
ZTE COMMUNICATIONS
September 2019 Vol. 17 No. 3

Face Detection, Alignment, Quality Assessment and Attribute Analysis with Multi-Task Hybrid Convolutional Neural Networks

GUO Da, ZHENG Qingfang, PENG Xiaojiang, and LIU Ming

Special Topic

1 Introduction
ace analysis has been widely⁃used in many applica⁃
tions such as face beautification system, face based
access system, and video anti⁃terrorism system. Al⁃
though great progresses have been made in recent,

detecting and aligning abnormal faces such as occlusion faces
as well as analyzing their attributes in surveillance are very
challenging due to low resolution, lack of abnormal training da⁃
ta, etc.

Generally, face detection, face alignment, facial quality as⁃
sessment, and facial attribute recognition are considered as
separate face analysis tasks which may have their own task⁃de⁃

pendent models. For face detection, from traditional Viola ⁃
Jones (VJ) face detector [1] and deformable part model (DPM)
based face detector [2] to recent convolutional neural networks
(CNN) based face detectors [3]-[9], the performance of face de⁃
tection has been improved significantly. Among all the CNN
based face detectors, those detectors evolved from anchor ⁃
based object detectors (e.g. single shot multibox detector (SSD)
[10], Faster Region CNN (R ⁃CNN) [11]), such as single shot
scale⁃invariant face detector (S3FD) [12] and Face Region CNN
(R⁃CNN) [4], are superior to pure CNN face detectors [7], be⁃
cause anchor ⁃ based detectors can naturally leverage the con⁃
text information. For face alignment, CNN based methods have
also achieved promising results [12] - [16]. However, most of
the alignment methods must be initialized by the provided face
bounding box in advance, which presents a great demand of
joint face and landmark detection [7], [17]. For facial quality
assessment, traditional methods [18] mainly apply local binary
patterns (LBP) [19] or histograms of oriented gradients (HOG)
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[20] features with a support vector machine (SVM) classifier,
while a few works with CNN obtain state ⁃ of ⁃ the ⁃ art perfor⁃
mance [21], [22]. For facial attribute recognition, [23] introduc⁃
es the CelebA dataset with 40 facial attributes ranging from
smiling to gender, and subsequently many deep learning based
methods are developed for facial attribute analysis [23]- [25].
Unfortunately, CelebA does not contain the attribute of wearing
face mask which we are interested in.

In this paper, we address several face analysis tasks includ⁃
ing face detection, face alignment, facial quality assessment,
and facial attribute recognition in the wild. Specifically, we
propose a Multi ⁃ Task Hybrid Convolutional Neural Network
(MHCNN) which unifies all the tasks in a framework. MHCNN
is comprised of two parts, namely a single stage detector (SSD)
and an efficient tiny CNN (T ⁃ CNN). Compared to pure CNN
face detectors, the SSD based face detector ensures high base⁃
line accuracy on challenging face images in the wild. Instead
of performing multi⁃task learning with SSD like [17], we apply
a tiny CNN which is more feasible for multi⁃task face analysis.
We argue that a CNN operated on cropped faces brings comple⁃
mentary information to SSD. Given an image, the MHCNN first
detects all the faces with a SSD based face detector and then
refines both the scores and bounding boxes with T⁃CNN. Since
the T⁃CNN is applied in individual faces, it is straightforward
to add multiple tasks upon it. We here add face alignment, fa⁃
cial quality assessment, and facial attribute recognition. In ad⁃
dition, we introduce a facial attribute dataset, i. e. FaceA,
which contains two highly⁃concerned attributes in surveillance,
namely wearing sunglasses and wearing masks. We also intro⁃
duce a human ⁃ based facial quality assessment dataset, i. e.
FaceQ, where low⁃quality cases include occlusion, low⁃resolu⁃
tion, large pose, etc. We evaluate our face detection perfor⁃
mance on the well ⁃ known face detection data set and bench⁃
mark (FDDB) dataset, and demonstrate our T⁃CNN on our Fa⁃
ceA and FaceQ.

The remained of this paper is organized as follows. In Sec⁃
tion 2, we review related work on face detection and multi⁃task
learning. We introduce our MHCNN and its training strategy in
Section 3. Our collected datasets are introduced in Section 4.
We present experimental results in Section 5 and conclude the
paper in Section 6.

2 Related work
We mainly review the face detection and multi⁃task learning

for face analysis in this section. One can refer to [23]-[26] and
[27] for face image quality assessment and facial attribute rec⁃
ognition, respectively.
2.1 Face Detection

Face detection has been a well⁃studied field of computer vi⁃
sion. According to the used features, face detection methods
can be roughly divided into two categories, namely hand⁃craft

feature based methods and CNN feature based methods.
1) Hand⁃craft feature based methods. The cascaded face de⁃

tector proposed by VIOLA et al. [1] (VJ detector) obtains good
performance in simple scenarios with real⁃time efficiency. Due
to the relatively weakness of Haar⁃like features, the VJ detec⁃
tor degrades significantly in real⁃world applications with larger
visual variations of human faces. Some works improved the VJ
detectors by replacing the Haar ⁃ like features with more ad⁃
vanced hand⁃crafted ones [28]-[30], which need more compu⁃
tational cost. Another popular pipeline of face detection is
based on DPM [2], [31], [32]. It performs relatively better than
VJ detector in the wild but it is more computationally expen⁃
sive and usually requires expensive annotation in the training
stage.

2) CNN feature based methods. Since the remarkable suc⁃
cess of CNN in object classification [33], many progresses have
been made for face detection [3]-[9]. These CNN⁃based meth⁃
ods can be mainly concluded as three categories, namely cas⁃
caded CNN based face detection, two⁃stage region⁃based face
detection, and single⁃stage face detection. The cascaded CNN
based face detection pipeline, which inherits the advantage of
the VJ detector, utilizes several small networks from simple to
complex to detect faces and regress face boxes in a coarse⁃to⁃
fine manner [5] - [7]. Two ⁃ stage region ⁃ based face detection
pipeline is mainly transferred from region⁃based object detec⁃
tors, like R⁃CNN [34], Fast R⁃CNN [35], and Faster R⁃CNN
[11]. This method mainly includes two stages, namely proposal
generation and classification. The single ⁃ stage face detection
pipeline directly generates face boxes and scores from dense
anchor boxes [8], [9]. The face detection model for finding tiny
faces [7] trains separate detectors for different scales. S3FD
[12] presents multiple strategies to improve the performance of
small faces. Single stage headless (SSH) [9] models the context
information by large filters on each prediction module. Pyra⁃
midBox [36] utilizes contextual information with improved SSD
network structure. The advantage of single⁃stage face detectors
is that it can use the context semantic information to assist in
detecting faces, which is difficult for cascade face detectors.
So, we introduce single ⁃ stage detection architecture into cas⁃
cade face detector to get higher performance.
2.2 Multi⁃Task Learning

There are some existing works attempting to jointly solve the
problem of face detection, alignment and facial attribute in a
single model. YANG et al. [6] train deep convolution neural
networks for facial attribute recognition to obtain high response
in face regions which further yield candidate windows of faces.
ZHANG et al. [37] proposed to use facial attribute recognition
as an auxiliary task to enhance face alignment performance us⁃
ing deep convolutional neural network. CHEN [38] et al. apply
random forest based on the features of pixel value difference to
jointly conduct alignment and detection, but these handcraft
features are low ⁃ level features and greatly limit its perfor⁃
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mance. Multitask cascaded convolutional network (MTCNN)
[7] leverages a cascaded architecture with three stages of shal⁃
low to deep convolution networks to jointly predict face and
landmark locations in a coarse⁃to⁃fine manner, but the perfor⁃
mance of MTCNN is limited by cascade architecture. So, we
propose MHCNN with single⁃stage architecture in cascade face
detector and joint multi ⁃ task learning to improve the perfor⁃
mance of face detector.

3 Multi ⁃Task Hybrid Convolutional Neural
Networks
In this section, we first overview the proposed MHCNN, and

then detail the two parts of MHCNN, namely the SSD ⁃ based
face detector and the tiny multi⁃task CNN. We finally describe
the training process of MHCNN.
3.1 Overview

Fig. 1 illustrates the pipeline of our MHCNN. The MHCNN
consists of an SSD) and an efficient T⁃CNN. Given an image,
the MHCNN first detects all the faces with the SSD based face
detector and then refines both the scores and bounding boxes
with T⁃CNN. T⁃CNN is also responded on facial landmark re⁃
gression, facial quality assessment, and facial attribute recogni⁃
tion. We merge these facial tasks by considering that 1) it is
more efficient than training multiple networks for each task, 2)
some tasks, such as face classification and face attribute recog⁃
nition, could be complementary with each other, and 3) T⁃CNN
is performed on individual faces which could be complementa⁃
ry with an SSD⁃based face detector.
3.2 The SSD⁃Based Face Detector

We resort to the recent S3FD [12] as the first part of

MHCNN since it is a state⁃of⁃the⁃art SSD⁃based face detector
which is robust to face scale variation. Fig. 2 shows the archi⁃
tecture of S3FD. Both S3FD and original SSD use VGG16 [39]
as their backbone and pretrained on ImageNet. Compared to
original SSD, S3FD has several adjustments. We briefly review
these adjustments as follows.

1) Anchor design. Instead of generating anchors with differ⁃
ent scale and ratio for each detection layer in the original SSD,
S3FD generates one anchor scale for each detection layer since
faces can be simply approximated as squares. Specifically, an⁃
chor scales range from 16 to 512 pixels with equal⁃proportion
interval principle with strides increasing from 4 to 128 pixels.
This strategy aims to guarantee that there are adequate features
in different layers for detection.

2) Detection layers. One of the main challenges for face de⁃
tection is to detect faces from tiny size to very large size. Un⁃
like object detection of SSD in ImageNet, S3FD moves forward
the detection layers in order to detect tiny faces. Specifically,
the detection layers of S3FD are conv3_3, conv4_3, conv5_3,
conv_fc7, conv6_2, and conv7_2. The norms of conv3_3,
conv4_3, and conv5_3 are fixed to 10, 8, and 5 by L2 normal⁃
ization for better training.

3) Max⁃out of background. Since negative anchors dominate
the shallow layers with massive types, S3FD adds a max ⁃ out
layer for conv3_3 to relax the imbalance of positive and nega⁃
tive anchors. The max⁃out layer views the background label as
several different labels and only takes the most active one for
classification.

4) Scale compensation anchor matching. To match more tiny
faces for anchors, S3FD decreases the jaccard overlap thresh⁃
old from 0.5 to 0.35 in order to increase the average number of
matched anchors, and further sorts these anchors with jaccard
overlap higher than 0.1 and selects top⁃N as matched anchors.

SSD: single stage detector T⁃CNN: tiny convolutional neural network

▲Figure 1. The pipeline of the proposed Multi⁃Task Hybrid Convolutional Neural Network (MHCNN). It consists of an SSD⁃based face detector for
high⁃accuracy detection performance and a T⁃CNN for detection refinement and multi⁃task face analysis.

SSD-based face detector T-CNN for multi-task face analysis
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5) Training. We use the training set of the WIDER FACE
[40] to train the SSD ⁃ based detector, and use the same data
augmentation strategies as S3FD, including color distort, ran⁃
dom crop, and horizontal flip. The input size of network is fixed
to 640×640. We use smooth L1 loss for face bounding box re⁃
gression and softmax loss for face/non⁃ face classification. We
apply non ⁃maximum suppression (NMS) to remove the highly
overlapped results with a threshold of 0.7.
3.3 The Multi⁃Task Tiny CNN

We design an efficient T ⁃ CNN for the second part of
MHCNN. The T ⁃ CNN aims to further refine the candidates
from the SSD⁃based face detector, detect facial landmarks, as⁃
sess the face quality, and recognize two importance facial attri⁃
butes.

Fig. 3 presents the architecture of T⁃CNN. This architecture
is inspired by the MTCNN [7]. Specifically, we use off ⁃ the ⁃
shelf O ⁃ Net of MTCNN as the architecture while add more
tasks. T⁃CNN takes as input the 48×48 face regions, and out⁃
put results for four face tasks as follows.

1) Face classification. We find that there are a number of
non ⁃ face cases in the detections of the first part of MHCNN,
which are mainly caused by hard negative contexts and low
qualities, such as a person with back face. These cases can be
relaxed by directly classifying the face regions. We believe

that adding a refinement T⁃CNN could be complementary with
the SSD⁃based face detector. The face scores from both S3FD
and T⁃CNN will be averaged to provide the final detections.

2) Landmark localization. We also predict five landmarks at
eyes, nose, and mouth as in MTCNN. As shown in MTCNN,
adding landmark localization is helpful for face recognition.
We explain that landmarks can be viewed as a post validation
of faces.

3) Attribute classification. Facial attribute is naturally a
multi⁃label task. In this paper, we only concern about two im⁃
portant attributes for surveillance applications, i. e. wearing
face masks and wearing sunglasses. A sigmoid layer is respond⁃
ed to each attribute.

4) Face quality classification. Face quality can impact the
face / non ⁃ face classification scores in practice. We add face
quality task as a two ⁃ class (i. e. high quality and low quality)
classification problem since it is hard to annotate accurate
quality scores for human. We consider two issues for face qual⁃
ity classification: a) face quality assessment served as a filter
for subsequent face recognition system since too many low ⁃
quality and unrecognizable faces can impact the communica⁃
tion of front devices and cloud devices; b) As shown in Fig. 3,
we use a separate fully⁃connected (FC) layer for face quality as⁃
sessment because this task mainly depends on non ⁃ semantic
information and it brings negative influence to other tasks if

▲Figure 2. The architecture of single stage detector (SSD)⁃based face detector.
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▲Figure 3. The architecture of tiny convolutional neural network (T⁃CNN).

sharing the same FC layer in practice.
5) Training. Since T⁃CNN is partially served as a face/non⁃

face refinement of the SSD ⁃ based detector in our MHCNN
framework, we need to collect training data according to the re⁃
sults of SSD⁃based detector. To this end, we first calculate the
Intersection ⁃ over ⁃ Union (IoU) ratio between the detections
from the SSD ⁃ based detector and ground ⁃ truth faces on the
training set of WIDER FACE, and then select these detections
with IoU above 0.4 as positives and those less than 0.35 as neg⁃
atives. The number of total face /non⁃ face training data for T⁃
CNN is 60000 with a ratio of 1:3. For facial landmark localiza⁃
tion, we use the CelabA dataset which annotated with five fa⁃
cial landmarks, and apply random crop and gaussian blur as
two data augmentation strategies. Euclidean loss is used for
training facial landmark regression. We use our FaceA and
FaceQ to train facial attribute recognition and face quality as⁃
sessment. As for the training of facial attributes, the sigmoid
layer with binary cross⁃entropy loss is used.

4 FaceA and FaceQ
This section details the collection and annotation of our Fa⁃

ceA and FaceQ datasets. To our knowledge, there is no public
dataset for face attribute recognition with both wearing face
masks and wearing sunglasses, and there is also no public data⁃
set for face quality assessment in the wild. To meet our re⁃
search, we collect the FaceA and the FaceQ datasets, and will
make it publicly available to promote this area.

1) Collection. We make a python script and start from crawl⁃
ing“wearing sunglasses”and“wearing face mask”in image
searching engine such as baidu (www. baidu. com) and google
(www.google.com). We find it is hard to collect a large scale of
data for wearing face mask since this case usually happens in

surveillance. Totally, we crawled 1 409 and 1 335 images for
“wearing sunglasses”and“wearing face mask”, respectively.
After crawling, we then feed these images into the first part of
our MHCNN and crop the detected faces for further annotation.

2) FaceA. With the detected faces, we find there are many
noises which are not human faces (e.g. cartoon and animation)
or without the expected attributes. We manually remove these
noises, and finally the FaceA dataset consists of 1 072 faces
with sunglasses and 663 faces with face mask. The FaceA also
includes a background category which contains 630 faces with⁃
out wearing things. We randomly split both classes with 8:2 as
training set and test set. Fig. 4 shows some examples of FaceA.
We note that these faces are mostly with large head poses
which could be challenging for recognition.

3) FaceQ. With the crawled images, we find there are a lot of
faces that neither belong to“wearing sunglasses”nor“wearing
face mask”, and that there are a number of faces with either
high or low resolution. Thus, we collect FaceQ from the same
source with FaceA but with three rules:

• Face resolution: Blurred and tiny faces are divided into
low⁃quality class.

a) Faces of wearing face masks b) Faces of wearing sunglasses

▲Figure 4. Examples of our FaceA dataset.
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▼Table 1. Comparison of our MHCNN on FDDB

Methods
Cascade CNN [3]

ACF⁃multiscale [41]
YAN et al. [42]

Faster R⁃CNN [11]
S3FD [12]
MHCNN

Recall
85.67%
86.08%
86.15%
96.10%
98.37%
98.66%

ACF: Aggregate Channel Features
CNN: Convolutional Neural Network
MHCNN: Multi⁃task Hybrid CNN

R⁃CNN: Region CNN
S3FD: Single Shot Scale⁃invariant Face Detector

ACF: aggregate channel features
CNN: convolutional neural network

SFD: single shot scale⁃invariant face detector
SURF: speeded up robust features

▲Figure 6. Discontinuous ROC curves on the FDDB dataset.

• Head pose: We collect faces as high⁃quality class only if
their eyes can be seen clearly and their resolution are larger
than 80 × 80. In other word, profile faces are not selected as
high⁃quality class.

• Occlusion: Occluded faces are selected as the low⁃quali⁃
ty class except for the faces that are only occluded by wearing
sunglasses and masks.

After manually selection, we totally obtain 1001 high⁃quali⁃
ty faces and 1 097 low ⁃quality faces. We also randomly split
both classes with 8:2 as training set and test set. Some exam⁃
ples of FaceQ are shown in Fig. 5.

5 Experiments
In this section we first present the implementation details,

and then analyze the effectiveness of our joint multi⁃task train⁃
ing for the face detection, and further evaluate the final model
on FDDB face detection benchmark and our own benchmarks.
Finally, we evaluate the time of inference of our MHCNN.
5.1 Implementation Details

We use Caffe toolbox for implementation of our MHCNN.
For the SSD⁃based face detector, we follow the training setting
of S3FD, using the pretrained VGG16 to initialize, and the oth⁃
er layers are randomly initialized with the“Xavier”method
[13]. We fine⁃tune the pretrained model using stochastic gradi⁃
ent descent (SGD) with 0.9 momentum, 0.0005 weight decay
and batch size 32. We train 80k iterations by using 10-3 learn⁃
ing rate, then continue training for 20k iterations with 10-4 and
10-5 learning rates. For T⁃CNN, we convert different datasets to
hdf5 format for joint multi ⁃ task training, and train the model
using SGD with 0.9 momentum and 0.0005 weight decay. The
batch size of each task is 512, and we concatenate all data for
joint training. Due to the fact that face quality assessment task
depends on different information (i. e. low ⁃ level information)
compared to the other tasks, we train T ⁃ CNN in two stages.
First, we train the face classification, facial landmark localiza⁃
tion, and face attribute recognition tasks with 10-1 learning rate
for 200 iterations. Then we freeze the weights and only train
the face quality recognition part of T ⁃CNN with 10-1 learning

rate for another 500 iterations.
5.2 Evaluation on Face Detection Task

We evaluate and compare the face detection performance of
our MHCNN on the FDDB dataset. FDDB contains 5 171 face
annotations in 2 845 images. We compare our face detector to
the state⁃of⁃the⁃art methods [2], [3], [12], [38], [41]-[45]. Ta⁃
ble 1 shows the recall ratio at 2 000 false positive and Fig. 6
compares the receiver operating characteristic (ROC) curves to
several state⁃of⁃the⁃art methods. Although our T⁃CNN aims for
multi ⁃ task facial analysis, compared to the original S3FD, our
extra T⁃CNN provides complementary information for face/non⁃
face classification which boosts S3FD by around 0.3%. It is
worth noting that a tiny improvement is difficult on the nearly⁃
saturated FDDB. From Fig. 6, we observe that our MHCNN

▲Figure 5. Examples of our FaceQ dataset.
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▼Table 2. Ablation study of T⁃CNN on the FaceA dataset

Methods (task setting)

T⁃CNN (sunglasses)
T⁃CNN (sunglasses + landmarks)

T⁃CNN (masks)
T⁃CNN (masks + landmarks)

T⁃CNN (sunglasses + masks +
landmarks)

Accuracy of Sunglasses
(Threshold = 0.5)

76.14%
76.57%

⁃⁃⁃⁃
⁃⁃⁃⁃

98.70%

Accuracy of Mask
(Threshold = 0.5)

⁃⁃⁃⁃
⁃⁃⁃⁃

83.30%
85.90%
99.35%

Methods

LBP+SVM
T⁃CNN

Accuracy of Face Quality
(Best threshold)

78.52%
81.86%

T⁃CNN: tiny CNN

▼Table 3. Evaluation on the FaceQ dataset

LBP: local binary patterns SVM: support vector machine T⁃CNN: tiny CNN

mainly improve the true positive rate at low false positive rate,
which means the MHCNN has higher scores for true faces than
S3FD. This character is practical in real applications.
5.3 Ablation Study of T⁃CNN

We make an ablation study of our T⁃CNN on the facial attri⁃
bute task. We perform experiments on the collected FaceA da⁃
taset, and use the sigmoid scores for each attribute with the
best threshold searched on the training set.

Table 2 presents the results of ablation study on FaceA. We
find several observations from Table 2. First, adding the facial
landmark localization task improves both attribute tasks, where
the gains for sunglasses and face mask are 0.43% and 2.6%,
respectively. Second, training with all attribute tasks and land⁃
mark localization achieves the best results on FaceA. Third,
the overall results with multiple tasks are relatively high
though we only use a low⁃resolution input, which demonstrates
the efficiency of our T⁃CNN.

1) Visualization on FaceA. Fig. 7 visualizes some false posi⁃
tives on FaceA. We find that“wearing mask”is easily con⁃
fused by large ⁃ pose faces with heavy hair, partial occlusion,
and sunglasses;“wearing sunglasses”is confused by wearing
common glasses, partial occlusion, and wearing mask.

2) Face quality assessment with T⁃CNN. For face quality as⁃
sessment task, we evaluation our T⁃CNN on the FaceQ dataset.
We compare a well⁃known and popular method in real applica⁃
tions, i.e. LBP feature with SVM. In this method we use the cir⁃
cular LBP operator with 8 sampling points in a circular area
with radius 2, and divide face image into 7×5 to calculate LBP
histogram, getting a 2 065 dim feature vector for each face im⁃
age. Using the LBP face image features, we train a SVM model
with radial basis kernel function (RBF) to predict either the
normalized comparison scores. The cost of SVM is set at 1.5
and the gamma for RBF at 6.82. Table 3 presents the compari⁃
son between MHCNN and LBP+SVM. We find that T⁃CNN out⁃
performs LBP+SVM by 3.34%, which demonstrates its effec⁃
tiveness. As a traditional method, LBP+SVM is also promising
on this task which may be explained by that the face quality as⁃
sessment task mainly depend on low⁃level texture information.

3) Visualization on FaceQ. Fig. 8 shows some false positives
on FaceQ. We find that most of the faces with serious occlu⁃
sion by sunglasses and masks are recognized as low ⁃ quality
faces, which may make sense since they are not suitable for
recognition by human; several smooth profile faces also have
low quality scores since they have little texture information;
these low⁃quality faces with small occlusion by sunglasses are
easily categorized into high ⁃ quality faces, which may be ex⁃
plained by the fact that these faces can provide relatively rich
texture information.
5.4 Inference Time

During inference, we set 0.5 as the face confidence thresh⁃
old in both parts of MHCNN. We perform the inference in 10

real⁃world surveillance images with 1 080×1 920 scales and re⁃
port the average time. We first downscale the images to 320×
568 and then use our MHCNN. The inference time of the SSD⁃

▲Figure 7. False positives on FaceA test set. The score of images are the
probability to predict wearing⁃mask and wearing⁃sunglasses.

▲Figure 8. False positives on FaceQ test set. The faces with higher
scores are predicted to the high⁃quality class and those with lower scores
are predicted to the low⁃quality class.

b) False positives of wearing sunglassesa) False positives of wearing face masks

b) False positives of high-quality classa) False positives of low⁃quality class
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based detector and T⁃CNN are around 22 ms/frame and 2 ms/
frame in NVIDIA TITAN Xp, respectively. Overall, our
MHCNN can run 40 FPS in NVIDIA TITAN Xp for four face
tasks including resizing computational time.

6 Conclusions
In this paper, we propose MHCNN for face detection, facial

landmark detection, facial quality, and facial attribute analy⁃
sis. We combine the single stage detector and CNN⁃based de⁃
tector to boost the performance of face detection and imple⁃
ment multi⁃task learning. Our MHCNN achieves real⁃time per⁃
formance in NVIDIA GPU for four face tasks. Additionally, we
contribute two datasets on face attribute and face quality as⁃
sessment. Experiments show that our MHCNN achieves the
state ⁃of ⁃ the⁃art on FDDB benchmark and gets reasonable re⁃
sults on FaceQ and FaceA.
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