the convergence problem
of actor ⁃ critic method. It creates multiple parallel environ⁃
ments, in which there exist many thread⁃specific agents updat⁃
ing the global parameters together. The agents in parallel do
not interfere with each other, and the parameter update of the
main structure is disturbed by the discontinuity of the update
submitted by the thread ⁃ specific agents, so the correlation of
the update is reduced to accelerate the convergence rate. Dif⁃
ferent to DDPG, A3C updates the policy gradient through ad⁃
vantage as

∇θ J = ∇θ log π( ai|si ; θ ) A( st,at ; θv ), (19)
where the advantage is computed by N ⁃ steps TD error as
A( st,at ; θv ) =∑i = 0

N - 1γirt + i + γNV ( st + k ; θv ) - V ( st ; θv ) and
the parameter θv represents for each local thread⁃specific agent.

Because the learning rate of policy gradient is dependent on
the specific environment and not easily determined, PPO [23],

[24] utilizes the ratio of new policy and old policy in order to
restrict the update. The critic network is also similar to the
AC3 method to minimize TD error, while the actor network up⁃
dates the parameter by KL penalty as

∇θ J =∑t = 1
N πθ ( at|st )

πold ( at|st ) Ât - λKL [ πold|πθ ] , (20)
where Ât

is also the estimated advantages as A3C.
After illustrating these reinforcement learning algorithms,

we summarize the characteristics of the algorithms and differ⁃
entiate them based on the policy, bootstrapping and model
property in Table. 1.
2.3 Deep Reinforcement Learning

Deep learning can help reinforcement learning address the
high⁃dimension problem when the states and actions are con⁃
tinuous variables in the environment. In 2015, Mnih [12] trains
a deep neural network to develop a novel artificial agent to in⁃
teract with the environment, as shown in Fig. 4. In other words,
DQN utilizes the neural networks to interpret the complex state
representation instead of the traditional MDP. Of course, the
goal of network to optimize also satisfies the Bellman equation,
of which the loss function is defined as

L ( θ ) = ( )r + γ max
a' Q̂ ( s',a' ; θ- ) - Q ( s,a ; θ ) 2, (21)

where Q̂ is the target value function and Q is the evaluation val⁃

Category
Model⁃based
Model⁃free
On⁃policy
Off⁃policy

Bootstrapping

DP
√

√

On⁃policy MC

√
√

Off⁃policy MC

√

√

SARSA

√
√

√

Q⁃learning

√

√
√

No input
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ue function. The purpose of designing the two value function is
to eliminate the correlation between the samples due to the un⁃
stable property of neural networks. Besides that, generated
samples from the environment are stored in the experience re⁃
play memory, the data of which are randomly fed to train the
network. Note that, only the evaluation network with the param⁃
eter β is trained, the target network with the parameter β' is
just a duplicate of β but with the delayed update as β' ← β for
every N steps.

With the development of different scenario requirements,
DQN also has some variants. The first algorithm is called dou⁃
ble deep Q⁃network (DDQN) [13], the idea of which is to sepa⁃
rate the optimal action with the evaluation step in order to
avoid the overestimation of Q ⁃ value function. Therefore, the
loss function is modified as

L ( θ ) = ( )r + γQ̂ ( )s', max
a' Q̂ ( s',a' ; θ- ); θ- - Q ( s,a ; θ )

2
. (22)

Besides that, Tom Schaul [14] proposes a prioritized experi⁃
ence replay method to reinforce the goal⁃related samples with
greater TD error. The corresponding sampling probability is
the normalization of the absolute TD error as pi = |δi| = |r +
γ max

a' Q̂ ( s',a',θ- ) - Q ( s,a ; θ ) |. In addition, Ziyu Wang [15]
introduces a dueling network to represent the state value func⁃
tion and state⁃dependent action advantage function. Then the Q⁃
value function is computed as

Q ( )s,a ; θ,α,β = V ( )s ; θ,β +
( )A ( )s,a ; θ,α - 1

|| A ∑a'
A ( )s,a' ; θ,α , (23)

where θ denotes the parameter of the convolutional layers,
while α and β are the parameters of the two streams of fully ⁃
connected layers.

Therefore, it is obvious that the development of reinforce⁃
ment learning is tracking the increasing demands when ap⁃
plied to the real industry field. In the following sections, we
will illustrate the application and open source platforms about
reinforcement learning.
3 Reinforcement Learning Industry and Ap⁃
plication

3.1 Famous Pioneering Companies
On top of all the research companies, DeepMind is the first

that should be mentioned, which was founded in London in
2010 and had been acquired by Google in 2014. The core re⁃
search filed is about health artificial intelligence (AI), the ener⁃
gy efficiency of Google’s data centers and ethics & society.
The significant milestones for reinforcement learning research
are introducing the AlphaGo, AlphaZero, AlphaStar and Rein⁃
forcement Learning with TensorFlow (TFRL) library. The li⁃
brary collects key algorithmic components that we have used
internally for a large number of our most successful agents

such as DQN, DDPG, and the Importance of Weighted Actor
Learner Architecture. Another company OSARO was founded
in 2015 in San Francisco, which is devoted to developing prod⁃
ucts based on proprietary deep reinforcement learning technol⁃
ogy in order to process large amounts of unstructured data and
efficiently learn complex control tasks. The company VocalIQ
was formed in March 2011 and had been acquired by Apple to
exploit technology developed by the Spoken Dialogue Systems
Group at University of Cambridge. VocalIQ builds a platform
for voice interfaces, making it easy for everybody to voice⁃en⁃
able their devices and apps. AI is extremely difficult to be ap⁃
plied in business because the systems cannot start learning on
their own. The company CogitAI is solving this problem by self⁃
learning AI platform that learns through its interaction with the
real world, which will make the perception and behavior of dai⁃
ly routine become more intelligent and experienced. The Japa⁃
nese company Preferred Networks was founded in 2014 and
then invested by Toyota, with the main products related to auto⁃
matic driving, medical health and AI in the manufacturing in⁃
dustry. At last, the World’s First Deep Reinforcement Learn⁃
ing Platform for the Enterprise Bonsai was acquired by Micro⁃
soft in 2018, which focuses on optimizing the Azure public
cloud service platform.
3.2 Representative Applications

Nowadays, the reinforcement learning techniques have been
applied in many industries including robotics, automatic driv⁃
ing, natural language processing, computer vision, finance,
healthcare, smart grid, intelligent transportation systems, and
so on. In robotics, deep reinforcement learning can help to ad⁃
dress the high ⁃ dimensional control problems, which has be⁃
come not only a major research topic but also an efficient meth⁃
od to build products for industrial robots. Usually, the RL can
train to control robotic arms and legs to accomplish the carry⁃
ing or motion tasks. A famous experiment about the autono⁃
mous helicopter is designed by imitation learning, a branch of
reinforcement learning. With a higher level goal, reinforcement
learning can also be applied in automatic driving. Only relying
on clever models with high⁃quality training data and carefully
thinking out objective functions, the agent can learn a more
comprehensive set of skills for driving. Up to now, the Tesla au⁃
tomatic driving cars can independently achieve the cruise,
steering, line ⁃ changing and parking tasks, which have been
produced and put into application in some areas.

As in natural language processing, the researchers face a se⁃
quential prediction problem where future observations (visited
states) depend on previous actions. This is challenging because
it violates the common independently and identically distribut⁃
ed (i. i.d.) assumptions made in statistical learning. For exam⁃
ple, naively training the agent on the gold labels alone would
unrealistically teach the agent to make decisions under the as⁃
sumption that all previous decisions were correct, potentially
causing it to over ⁃ rely on information from past actions [25].
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Especially for the multiple rounds of question & answer and se⁃
mantic analysis system, reinforcement learning methods can
achieve great performance because the context semantic infor⁃
mation can be considered. Therefore, it is clearly seen that the
RL model is giving more human ⁃ like answers than tradition
systems. Yangfeng Ji [26] proposes an adversarial learning pro⁃
cedure to where they train a generative model to produce re⁃
sponse sequences and a discriminator to distinguish between
the human ⁃ generated dialogues and the machine ⁃ generated
ones. The outputs from the discriminator are then used as re⁃
wards for the generator, pushing the system to generate human⁃
like dialogues.

There is a huge potential for reinforcement learning in fi⁃
nance. Apart from just playing games, it seems reasonable for
such a framework to have meaningful applications in finance
and trading due to the following reasons: the size of states in
the finance environment may be large and continuous. Actions
may have long ⁃ term consequences, which means the agent
should have further insight. Your trader actions can affect the
current market environments. Financial management is the
continuous investment of new funds into different financial
products with the goal of achieving maximum returns. There⁃
fore, when facing these challenges, the reinforcement learning
framework is an effective tool to provide smarter solutions for
fund management. Another application is in the search and rec⁃
ommender systems, which usually utilize the multi⁃arm bandit
(MAB, a special reinforcement learning method) algorithm to
address the exploration ⁃ exploitation dilemma. Then Alibaba
models the browsing and purchasing behavior of users as MDP
in the search scene [27]. What takes Taobao search to the next
level is the 20% improvement of the performance in the real ⁃
time learning and decision computing system using reinforce⁃
ment learning. In the recommended scenario, Alibaba applies
deep reinforcement learning and adaptive online learning to an⁃
alyze the users’behaviors and the commodity characteristics,
which helps users find devoted goods quickly and improves the
effect index by 10%-20%.

Finally, a closely related application to everyday life is
healthcare. Nearly all large companies in the healthcare field
have already begun to use deep reinforcement learning technol⁃
ogy in practice. Researchers have also found the potential of re⁃
inforcement learning in the medical image screening for diag⁃
nosis detection, medical chatbots, and clinical decision ⁃mak⁃
ing simulation. For example, in robot⁃assisted surgery, doctors
usually guide the robot to operate instruments by remote con⁃
trol. With the applications of computer vision models to ob⁃
serve the surgical environment and reinforcement learning
methods to learn the surgeon's movements, the robustness and
adaptability of robot⁃assisted surgery are effectively improved.
Additionally, reinforcement learning can also enhance the effi⁃
ciency of ICU rescue. When rescuing and caring for intensive
care patients, doctors are often caught in a dilemma: blood test
indicators can provide critical information for patient rescue,

but too frequent tests may aggravate the risk of illness and in⁃
crease the cost of treatment. A research group from Princeton
University finds that the reinforcement learning algorithm men⁃
tioned above can improve the ability of machine learning to se⁃
lect clinical test items and get the most rewards by optimizing
the order of clinical test. Therefore, reinforcement learning is a
practical tool that can help companies optimize their service
provision, improve the standard of care, generate more reve⁃
nue, and decrease risk.

4 Open Source Platform
Reinforcement learning has become a hot topic all over the

world, but where can we learn and practice the RL algorithms?
The good news is that many companies have opened up re⁃
sources and platforms. The famous OpenAI Gym is a toolkit for
developing and comparing reinforcement learning algorithms,
which includes a series of continuously growing and improving
environments (e. g. simulated robots and Atari). It helps teach
agents to do everything, such as walking and playing Ping
Pong. In addition, Gym is compatible with other numerical cal⁃
culation libraries, such as tensorflow and theano library. The
environments include different scenes, such as Atari, Box2D,
Classic control, MuJoCo, Roboschool, Robotics, and Toy text.
Fig. 5 shows several representative games in Gym.

Arcade Learning Environment (ALE) is an object ⁃ oriented
open source platform, which provides an interface to hundreds
of Atari 2600 game environments, each one different, interest⁃
ing, and designed to be a challenge for human players [28].
ALE is easy to add any game agent based on the object⁃orient⁃
ed framework. In addition, the simulation core is decoupled
from the game screen rendering and sound module to improve
the simulation efficiency. It supports multiple operating sys⁃
tems (OS X, Linux) and can be cross⁃ language developed. Fi⁃
nally, the platform also has some rules to evaluate different al⁃
gorithms. Another platform VizDoom is an artificial intelli⁃
gence research platform based on the 3D shooting game Doom,
which is used for reinforcement learning from original visual

▲ Figure 5. The Gym games (from left to right and top to bottom:
CarRacing, Mountainair, Ant, RoboschoolHumanoidFlagrunHarder,
FetchPickAndPlace and MontezumaRevenge).
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information and mainly used to study machine vision learning,
especially deep reinforcement learning. And the Google Deep⁃
Mind Lab is also a first⁃person perspective 3D gaming platform
designed specifically for research into general ⁃ purpose artifi⁃
cial intelligence and machine learning systems. It can be used
to study how agents learn to perform complex tasks in a large,
partially visual and visually diverse environment. The other
platform The Open Racing Car Simulator (TORCS) is an open⁃
source 3D car racing simulator available for many systems.
TORCS is designed to enable pre ⁃ programmed AI drivers to
race against one another while allowing the user to control a ve⁃
hicle using either a keyboard, mouse or wheel input.

The other game platform StarCraft II Learning Environment
(SC2LE) is a StarCraft II artificial intelligence research envi⁃
ronment jointly released by DeepMind and Blizzard Entertain⁃
ment, aiming to further promote the development of AI by de⁃
veloping learning systems capable of solving complex prob⁃
lems. SC2LE can also choose the mini⁃game maps, which can
first evaluate the algorithm in a simpler environment. The con⁃
figurations can set player and time limits, whether to use the
game outcome or curriculum score and a handful of other
things. It allows Python codes to communicate with the API
and this client will be the main focus of this guide, from which
we can get spatial features from the map and call actions that
mimic how humans interact with the game.

5 An Insight: From AlphaGo to AlphaZero
Several years ago, the milestone in the field of artificial intel⁃

ligence was the appearance of AlphaGo [19] that beat the pro⁃
fessional player Lee Sedol. The challenge of Go for classic
methods is its enormous search space and the difficulty in eval⁃
uating board positions and moves. The Go game contains ap⁃
proximately bd ( b ≈ 250,d ≈ 150 ) possible move sequences,
which results in the failure of brute search. Therefore, the Al⁃
phaGo combines the supervised learning and reinforcement
learning with Monte Carlo tree search (MCTS) to reduce the

space. There are four networks in total: rollout policy network,
supervised learning (SL) policy network, RL policy network,
and value network. The relationship between these networks is
shown in Fig. 6, in which the rollout and SL policy network are
trained by the expert data. The target of them is to predict the
most likely moves of human by learning the conditional proba⁃
bility p ( a|s ), where s denotes the state of the chessboard and a
denotes the move position. The difference of them is that the
SL policy network is then used to train the RL policy network,
while the rollout policy network sacrifices the accuracy for
quick simulation in order to provide the possibility of MCTS.
The training of SL policy network is based on CNN, where the
inputs are the chessboard features (19×19×48) and outputs are
the probability of different positions. The training process cost
about 3 weeks by 50 Graphics Processing Units (GPUs)
through the expert game data in Kiseido Go Server (KGS) plat⁃
form.

Another important network is the RL policy network, the ba⁃
sic idea of which is using self⁃play to formulate the new experi⁃
ence that human cannot image. The detailed steps are as fol⁃
lows:

1) Set the structure of RL policy network identical to the SL
policy network and its weights are initialized to the same val⁃
ues.

2) Put this network to the opponent pool.
3)Make the current RL policy network to play against a ran⁃

dom version in the opponent pool and then utilize the reinforce⁃
ment algorithm to maximize the expected outcome by updating
the parameters as ∆ρ ∝ ∂logPρ ( )at|st zt ∂ρ, where ρ denotes
the parameters in the RL policy network and zt = ±r ( sT ) is the
terminal reward at the end of the game as +1 for winner else -1
for the loser.

4) Put the current network into the opponent pool after every
500 iterations and return to step 2 recursively.

Through the RL training process, the winning rate can
achieve 80% against the SL policy network.

The last value network is used to compute the optimal value
functions and predict the winner of the games. This neural net⁃
work has a similar architecture to the policy network and out⁃
puts a certain action. The value function is regressed by the pa⁃
rameter θ, which minimizes the mean squared error (MSE) be⁃
tween the predicted values. Finally, the AlphaGo takes actions
by the MCTS algorithm (Fig. 7). When MCTS is faced with the
current state, AlphaGo will simulate some kinds of strategy to
play a few steps or all the way to the end by itself. More and
more simulation can make the AlphaGo deduce more accurate⁃
ly. Because of the policy network, the search space has been
narrowed down to the high⁃probability actions. The edge of tree
stores the basic information such as value function Q ( s,a ), vis⁃
ited times N ( s,a ), and probability P ( s,a ). The first step of
MCTS is to select the appropriate actions as at =arg maxa (Q ( st,a ) + u ( st,a ) ). What is different from the tradi⁃▲Figure 6. The different networks of AlphaGo [19].
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tional RL methods is the additive term
u ( st, a ) ∝ P ( st, a ) 1 + N ( st, a ) that is proportional to the
prior probability P ( st, a ) and inversely proportional to the vis⁃
ited times 1 + N ( st, a ). When the leaf node in L depth is visit⁃
ed at time step L, the expansion step should be conducted and
the new leaf node keeps the same probability of its parent
node. The third step evaluation is to compute the reward of the
leaf node; therefore, we are able to use the value network to
compute as well as the rollout network to run to the end and ob⁃
tain a winning or losing the reward. Finally, we can back up
the Q value through the sub⁃tree as

N ( )s,a =∑
i = 1

n 1( )s,a, i , ( )24

Q ( )s,a = 1
N ( )s,a ∑i = 1

n 1( )s,a, i V ( )siL , ( )25
where siL is the leaf node in the i ⁃th simulation and 1( s,a, i ) in⁃
dicates whether an edge ( s,a ) was traversed. Through the
backup process, we can recursively take the appropriate action
in the selection step.

In conclusion, AlphaGo needs the human experience to pre⁃
dict the position in SL policy network. Combined with the RL
policy network, AlphaGo can generate new experience through
self⁃play, which can achieve a better win rate. Besides that, the
MCTS and value work can be used to get a more accurate re⁃
sult through the search process. However, the drawback of Al⁃
phaGo is that it needs the supervision of human game data,
which is expensive or even unavailable. Moreover, human data
may also cause an inaccurate bias of the deep network. Anoth⁃
er shortcoming is that AlphaGo uses four networks, which is
very complex and costs more times to converge. Therefore, Alp⁃
haZero [28] is introduced to address these problems.

AlphaZero is learned from a random game, using self ⁃ play

reinforcing learning, without human data or supervision. The
policy and value networks are combined with only a single net⁃
work, the input of which is the direct position of black and
white instead of the manually designed features. The detailed
process is shown in Fig. 8. A self⁃play game has many differ⁃
ent states S1,S2,S3, …,ST. In each state, the neural network is
training to output the action probability vector P t and the pre⁃
dicted value vt. Its goal is to minimize the difference between
policy vector P t and the MCTS probabilities π t and also that of
the predicted value vt and the end reward z. The loss function is

L ( )θ = ( )z - v
2 - π⊺ logP + c θ 2. ( )26
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▲Figure 7. The process of MCTS [19].
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▲Figure 8. The network of AlphaZero [28].

39



ZTE COMMUNICATIONS
September 2019 Vol. 17 No. 3

Reinforcement Learning from Algorithm Model to Industry Innovation: A Foundation Stone of Future Artificial Intelligence

DONG Shaokang, CHEN Jiarui, LIU Yong, BAO Tianyi, and GAO Yang

Review

This neural network improves the efficiency of Monte Carlo
tree search, which enhances the accuracy of move selection
and stronger self ⁃ play in the next iteration. The final perfor⁃
mance can achieve 100-0 against AlphaGo.

6 Future Techniques
Reinforcement learning has become more and more impor⁃

tant, but there are also several problems which need to be ad⁃
dressed in the future. As we all know, deep reinforcement
learning has continuous large state and action spaces, resulting
in the long endless iteration times to learn a stable converged
policy. Moreover, the real⁃world environment is more complex
and nonstationary, because there are many other agents that al⁃
so need to learn an optimal policy in the environment. There⁃
fore, future reinforcement learning research must contain trans⁃
fer learning and multi⁃agent reinforcement learning.
6.1 Transfer in Reinforcement Learning

At present, in many sub⁃fields of machine learning (such as
neural networks and reinforcement learning), transfer learning
has made some remarkable progress. In real ⁃ world environ⁃
ments, many learning tasks may share some similar features,
resulting in similar policies. Therefore, the agent is not neces⁃
sary to learn from scratch but with a prior bias. To enhance the
performance, the research of transfer in reinforcement learning
should answer the following questions: whether to transfer,
what to transfer, how to transfer and how to evaluate the trans⁃
fer performance. Whether to transfer depends on the similarity
of source and target tasks, which contains the state space, ac⁃
tion space, dynamics, and rewards. The transfer methods are
usually classified into behavior transfer and knowledge trans⁃
fer. The behavior transfer means to utilize the previously
learned policy and common sub ⁃ tasks, including the policy
transfer [29], option transfer [30], and hierarchical reinforce⁃
ment learning [31]. While the knowledge transfer contains the
value function transfer [32], relational reinforcement learning
[33], and heuristic information transfer [34]. Different from be⁃
havior transfer, the knowledge transfer focuses on the essence
of tasks and tries to learn a general model to address the prob⁃
lem, which is more similar to our minds but also more difficult.
Finally, the common emulation of transfer in reinforcement
learning is the jump ⁃ start (the initial enhancement), learning
speed, and asymptotic performance.
6.2 Multi⁃Agent Reinforcement Learning and Game

Multi ⁃ agent system (MAS) also attracts many researchers,
because many complex tasks cannot be modeled as the single⁃
agent environment. For example, the famous prisoner's dilem⁃
ma is based on game theory, and complex environments such
as Warcraft II are the fields of multi⁃agent reinforcement learn⁃
ing. In MAS, agents communicate and interact with other
agents, of which the MDP can be generalized to a stochastic

game, or a Markov game. As usual, the multi ⁃agent reinforce⁃
ment learning algorithms can be classified into cooperative,
competitive and game types, which results in the famous algo⁃
rithms combining the reinforcement learning with game theory,
including minimax⁃Q [35], Correlated Q⁃Learning [36], Nash Q⁃
Learning [37], Value ⁃ Decomposition Networks (VDN) [38],
Mixing Q⁃network(QMIX) [39], Multi⁃agent Deep Determinis⁃
tic Policy Gradient (MADDPG) [40], and so on. However, VDN
and QMIX can only work in fully cooperative multi⁃agent envi⁃
ronments. Although MADDPG has become a benchmarking
work in multi ⁃ agent environments, there are also many chal⁃
lenges in real ⁃ world environments. For example, MADDPG
cannot deal with the game environment and the opponent mod⁃
el prediction is impractical in partial observability environ⁃
ment. Up to now, the main challenges of multi⁃agent reinforce⁃
ment learning are about the non ⁃ stationary environment, par⁃
tial observability MDP (POMDP), training schemes, continuous
space, and an equilibrium solution.

7 Conclusions
This paper presents an overview of the background and de⁃

velopment of reinforcement learning, industry applications,
and open source platforms. Since the remarkable milestone in
AI beating professional Go players, we illustrate the famous Al⁃
phaGo and AlphaZero in details. Finally, we introduce the fu⁃
ture technologies such as transfer reinforcement learning, multi⁃
agent reinforcement learning, and game in complex interaction
environment including stochastic environment, multiple play⁃
ers, selfish behavior and distributes optimization. In conclu⁃
sion, we can look forward that future general artificial intelli⁃
gence can be achieved through deep learning and reinforce⁃
ment learning.
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