
D:\EMAG\2019-05-66/VOL16\CONTETN.VFT——2PPS/P

SRSC: Improving Restore Performance forSRSC: Improving Restore Performance for
DeduplicationDeduplicationBased Storage SystemsBased Storage Systems

ZUO Chunxue1, WANG Fang1, TANG
Xiaolan2, ZHANG Yucheng1,

and FENG Dan1

(1. Key Laboratory of Information Storage Systems,
Engineering Research Center of Data Storage

Systems and Technology, Huazhong University of
Science and Technology, Wuhan, Hubei 430074,

China;
2. 5G Application Product Line, ZTE Corporation,

Shenzhen, Guangdong 518057, China)

This work was supported in part by ZTE Industry⁃Academia⁃Research
Cooperation Funds, the National Natural Science Foundation of China
under Grant Nos. 61502191, 61502190, 61602197, and 61772222)
Fundamental Research Funds for the Central Universities under Grant
Nos. 2017KFYXJJ065 and 2016YXMS085, the Hubei Provincial Natural
Science Foundation of China under Grant Nos. 2016CFB226 and
2016CFB192, and Key Laboratory of Information Storage System Ministry
of Education of China.

DOI: 10.12142/ZTECOM.201902009

http://kns.cnki.net/kcms/detail/34.1294.
TN.20190507.1052.002.html, published online

May 7, 2019

Manuscript received: 20180609

Abstract: Modern backup systems exploit data deduplication technology to save stor⁃
age space whereas suffering from the fragmentation problem caused by deduplication.
Fragmentation degrades the restore performance because of restoring the chunks that
are scattered all over different containers. To improve the restore performance, the
state⁃of⁃the⁃art History Aware Rewriting Algorithm (HAR) is proposed to collect frag⁃
mented chunks in the last backup and rewrite them in the next backup. However, due
to rewriting fragmented chunks in the next backup, HAR fails to eliminate internal
fragmentation caused by self ⁃ referenced chunks (that exist more than two times in a
backup) in the current backup, thus degrading the restore performance. In this paper,
we propose Selectively Rewriting Self⁃Referenced Chunks (SRSC), a scheme that de⁃
signs a buffer to simulate a restore cache, identify internal fragmentation in the cache
and selectively rewrite them. Our experimental results based on two real⁃world datas⁃
ets show that SRSC improves the restore performance by 45% with an acceptable sac⁃
rifice of the deduplication ratio.
Keywords: data deduplication; fragmentation; restore performance

1 Introduction
ith a flood of data from companies, networks,
emails systems, individual stations and other
devices, data deduplication as a type of com⁃
pression technology is widely employed in the

backup systems for saving storage space [1]-[4], [5]. A recent
study shows the amount of digital data in the world will exceed
44 Zettabytes in 2020 [6], while EMC reports that more than
90% data are redundant in backup systems [7]. Therefore, data
deduplication is an efficient way in space to eliminate redun⁃
dant data in modern backup systems. Data deduplication splits
the file into fixed ⁃ size [8] or variable ⁃ sized chunks [1], com⁃
putes the fingerprint of each chunk with hash algorithms (e.g.
SHA⁃1, MD5) and determines whether a chunk is duplicated
by looking up a fingerprint index, which records all the finger⁃
prints of non⁃duplicate chunks in a backup system. If the fin⁃
gerprint of a chunk has no identical records in the fingerprint

index, the chunk is unique and will be written to a read/write
storage unit called“container”with fixed size (e.g. 4 MB [9]).

Restore process is of great importance as backup process for
the occurrence of disasters such as earthquakes, tsunami and
hurricanes [10]. Higher restore performance satisfies the re⁃
quirements of higher availability of the system. Restoring a
backup stream is based on a backup recipe, which includes
the metadata information of data chunks, such as chunk finger⁃
prints, chunk ID and chunk size. From the recipe, a container
that the chunk locates is read from the disk to a restore cache.
When a restore cache is full, it will evict an entire container
with a cache replacement algorithm.

Since duplicate chunks are removed from multiple backups,
the chunks of a backup stream are physically scattered across
different containers, which introduces two types of fragmenta⁃
tion. One is inter ⁃ version fragmentation caused by duplicate
chunks among multiple versions of the same backup; the other
is internal fragmentation caused by duplicate chunks (often
called self ⁃ referenced chunks [11]) in a single backup. In or⁃
der to restore a backup stream with fragmentation, multiple
containers are read from the disk. Because of the poor random⁃
access performance of hard disk drives (HDDs), fragmentation
results in the severely degradation of the restore performance.

To address the fragmentation problem, the state ⁃of ⁃ the ⁃art
History Aware Rewriting Algorithm (HAR) is proposed to iden⁃

W

SRSC: Improving Restore Performance for DeduplicationBased Storage Systems

ZUO Chunxue, WANG Fang, TANG Xiaolan, ZHANG Yucheng, and FENG Dan

59

Research Paper

ZTE COMMUNICATIONS
June 2019 Vol. 17 No. 2

63



D:\EMAG\2019-05-66/VOL16\CONTETN.VFT——2PPS/P

tify and collect the duplicate but fragmented chunks in the last
backup, and then rewrite them in the next backup. However,
for the internal fragmentation, HAR fails to eliminate them be⁃
cause identified internal fragmentation are rewritten in the
next backup, rather than being handled immediately. In this
paper, we propose an efficient approach called Selectively Re⁃
writing Self⁃Referenced Chunks (SRSC). The main idea behind
SRSC is to maintain a fixed ⁃ size buffer, identify whether the
self⁃referenced chunks are fragmented in a buffer and rewrite
them in the backup.

The main contributions of this paper include:
(1) As HAR collects fragmented chunks in the last backup

and rewrites them in the next backup, we observe that HAR
cannot address the internal fragmented chunks caused by self⁃
referenced chunks in a backup.

(2) To reduce internal fragmented chunks in the deduplica⁃
tion ⁃ based backup systems, we propose a SRSC scheme to
maintain a buffer to simulate a restore cache, identify internal
fragmented chunks in the buffer and rewrite them in the cur⁃
rent backup.

(3) We implement our scheme in the deduplication ⁃ based
system. Compared with HAR, the experimental results based
on two datasets show that SRSC is more efficient in eliminating
internal fragmentation and significantly improving the restore
performance.

The rest of paper is organized as follows. In Section 2, we re⁃
view the background for our research. In Section 3, we present
our observations to motivate our research. We describes the de⁃
tailed architecture overview and implementation of our algo⁃
rithm in Section 4. We present the experimental evaluations
with two datasets in Section 5. In Section 6, we present the re⁃
lated work. We conclude our paper in Section 7.

2 Background

2.1 Fragementation Problem
Fragmentation problem has been received a broad attention

in the deduplication⁃based backup systems. Fig. 1 shows the
fragmentation arises between two backups. Both two backups
have 12 chunks. After backup 1, 12 unique chunks of backup

1 are stored in the containers I, II, III, and IV. Since 11
chunks of backup 1 are identical to that chunks of backup 2,
only chunk M is stored in the container V after backup 2. The
chunks of backup 1 are aggregated in the first 4 containers.
However, the chunks of backup 2 are scatter across 5 different
containers, which is called fragmentation problem.

With a 3 ⁃ container ⁃ size Least Recently Used Algorithm
(LRU), restoring backup 1 obviously needs to read 3 contain⁃
ers. However, restoring backup 2 needs to read 9 containers.
Thus, the restore performance of backup 2 is worse than that of
backup 1. This is because reading containers I and II is not ef⁃
ficient and each of the container only includes one useful
chunk for backup 2. And then, for restoring a chunk A re⁃
quired by backup 2, we need to read an entire container I.
Thus, chunk A is fragmented chunks for backup 2.
2.2 History⁃Aware Rewriting Algorithm

To address the fragmentation problem and improve the re⁃
store performance, HAR is proposed. HAR is based on a key
observation that two consecutive backups are very similar, and
thus history information collection during the last backup is
useful for the performance of the next backup.

Specifically, HAR first defines a container’s utilization for a
backup stream as the fraction of its chunks referenced by the
backup. If the utilization of a container is smaller than 50%,
the container is regarded as a sparse container that will ampli⁃
fy the read performance. Next, HAR observes that sparse con⁃
tainers of the current backup remain sparse in the next back⁃
up. Based on the observation, HAR loads the IDs of sparse con⁃
tainers identified by the last backup, and identifies the sparse
containers and rewrites fragmented chunks in the sparse con⁃
tainers. Lastly, HAR collects the IDs of sparse containers as
the history information and exploits it for identifying and re⁃
writing fragmented chunks in the next backup. Thus, HAR ac⁃
curately identifies the fragmented chunks and improves the re⁃
store performance.

3 Motivation
Deduplication is important in backup systems for saving

storage space, but introduces fragmented chunks. As described
in Section 2.1, the chunks of a backup are scattered in differ⁃
ent containers because of the removel of duplicate chunks,
which causes the inter ⁃ version fragmentation, thus reducing
the restore performance. Similarly, for a single backup stream,
self⁃referenced chunks, such as chunk D in backup 2, can also
reduce the restore performance. This is because, with a 3⁃con⁃
tainer⁃size LRU, restoring chunk D two times requires to read
the container II two times, which severely reduces the restore
performance. Thus, an existing rewriting algorithm such as
HAR has been proposed to rewrite inter ⁃ version fragmented
chunks identified by the last backup to improve the restore per⁃
formance. However, the design of HAR ignores that internal

▲Figure 1. Fragmentation appears between two backup streams. The
shaded chunks represent the chunks referenced by the second back-
up in each container. The blank areas offer extra space of the halffull
containers when a backup completes.

A• • • • • • • • • • • • •B C D E F G H I J K LBackup 1
A• • • • • • • • • • • • •M K D E F G H I C D HBackup 2

A
B
C
Ⅰ

D
E
F
Ⅱ

G
H
I
Ⅲ

J
K
L
Ⅳ

M
Blank
Ⅴ

Data layout after backup 2

SRSC: Improving Restore Performance for DeduplicationBased Storage Systems

ZUO Chunxue, WANG Fang, TANG Xiaolan, ZHANG Yucheng, and FENG Dan

Research Paper

60 ZTE COMMUNICATIONS
June 2019 Vol. 17 No. 2

64



D:\EMAG\2019-05-66/VOL16\CONTETN.VFT——2PPS/P

fragmentation caused by self⁃referenced chunks also has a neg⁃
ative impact on the restore performance.

Specifically, at the beginning of a backup, HAR firstly loads
the fragmented chunks of the last backup and rewrites them.
When the backup finishes, HAR collects information of frag⁃
mentation in the sparse containers prepared for the next back⁃
up. Obviously, HAR ignores to identify internal fragmentation
stemming from self ⁃ referenced chunks in a backup, and thus
fails to reduce internal fragmentation. In other word, HAR col⁃
lects fragmented chunks of each backup, but these fragmented
chunks come from duplicate chunks between multiple versions
of the same backup. Hence, HAR does not consider the impact
of internal fragmentation on the restore performance, which
hinders HAR from further improving the restore performance.
Fig. 2 shows an example of the HAR working process, in

which all the backup streams have 12 chunks. After backup 1,
12 unique chunks are stored in four containers. Since 10
chunks in backup 2 are duplicate with backup 1, only chunks
M and N are written to the containers IV and V. After backup
2, containers’utilization are computed, thus chunks C and D
are fragmented in the containers I and II and collected by
HAR. When the third backup stream arrives, chunks C and D
that have been recorded in backup 2 are rewritten to the con⁃
tainer VI in backup 3 (Fig. 2f). We observe that chunks I and J
as self ⁃ referenced chunks are fragmented because they will
lead containers III and IV to be read more than once in a limit

restore cache. However, after HAR algorithm finishes, chunks
I and J are still fragmented chunks and not be eliminated. As⁃
sume a backup stream has many self⁃referenced chunks, multi⁃
ple containers will be accessed during a restore. Thus, HAR in⁃
creases the number of accessed containers and is an inefficient
way to reduce internal fragmented chunks caused by self⁃refer⁃
enced chunks.

The above observation motivates us to propose a scheme to
reduce internal fragmented chunks. We have proposed a SRSC
scheme that maintains a fixed⁃size buffer to simulate a restore
cache, identifies self⁃referenced chunks whether fragmented in
the buffer, and selectively rewrite self ⁃ referenced chunks
based on computing their containers’utilizations. In such a
scheme, internal fragmentation could be accurately identified.
Meanwhile, in order to save storage space, we selectively re⁃
write a part of self⁃referenced chunks by choosing the low con⁃
tainers’utilization. Therefore, SRSC not only reduces the num⁃
ber of containers, but also improves the restore performance.

4 Selectively Rewriting Self⁃Referenced
Chunks

4.1 Overview of SRSC
To reduce internal fragmented chunks caused by self⁃refer⁃

enced chunks, our SRSC Scheme is proposed to identify self ⁃
referenced chunks and selectively rewrite them. As our obser⁃
vation in Section 3, with the increase of backup versions, HAR
rewrites fragmented chunks from the last backup but cannot
deal with internal fragmented chunks in the current backup.
This is because the distance between two self ⁃ referenced
chunks exceeds the restore cache size during a restore, which
causes multiple containers to be read and the restore perfor⁃
mance to decline. Thus, a buffer is designed for SRSC to simu⁃
late a restore cache. In this buffer, SRSC identifies whether self ⁃
referenced chunks are fragmented and then rewrite these frag⁃
mented chunks. However, there are at least 20% self ⁃ refer⁃
enced chunks in a backup stream. Rewriting a number of frag⁃
mented chunks caused by self ⁃ referenced chunks will slow
down the backup time and occupy much storage space, which
motivates us to rewrite only a part of self⁃referenced chunks of
a backup stream. Thus, SRSC selectively rewrites self ⁃ refer⁃
enced chunks based on the containers’utilization. Except for
addressing internal fragmented chunks, we also add HAR re⁃
writing algorithm to the SRSC scheme. This is because HAR
takes better advantage of heritability of fragmentation, which is
efficient in eliminating inter⁃version fragmented chunks among
multiple versions of backups. Therefore, SRSC can reduce frag⁃
mented chunks no matter whether the fragmentation comes
from a backup or multiple versions of backups.
4.2 Design of SRSC

SRSC is implemented by filter rewriting and selective rewrit⁃

A• • •B C D E F G H I J K L••••••••••
a) Backup 1

A
B
C
Ⅰ

D
E
F
Ⅱ

G
H
I
Ⅲ

J
K
L
Ⅳ

b) Data layout after backup 1
C• • •D G H I J K L M N I J••••••••••

c) Backup 2
A
B
C
Ⅰ

D
E
F
Ⅱ

G
H
I
Ⅲ

J
K
L
Ⅳ

d) Data layout after backup 2

M
N

blank
Ⅴ

C• • •D G H I J K L O P I J••••••••••
e) Backup 3

A
B
C
Ⅰ

D
E
F
Ⅱ

G
H
I
Ⅲ

J
K
L
Ⅳ

M
N

blank
Ⅴ

C
D
O
Ⅵ

P

Ⅶ
blank

f ) Data layout after backup 3
▲Figure 2. An example of three consecutive backups with the HAR
rewriting scheme. The shaded chunks represent the chunks
referenced by the current backup in each container.

SRSC: Improving Restore Performance for DeduplicationBased Storage Systems

ZUO Chunxue, WANG Fang, TANG Xiaolan, ZHANG Yucheng, and FENG Dan

61

Research Paper

ZTE COMMUNICATIONS
June 2019 Vol. 17 No. 2

65



D:\EMAG\2019-05-66/VOL16\CONTETN.VFT——2PPS/P

ing. Fig. 3 shows the SRSC architecture.
(1) Rewriting Filter
As shown in Fig. 3, the rewriting filter module, stemming

from HAR rewriting algorithm, includes two data structures:
the conditional container IDs and history information collec⁃
tion. During a backup, the IDs of fragmentation’s containers in
the last backup are loaded into the conditional container IDs.
The rewriting filter module then checks whether the container’s
IDs of duplicate chunks exist in the conditional container IDs.
Before finishing the backup, the history information collection
is responsible for collecting the information of fragmented
chunks of the current backup, such as containers’IDs of
chunks and preparing for the rewriting phase of the next back⁃
up.

(2) Selective Rewriting
Whether self ⁃ referenced chunks negatively impact contain⁃

ers’replacement in a restore cache depends on the distance
between two self ⁃ referenced chunks, so selective rewriting is
designed to identify internal fragmented chunks and selective⁃
ly rewrite identified fragmentation. Selective rewriting scheme
includes two data structures: fragmentation identification and
selectively rewriting self⁃referenced chunks.

Specifically, fragmentation identification first creates a fixed⁃
size buffer to simulate a restore cache, about 256 MB for exper⁃
iments. In the buffer, the scheme of selective rewriting identi⁃
fies self ⁃ referenced chunks by checking all the duplicate
chunks whether the container ID of the chunks is larger than
the total number of the containers stored in the last backup. If

so, the chunk is self⁃referenced, and then fragmentation identi⁃
fication will match the container ID of the chunk with that in
the buffer. Finding the identical container’s ID means that
this self ⁃ referenced chunk will not have an impact on the re⁃
store performance. Otherwise, the self ⁃ referenced chunk is
fragmented and needs to be rewritten to the disk. However,
considering the storage overheads and deduplication efficien⁃
cy, the data structure of selectively rewriting self ⁃ referenced
chunks is used for limiting the number of self ⁃ referenced
chunks rewritten according to the container’s utilization.
Thus, the container’s ID of this self⁃referenced chunk is sent
to SRSC and is determined whether its chunk needs to be writ⁃
ten.

We first define a container’s utilization threshold as 50%.
Next, SRSC computes the utilization of the container that iden⁃
tified fragmentation belongs to. If the container’s utilization is
smaller than 50%, this self⁃referenced chunk will be rewritten
to the container. Hence, the scheme of selective rewriting not
only identifies fragmented chunks by stimulating a restore
cache to check if the container ID of the self⁃referenced chunk
can be hold, but also writes a part of the backup stream by us⁃
ing a container’s utilization threshold. The work flow of SRSC
is shown in AlgorithmAlgorithm 11.
AlgorithmAlgorithm 11. SRSC Algorithm
1: Initialize a buffer S and define the total number of

container N;
2: whilewhile the backup is not completed do
3: ifif the container ID of the chunks is larger than N then
4: the chunk is a self⁃referenced chunk
5: ifif container ID that the self⁃referenced chunk

locates is in S thenthen
6: Compute the container’s utilization Cuti.
7: ifif Cuti < 50% then
8: the self⁃referenced chunk will be rewritten to

the container.
9: end ifend if
10: elseelse
11: Insert the container ID to S.
12: end ifend if
13: end ifend if
14: end whileend while

5 Performance Evaluation

5.1 Experiment Setup
(1) Platform
We implement the SRSC algorithm on an opensource dedu⁃

plication system called Destor [12], which is running on the
Ubuntu12.04.2 operating system. The operating system is con⁃▲Figure 3. Modules and main data structure of SRSC.

SRSC: Selectively Rewriting Self⁃Referenced Chunks

Conditional
container IDs

History informaton
collection

Rewriting filter

Fragmentation
identification

Selectivelyrewriting self⁃referenced chunks

Selectively rewriting scheme

SRSC

Chunk⁃level
deduplication

The backup streams
Memory

Container storage
management

Disk

SRSC: Improving Restore Performance for DeduplicationBased Storage Systems

ZUO Chunxue, WANG Fang, TANG Xiaolan, ZHANG Yucheng, and FENG Dan

Research Paper

62 ZTE COMMUNICATIONS
June 2019 Vol. 17 No. 2

66



D:\EMAG\2019-05-66/VOL16\CONTETN.VFT——2PPS/P

figured as follows: a 16 GB RAM, a quad core Intel i7 ⁃4770
processor at 3.4 GHz. We evaluate SRSC in terms of deduplica⁃
tion ratio and restore performance. Since our paper aims to im⁃
prove the restore performance of HAR by reducing internal
fragmentation, HAR is the baseline of our evaluation, and
HAR and SRSC are compared.

(2) Datasets
WEBS, VMDK and FSLHomes datasets are used for evalua⁃

tions (Table 1). Specifically, the WEBS dataset is from the
backups of the Sina web with using a tool“wget”to grasp ev⁃
ery day. VMDK is a set of virtual machines, including 30 ver⁃
sions. Each backup is 20 GB on average and has 20% self⁃ref⁃
erenced chunks. The total size of the datasets is about 369 GB.
FSLHomes is an open source of traces and snapshots that are
collected by file systems and the storage lab and its collabora⁃
tors, which can be downloaded from the website http://tracer.
filesystems.org [13].

(3) Configuration
The backup system divides each dataset into variable ⁃ size

chunks by using the Rabin chunking algorithm and computes
the fingerprints of each chunk with the MD5 hash algorithm.
The fingerprint index is stored in memory by default. And the
restore cache prefetches and evicts the containers with optimal
replacement algorithm [11]. We use the deduplication ratio to
evaluate the deduplication efficiency and the speed factor to
evaluate the restore performance of SRSC.
5.2 Experimental Results and Analysis

5.2.1 Deduplication Ratio
In this evaluation, we use the deduplication ratio as a metric

to evaluate the deduplication efficiency. Deduplication ratio is
defined as the ratio of the size of duplicate chunks and a file
size. Fig. 4 show the deduplication ratio of HAR and SRSC
based on the three datasets. In general, the deduplication ra⁃
tios of SRSC are lower than HAR. This is because HAR ad⁃
dresses the inter⁃version fragmented chunks, and thus rewrite
fragmented chunks of the last backup. However, compared
with HAR, our SRSC scheme rewrites not only inter ⁃ version
fragmented chunks of the last backup, but also writes a part of
self ⁃ referenced chunks for addressing the new fragmented
chunks caused by selfreferenced chunks in a backup stream.
Meanwhile, rewriting fragmented chunks suggests that less du⁃
plicate chunks lead to the reduction of the deduplication ratio.

Specifically, for the WEBS dataset, the deduplication ratio
of HAR is 73% on average. The deduplication ratio of SRSC is

69% on average, 4% lower than HAR. For the VMDK dataset,
the deduplication ratio of HAR is 92% on average. And the de⁃
duplication ratio of SRSC is 88% on average, 4% lower than
HAR. Similarly, the deduplication ratio of SRSC is 3% lower
than HAR for the FSLHomes dataset. Although SRSC’s dedu⁃
plication ratio is a little lower than HAR regardless of the data⁃
set’s type, it is reasonable and acceptable.
5.2.2 Restore Performance

We use the speed factor [11] as a metric to evaluate the re⁃

HAR: History Aware Rewriting Algorithm SRSC: Selectively Rewriting Self⁃Referenced Chunks

▼Table 1. Characteristics of three datasets

Dataset name
WEBS
VMDK

FSLHomes

Total size (GB)
105
550
860

Version number
35
30
20

Deduplication ratio
73%
92%
91%

▲Figure 4. The comparisons between SRSC and HAR in terms of
deduplication ratio based on the three datasets.

a) WEBS

b) VMDK

c) FSLHomes

35302520151050

1.0

0.8

0.6

0.4

0.2

0.0

Ded
upl

ica
tion

rati
o

Version number

●

■ HAR
SRSC■●

●
■ ■● ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

30

1.0

0.8

0.6

0.4

0.2

0.0

Ded
upl

ica
tion

rati
o

Version number

●

■ HAR
SRSC

2520151050

■ ■
● ■

●

■● ■● ■● ■
● ■

●

5

■
●

■● ■● ■
●

■● ■● ■
●

■● ■● ■● ■
●

■
●

■● ■● ■
●

■● ■● ■● ■●
■● ■●

●
■

●

●

■ HAR
SRSC

20

1.0

0.8

0.6

0.4

0.2

0.0

Ded
upl

ica
tion

rati
o

Version number
151050

■

■●

●
■ ●■ ●■

●
■ ■

●
■

■ ■● ■● ■● ■
■● ■●

■● ■● ■● ■● ■●
●●

●●

SRSC: Improving Restore Performance for DeduplicationBased Storage Systems

ZUO Chunxue, WANG Fang, TANG Xiaolan, ZHANG Yucheng, and FENG Dan

63

Research Paper

ZTE COMMUNICATIONS
June 2019 Vol. 17 No. 2

67



D:\EMAG\2019-05-66/VOL16\CONTETN.VFT——2PPS/P

store performance. Speed factor represents 1/mean containers
read per MB of restored data. Fig. 5 shows the restore perfor⁃
mance between HAR and SRSC based on the three different
datasets, which are widely used in the deduplicationbased
backup systems [11]. In the figure, SRSC achieves better re⁃
store performance than HAR in three data sets. For the WEBS
dataset, SRSC outperforms HAR by 40%. For the VMDK data⁃
set, SRSC achieves better restore performance by 48%. For the
FSLHomes dataset, SRSC outperforms HAR by 27%. This is
because SRSC not only addresses the inter⁃version fragmenta⁃

tion but also deals with the internal fragmentation. Fragmented
chunks are eliminated, which means that the utilization of
each container increases. In addition, it also suggests that self⁃
referenced chunks have a negative impact on the restore perfor⁃
mance. In general, SRSC achieves higher restore performance
than HAR.
Fig. 6 shows the restore performance between HAR and

SRSC under different cache sizes. In WEBS, SRSC significant⁃
ly improves the restore performance than HAR. Because both
inter⁃version fragmentation and internal fragmentation can de⁃

▲Figure 5. The comparisons between SRSC and HAR in terms of
restore performance. The cache is 256, 128, and 256container
sized in WEBS, VMDK and FSLHomes respectively.

HAR: History Aware Rewriting Algorithm SRSC: Selectively Rewriting Self⁃Referenced Chunks

a) WEBS

b) VMDK

c) FSLHomes

▲Figure 6. The comparisons between SRSC and HAR in terms of
restore performance under different cache sizes.

HAR: History Aware Rewriting Algorithm SRSC: Selectively Rewriting Self⁃Referenced Chunks

a) WEBS

b) VMDK

c) FSLHomes

35

6

Spe
ed

fac
tor

Version number

5
4
3
2
1
0 302520151050

●

■ HAR
SRSC

●

■
●

■

●

■

●

■

●

■

●

■

●

■

●

■

●

■

●

■

●

■

●

■

●

■

●

■

●

■

●

■

●

■

●

■

●●●●●●●●●●●●●●●●●

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

30

5

Spe
ed

fac
tor

Version number

4

3

2

1

0 2520151050

●

■ HAR
SRSC

●●●●●
● ● ● ● ● ●●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●

■
■ ■ ■ ■ ■ ■ ■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

20

7

Spe
ed

fac
tor

Version number

6
5
4
3
2
1
0 151050

●

■ HAR
SRSC

■ ■ ■ ■ ■

■
■

■ ■ ■ ■ ■ ■
■ ■ ■ ■ ■ ■ ■

● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

4 096

4

Spe
ed

fac
tor

Cache size/MB
2 0481 02451225612864

3

2

1

0

●

■ HAR
SRSC

■
■

■

■

■
■ ■

●

●
● ● ● ● ●

4 096

4

Spe
ed

fac
tor

Cache size/MB
2 0481 02451225612864

3

2

1

0

●

■ HAR
SRSC

■
■

■

■

■
■

■

● ● ● ● ● ● ●

1 024

7.5

Spe
ed

fac
tor

Cache size/MB

●

■ HAR
SRSC

51225612864

6.0

4.5

3.0

1.5

0.0

■
■

■

■

■●
●●●

●

SRSC: Improving Restore Performance for DeduplicationBased Storage Systems

ZUO Chunxue, WANG Fang, TANG Xiaolan, ZHANG Yucheng, and FENG Dan

Research Paper

64 ZTE COMMUNICATIONS
June 2019 Vol. 17 No. 2

68



D:\EMAG\2019-05-66/VOL16\CONTETN.VFT——2PPS/P

grade the restore performance, SRSC reduces both types of
fragmentation.

Note that, with the increase of the cache size, the restore per⁃
formance becomes higher. This is because a large cache can
hold more containers for reducing the number of the containers
evicted by the cache replacement algorithm. Moreover, we ob⁃
serve that the restore performance increases more slowly when
the speed factor reaches a certain value. This is because the
cache size of 1 024 MB can restore a backup stream of WEBS.
That is to say, the cache size bigger than 1 024 MB is enough
to hold a whole dataset, and thus the speed factor becomes
slowly.
5.3 Simulated Buffer Size

In this paper, the simulated buffer size is important for the
fragmentation identification. This is because a large buffer (e.
g., 1 GB size) can hold more containers than a small one at the
expense of more memory overheads. However, a small buffer (e.
g., 8 MB) identifies more self⁃referenced chunks as fragmented
chunks than a large one. These fragmented chunks will be re⁃
written, which reduces the deduplication ratio. Thus, SRSC us⁃
es a 256 MB buffer, which is reasonable. We find from Fig. 6
that the restore performance keeps relatively stable when the
cache size reaches up to 256 MB. Even though the cache size
continues to increase, the restore performance improves sightly
about 1%-2%. In addition, as shown in Fig. 4, the deduplica⁃
tion ratio does not drop much with using a 256 MB buffer.
Based on the observation, a large cache size (more than 256
MB size) is not necessary. Thus, the 256 MB buffer is suffi⁃
cient for simulating a restore cache.

6 Related Work

6.1 Data Deduplication
Deduplication is an indispensable component for the back⁃

up systems to achieve the goal of saving storage space [15]-
[17]. Recent studies for deduplication technology mainly focus
on the problem of fast content⁃defined chunking and large fin⁃
gerprint indexing. To improve the speed of chunking, some so⁃
lutions [18]- [21] have been proposed to find an appropriate
cut point to achieve a low computation overhead and high
chunking throughput for accelerating the process of chunking.
To address the large fingerprint indexing, Extreme Binning
[22], Silo [23], and Sparse Index [2] exploit the locality of files,
the similarity of files, or combines the locality and similarity of
the files to improve the performance of fingerprint indexing.
Different from above studies, our SRSC algorithm mainly focus⁃
es on addressing the fragmentation problem for improving the
restore performance.
6.2 Restore

The fragmentation problem caused by in⁃line deduplication

has a negative impact on the restore performance. Rewriting al⁃
gorithms such as context ⁃ based rewriting (CBR), capping
(CAP), and HAR are proposed to address the fragmentation
problem in the deduplication⁃based backup systems.

CBR [23] uses a sliding window to buffer a small part of the
backup stream for identifying fragmented chunks. For each of
backup streams, CBR defines the rewrite utility, which is the
quotient of the size of chunks that are in the disk not in the
backup stream and the total size of the disk, to decide whether
it is fragmented. If the rewrite utility of the chunk exceeds the
rewrite utility threshold (e.g., 0.5), the chunk is the fragmenta⁃
tion. CAP [24] directly divides the backup stream into fixed ⁃
size segments (e.g., 20 MB). In each limited segment, CAP
counts the number of referenced containers (N) to recognize
fragmented chunks. Assume that N is higher than the thresh⁃
old value T, the chunks in the containers that hold the least ref⁃
erenced number are regarded as fragmented chunks. HAR [11]
is based on the observation that fragmented chunks in the cur⁃
rent backup remain fragmented in the subsequent backup.
Hence, HAR rewrites the fragmented chunks identified in the
last backup, records fragmentation information of the current
backup and rewrites them in the next backup.

Rewriting algorithms improve the restore performance with
the sacrifice of the deduplication ratio. Some studies take ad⁃
vantage of such characteristic that the read sequence during
the restore is identical to the write sequence during the backup
to leverage future knowledge for improving the restore perfor⁃
mance. The forward assembly area (FAA) [24] maintains an as⁃
sembly buffer to be filled out the chunks based on the informa⁃
tion of a recipe, and thus ensures that the container is read on⁃
ly once in a small space. Limited Forward Knowledge (LFK)
uses a backup recipe to improve the restore performance. Park
et al. [25] propose a new cache design to evict the container
that has the smallest future access by using a lookahead win⁃
dow and maintain a small log to hold evicted containers in or⁃
der to maximize the cache hit.

In addition to above algorithms, some other schemes are pro⁃
posed to improve the restore performance. iDeDup [26] ex⁃
ploits spatial locality to selectively eliminate sequential blocks
and reduce fragmentation for primary storage systems. RevDed⁃
up [27] puts forward a mixed inline and offline deduplication
scheme in order to keep the layout of the most up⁃todate back⁃
up as sequential as possible. Mao et al. [28] propose to main⁃
tain the chunks with a high reference count on solid state disks
(SSDs) of the cloud server to improve the restore performance.
CABdedup [29] improves the restore performance by identify⁃
ing and removing unmodified data transmissions from succes⁃
sive versions of the backup datasets between the client and the
cloud.

7 Conclusions
In this paper, we propose SRSC, a scheme that simulates a

SRSC: Improving Restore Performance for DeduplicationBased Storage Systems

ZUO Chunxue, WANG Fang, TANG Xiaolan, ZHANG Yucheng, and FENG Dan

65

Research Paper

ZTE COMMUNICATIONS
June 2019 Vol. 17 No. 2

69



D:\EMAG\2019-05-66/VOL16\CONTETN.VFT——2PPS/P

restore cache to identify whether self ⁃ referenced chunks are
fragmented and then selectively rewrite them. SRSC not only
eliminates internal fragmentation that HAR cannot address,
but also further improves the restore performance. Experimen⁃
tal results based on two datasets demonstrate that SRSC im⁃
prove the restore performance by 45% at an acceptable cost in
deduplication ratio.

ReferencesReferences
[1] ZHU B, LI K, PATTERSON H. Avoiding the Disk Bottleneck in the Data Do⁃

main Deduplication File System [C]//6th USENIX Conference on File and Stor⁃
age Technologies, San Jose, USA, 2008. DOI: 10.1126/science.1164390

[2] LILLIBRIDGE M, ESHGHI K, BHAGWAT D, et al. Sparse Indexing: Large
Scale, Inline Deduplication Using Sampling and Locality [C]//7th USENIX Con⁃
ference on File and Storage Technologies, San Francisco, USA, 2009. DOI:
10.1145/2187836.2187884

[3] DUBNICKI C, GRYZ L, HELDT L, et al. Hydrastor: A Scalable Secondary Stor⁃
age [C]//7th USENIX Conference on File and Storage Technologies, San Francis⁃
co, USA, 2009

[4] FU M, FENG D, HUA Y, et al. Design Tradeoffs for Data Deduplication Perfor⁃
mance in Backup Workloads [C]//13th USENIX Conference on File and Storage
Technologies, Santa Clara, USA, 2015: 331-344

[5] MEYER D T, BOLOSKY W J. A Study of Practical Deduplication [J]. ACM
Transactions on Storage, 2012, 7(4): 1-20. DOI: 10.1145/2078861.2078864

[6] IDC. The Digital Universe of Opportunities: Rich Data and the Increasing Value
of the Internet of Things [EB/OL]. (2014 ⁃ 04). http://www.emc.com/leadership/
digital⁃universe/2014iview/executive⁃summary.htm

[7] WALLACE G, DOUGLIS F, QIAN H, et al. Characteristics of Backup Work⁃
loads in Production Systems [C]//10th USENIX Conference on File and Storage
Technologies, San Jose, USA, 2012

[8] QUINLAN S, DORWARD S. Venti: A New Approach to Archival Storage [C]//
USENIX Symposium on Networked Systems Design and Implementation, Mon⁃
terey, USA, 2002: 89-102

[9] GUO F, EFSTATHOPOULOS P. Building a High ⁃ Performance Deduplication
System [C]//USENIX Annual Technical Conference, Portland, USA, 2011

[10] PRESTON W C. Backup and Recovery [M]. Sebastopol, USA: O’Reilly Media,
2006

[11] FU M, FENG D, HUA Y, et al. Accelerating Restore and Garbage Collection in
Deduplication ⁃ Based Backup Systems via Exploiting Historical Information
[C]//USENIX Annual Technical Conference, Philadelphia, USA, 2014

[12] FU M. Destor: An Experimental Platform for Chunk⁃Level Data Deduplication
[EB/OL]. (2014). https://github.com/fomy/destor

[13] TARASOV V, MUDRANKIT A, BUIK W, et al. Generating Realistic Datasets
for Deduplication Analysis [C]//USENIX Annual Technical Conference, Bos⁃
ton, USA, 2012

[14] BIGGAR H. Experiencing Data De⁃Duplication: Improving Efficiency and Re⁃
ducing Capacity Requirements[R]. The Enterprise Strategy Group, 2007

[15] ASARO T, BIGGAR H. Data De⁃Duplication and Disk⁃To⁃Disk Backup Sys⁃
tems: Technical and Business Considerations [R]. The Enterprise Strategy
Group, 2007

[16] XIA W, JIANG H, FENG D, et al. A Comprehensive Study of the Past, Present,
and Future of Data Deduplication [J]. Proceedings of the IEEE, 2016, 104(9):
1681-1710. DOI: 10.1109/JPROC.2016.2571298

[17] RABIN M O. Fingerprinting by Random Polynomials [R]. Center for Research
in Computing Tech., Aiken Computation Laboratory, Univ., 1981

[18] KRUUS E, UNGUREANU C, DUBNICKI C. Bimodal Content Defined Chunk⁃
ing for Backup Streams [C]//8th USENIX Conference on File and Storage Tech⁃
nologies, San Jose, USA, 2010

[19] AGARWAL B, AKELLA A, ANAND A, et al. Endre: An End⁃System Redun⁃
dancy Elimination Service for Enterprises [C]//7th USENIX Symposium on Net⁃
worked Systems Design and Implementation, San Jose, USA, 2010

[20] ZHANG Y C, JIANG H, FENG D, et al. AE: An Asymmetric Extremum Con⁃
tent Defined Chunking Algorithm for Fast and Bandwidth⁃Efficient Data Dedu⁃
plication [C]//IEEE Conference on Computer Communications (INFOCOM),
Hong Kong, China, 2015: 1337-1345. DOI: 10.1109/INFOCOM.2015.7218510

[21] BHAGWAT D, ESHGHI K, LONG D D E, et al. Extreme Binning: Scalable,
Parallel Deduplication for Chunk ⁃Based File Backup [C]//IEEE International

Symposium on Modeling, Analysis & Simulation of Computer and Telecommu⁃
nication Systems, London, UK, 2009: 1- 9. DOI: 10.1109/MASCOT.2009.
5366623

[22] XIA W, JIANG H, FENG, et al. Silo: A Similarity⁃Locality Based Near⁃Exact
Deduplication Scheme with Low RAM Overhead and High Throughput [C]//
USENIX Annual Technical Conference, Portland, USA, 2011

[23] KACZMARCZYK M, BARCZYNSKI M, KILIAN W, et al. Reducing Impact of
Data Fragmentation Caused by In⁃Line Deduplication [C]//ACM SYSTOR, Hai⁃
fa, Israel, 2012. DOI: 10.1145/2367589.2367600

[24] LILLIBRIDGE M, ESHGHI K, BHAGWAT D, Improving Restore Speed for
Backup Systems that Use Inline Chunk ⁃Based Deduplication [C]//11th USE⁃
NIX Conference on File and Storage Technologies, San Jose, USA, 2013. DOI:
10.1145/2385603.2385607

[25] PARK D, FAN Z Q, NAM Y J, et al. A Lookahead Read Cache: Improving
Read Performance for Deduplication Backup Storage [J]. Journal of Computer
Science and Technology, 2017, 32(1): 26-40. DOI: 10.1007/s11390⁃017⁃1680⁃8

[26] SRINIVASAN K, BISSON T, GOODSON G, et al. IDedup: Latency⁃Aware, In⁃
line Data Deduplication for Primary Storage [C]//10th USENIX Conference on
File and Storage Technologies, San Jose, USA, 2012: 299-312. DOI: 10.1111/
j.1360⁃0443.2007.01823.x

[27] NG C⁃H, LEE P P. Revdedup: A Reverse Deduplication Storage System Opti⁃
mized for Reads to Latest Backups [C]//ACM Asia ⁃Pacific Workshop on Sys⁃
tems, Singapore, Singapore, 2013. DOI: 10.1145/2500727.2500731

[28] MAO B, JIANG H, WU S Z, et al. SAR: SSD Assisted Restore Optimization for
Deduplication⁃Based Storage Systems in the Cloud [C]//IEEE Seventh Interna⁃
tional Conference on Networking, Architecture, and Storage, Xiamen, China,
2012: 328⁃337. DOI: 10.1109/NAS.2012.48

[29] TAN Y, JIANG H, FENG D, TIAN L, YAN Z. Cabdedupe: A Causality⁃Based
Deduplication Performance Booster for Cloud Backup Services [C]//IEEE Inter⁃
national Parallel & Distributed Processing Symposium, Anchorage, USA, 2011.
DOI: 10.1109/IPDPS.2011.76

Biographies
ZUO Chunxue (cxzuo@hust.edu.cn) is currently working toward the Ph.D. de⁃
gree in computer architecture at Huazhong University of Science and Technolo⁃
gy, China. Her research interest is data deduplication and restore performance.

WANG Fang received the B.E., M.E., and Ph.D. degrees in computer science
and technology from Huazhong University of Science and Technology (HUST),
China in 1994, 1997, and 2001, respectively. She is a professor of the School of
Computer Science and Technology, HUST. Her research interests include com⁃
puter architecture, massive storage systems, and parallel file systems. She has
more than 40 publications to her credit in journals and international conferences
including ACM TACO, SC, MSST, ICPP, ICA3PP, HPDC, and ICDCS.

TANG Xiaolan received the M.E. degree in physical electronics from Huazhong
University of Science and Technology, China. She is currently a project manager
with ZTE Corporation. Her research interests include core network, cloud stor⁃
age, and 5G technologies.

ZHANG Yucheng is currently a Ph.D. student majoring in computer architec⁃
ture at Huazhong University of Science and Technology, China. His research in⁃
terests include data deduplication, storage systems, etc. He has several papers
in refereed journals and conferences including IEEE⁃TC, INFOCOM, etc.

FENG Dan received the B.E., M.E., and Ph.D. degrees in computer science and
technology from Huazhong University of Science and Technology (HUST), China
in 1991, 1994, and 1997, respectively. She is a professor and the dean of the
School of Computer, HUST. Her research interests include computer architec⁃
ture, and massive storage systems. She has many publications in major journals
and international conferences, including IEEE⁃TC, IEEETPDS, FAST, USENIX
ATC, and MSST.

SRSC: Improving Restore Performance for DeduplicationBased Storage Systems

ZUO Chunxue, WANG Fang, TANG Xiaolan, ZHANG Yucheng, and FENG Dan

Research Paper

66 ZTE COMMUNICATIONS
June 2019 Vol. 17 No. 2

70


