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Abstract: The temporal distance between events conveys information essential for many
time series tasks such as speech recognition and rhythm detection. While traditional mod-
els such as hidden Markov models (HMMs) and discrete symbolic grammars tend to dis-
card such information, recurrent neural networks (RNNs) can in principle learn to make
use of it. As an advanced variant of RNNs, long short-term memory (LSTM) has an alterna- DOI: 10.12142/ZTECOM.201902006

tive (arguably better) mechanism for bridging long time lags. We propose a couple of dee
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neural network-based models to detect abnormal start-ups, unusual CPU and memory con-
sumptions of the application processes running on smart phones. Experiment results
showed that the proposed neural networks achieve remarkable performance at some reason- _ _
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able computational cost. The speed advantage of neural networks makes them even more

competitive for the applications requiring real-time response, offering the proposed models

the potential for practical systems.
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1 Introduction

eep learning algorithm emerged as a successful

machine learning technique a few years ago. With

the deep architectures, it became possible to learn

high - level (compact) representations, each of
which combines features at lower levels in an exponential and
hierarchical way [1]-[3]. A stack of representation layers,
learned from the data in order to optimize the given objective,
make deep neural networks gain advantages such as generaliza-
tion to unknown examples [4], discovering disentangling fac-
tors of variation and sharing learned representations among
multiple tasks [5]. The recent successes of the deep convolu-
tional neural networks (CNNs) are mainly based on such abili-
ty to learn hierarchical representation for spatial data [6]. For
modeling temporal data, the recent resurgence of recurrent
neural networks (RNN) has led to remarkable advances [6]-
[11]. Unlike the spatial data, learning both hierarchical and
temporal representation is one of the long-standing challenges
for RNNs in spite of the fact that hierarchical structures natu-
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rally exist in many temporal data [12]-[15].

Forecasting future values of the observed time series in fact
plays an important role in nearly all fields of science and engi-
neering, such as economics, finance, business intelligence,
and industrial applications. There has been extensive research
on using machine learning techniques for time-series forecast-
ing. Several machine learning algorithms were presented to
tackle time series forecasting problem, such as multilayer per-
ceptron, Bayesian neural networks, K-nearest neighbor regres-
sion, support vector regression, and Gaussian processes [16].
The effectiveness of local learning techniques is explored for
dealing with temporal data [17]. In this study, we tried to de-
tect abnormal start-ups, unusual CPU and memory consump-
tions of the application processes running on smart phones us-
ing RNNs, which falls in line with the recent efforts to analyze
time series data in order to extract meaningful statistics and
other characteristics of the data with the deep learning ap-
proach.

The paper is organized as follows. First, we give an overview
of the research goals, and then try to convey an intuition of the
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key ideas in Section 2. Section 3 presents RNN-based models
to detect unusual CPU, memory consumptions and abnormal
start - ups of the application process running on the smart
phones. Section 4 reports results of a number of experiments
on real - life devices and shows the effectiveness of the pro-
posed models. The conclusion and future work are summarized
in Section 5.

2 Background

Recurrent neural networks are a class of artificial neural net-
works that possess internal state or short-term memory due to
recurrent feed -back connections that make them suitable for
dealing with sequential tasks, such as speech recognition, pre-
diction and generation [18]-[20]. Traditional RNNs trained
with stochastic gradient-descent (SGD) have difficulty learning
long - term dependencies (i.e. spanning more than ten time -
steps lag) encoded in the input sequences due to vanishing gra-
dient [21]. This problem has been partly addressed by using a
specially designed neuron structure, or cell, in long short-term
memory (LSTM) networks [21], [22] that keeps constant back-
ward flow in the error signal; second-order optimization meth-
ods [23] preserve the gradients by approximating their curva-
ture; or using informed random initialization [24] which allows
for training the networks with momentum and stochastic gradi-
ent-descent only.

In conventional LSTM each gate receives connections from
the input units and the outputs of all cells, but there is no di-
rect connection from the Constant Error Carrousel (CEC) it is
supposed to control. All it can observe directly is the cell out-
put, which is close to zero as long as the output gate is closed.
The same problem occurs for multiple cells in a memory block:
when the output gate is closed none of the gates has access to
the CECs they control. The resulting lack of essential informa-
tion may harm network performance. Gers, Schraudolph, and
Schmidhuber [25] suggested adding weighted “peephole” con-
nections from the CEC to the gates of the same memory block.
The peephole connections allow all gates to inspect the current
cell state even when the output gate is closed. The information
can be essential for finding well - working network solutions.
During learning no error signals are propagated back from
gates via peephole connections to the CEC. Peephole connec-
tions are treated like regular connections to gates except for up-
dating timing.

Gated recurrent units (GRUs) are a gating mechanism in re-
current neural networks (a variant of LSTM), introduced by
Cho et al. [9]. Their performance on polyphonic music model-
ing and speech signal modeling was found to be similar to that
of long short-term memory. GRUs have been shown to exhibit
better performance on smaller datasets because they have few-
er parameters than LSTM, as they lack an output gate. There
are several variations on the full gated units, with gating done
using the previous hidden state and the bias in different combi-
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nations.

3 Deep Neural Network-Based Models

Two deep neural network-based models will be described in
this section. Both tasks mentioned above are time series fore-
casting, which uses a model to predict future values based on
previously observed values. RNNs and their variants are used
to perform those tasks since RNNs can recognize patterns that
are defined by temporal distance.

3.1 Unusual CPU and Memory Consumption Detection

The proposed unusual CPU and memory consumption detec-
tion model aims at detecting unusual CPU and memory con-
sumption of an application from its resource consumption se-
ries and runtime policy in a given time period. Model analyzes
the resource consumption data of the application in the speci-
fied time period, including a series of its CPU consumption, its
memory usage, as well as its runtime policy, and then outputs
the probabilities of the existence of unusual CPU consumption
and unusual memory consumption if there are any. Since it is a
classification problem with time series analysis, we proposed a
detection model based on LSTM network to model the time se-
ries, and followed by a 3-layer neural network to perform the
classification.

3.1.1 Problem Formalization

The proposed model consists of two parts: unusual CPU con-
sumption detection model and unusual memory consumption
detection model. For unusual CPU consumption detection mod-
el, given an input time series X=(X],X2, X, -~-,XT) , where
X, represents a sampling point including the current CPU con-
sumption and runtime policy of an application and T is the
length of the input series, the model analyzes the time series,
predicts the probability of the existence of unusual resource
consumption, and finally assigns the input into one of the two
classes: unusual resource consumption or non - unusual re-
source consumption. Unusual memory consumption detection
model has the same structure as the unusual CPU consumption
detection model, but the sampling points X, in its input series
X= (XI,XZ, X, ---»Xr) only includes the current memory con-
sumption data.

3.1.2 Normalization of Input Series

At each sampling point, the current CPU consumption is ex-
pressed as a percentage, ranging from 0 to 100, and the current
memory consumption ranges from 0 to 10° KB. These values
are all positive and too large for a neural network based model.
Therefore, we introduced a normalization step before the pro-
posed model processes the input data. We calculated the aver-
age and standard variance of the CPU consumption
(avg c,,uaSIdUc,m) and the memory consumption (avg,,,-stdv,,.)
of all the sampling points in the training set, and then normal-
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ized the resource consumption values in each sampling point
by subtracting the average from the original value, and then di-
viding the result by the standard variance:

X [epu] < (X Lepu] - avgcpu)/stde, (1)

X [mem] <« (X [mem] - avgmm)/stdvmm. (2)

3.1.3 Time Series Modelling

For precisely detecting the unusual resource consumption,
the amount of consumption is important, as well as the order
and trends of changes in the input series. As Fig. 1 shows, in
order to leverage such information, we apply a bi-directional
LSTM network to model the input series and generate a vector
representation for it, including a forward LSTM and a back-
ward LSTM.

Both LSTM networks contain a cell state as the representa-
tion of its input series, which is initialized as a zero vector be-
fore it starts to read the input series (i.e., C;=0). The forward
LSTM reads the input series X from its left to its right. When
it reads a sampling point X, at timestep ¢, it first computes its
forget gate to decide what information should be forgotten:

ft = O'(W/f[hk I’Xl] + b/')’ (3)

where h,_, is the output of the last timestep, and 0 () repre-
sents the sigmoid function. Then, it computes its input gate to
decide what information should be added into its current cell
state:

i, =o(Weh, . X]+b,). 4)

Then, it updates its cell state and calculates its output at the
current timestep:

C,=tanh(W[h,_.X]+b,). (5)
CI =-f;*ct—l +it*C~N (6)
h,=a (W, [h,_,.X ]+, tanh(C,). (7)

By continuously updating the cell state, after the LSTM
reads all the sampling points, the cell state vector and the out-
put vector at the last timestep contain the information of the
whole input series. Notice that an LSTM only reads the input
series from one direction, resulting that the earlier inputs usu-
ally have less impact on the final cell state and the output, we
adopted a backward LSTM to read the input series from its
right to its left, and concatenate the final output vector from
the forward LSTM and backward L.STM as the vector represen-
tation of the input series:
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A Figure 1. The bi-directional LSTM networks used in the model.

r=[n"hr] (8)

We applied a 3-layer neural network to compute the proba-
bility of the existence of unusual consumption. Preliminary ex-
periments show that 3 -layer neural network achieved a good
trade - off between training speed and performance. The net-
work takes the vector representation of the input series as in-
put, and outputs a 2-dimension vector 0= (01702) by a softmax
layer, where 0, represents the probability of the existence of
unusual consumption, and 0, represents the probability of the
normal case:

0= softmax(U'a’(W‘ r+b)+ d). )

We trained our model by minimizing the negative log-likeli-
hood of all the samples of the training set, and the model pa-
rameters are optimized by Adam [26], with hyper- parameters
recommended by the authors (i.e., learning rate = 0.001, B, =
0.9, B.=0.999).

3.2 Abnormal Start-Up Prediction

To save the limited resource of a smart phone, a possible
way is to stop application processes when they are abnormally
started. By predicting whether a start-up of an application pro-
cess is abnormal, memory and computational resources could
be allocated more efficiently, which further optimizes the per-
formance of the smart phone. The start-up prediction problem
can be viewed as a binary classification problem. We proposed
a hybrid system, consisting of a rule-based model and a deep
learning-based model.

In this section, we first formalize the prediction problem and
introduce a set of rules to label all start-ups with either NOR-
MAL or ABNORMAL tag by leveraging the full information
contained in the given data set. Then a hybrid system is con-
structed to solve the prediction problem. Finally, the deep
learning model is described in more details.

3.2.1 Problem Formalization
The abnormal start-up prediction models aim at predicting
the probability whether a start-up event or am_proc_start event
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is abnormal given its previous logs {Sl, ,Si}, where each log s
consists of an event name e¢€Vy, a timestamp ¢ and an argu-
ment list @ . The used event names and their arguments are
listed in Table 1. The vocabulary of the package and that of
the component are denoted by V, and V. The start type vo-
cabulary is denoted by Vg, in which ACTIVITY is a special
type indicating that this start-up is brought up by an user. To
sum it up, the log data set is defined by D ={(si,y,-)|si = {Sij}, 5=

(eu’tljaa”)} .

However, in the raw data set, namely D,,, = {Si} , the labels
are not given. Thus before defining a machine learning model,
the data should be labeled based on human knowledge. One
possible way is to label those data manually, which takes a lot
of human efforts as well as other resources. Alternatively, we
proposed to use a set of rules based on human knowledge or en-
gineer experience to label the data automatically, which is very
cost-effective.

The data can be labeled with six steps or six rules from R1
to R6 (they are omitted here for security reason). Following
those rules, the raw data are tagged with binary labels. The
rules can be divided into two parts according to whether a rule
can be used in the inference. The first part consists of rule
{R1, R2, R3}, which infers the label with previous logs without
any future information. The rule 4 labels the data with future
information, while these data are not available in the usage.
Thus the rule R4 as well as the rules with lower priority form
the second part. The first part can be tackled with trivial rules,
namely rule {R1, R2, R3}, while the second part should be de-
termined by a probabilistic machine learning model.

3.2.2 Hybrid Model

As shown in the previous section, the abnormal start-up pre-
diction is defined as a binary classification problem, aiming at
predicting whether a start-up of an application process is ab-
normal with a given set of logs. We proposed a hybrid model to
solve this problem.

The model consists of two parts, a rule - based part and a
deep learning-based part. The targeted start-up, as well as the
previous logs, is first fed into the rule-based model, which is
defined by the rule {R1, R2, R3}, and then generates one of the
three possible results, namely NORMAL, ABNORMAL, and UN-
DETERMINED. The first two are deterministic ones, and will
be directly outputted by the hybrid model. The last result indi-
cates that the rule-based model is incapable of predicting the
results, because it is determined by {R4, RS, R6}. Therefore,
such UNDETERMINED data will be further fed into the deep

learning model, and the deep learning model will output a

VTable 1. Events and arguments

Event Argument list

am_proc_slart Package; component; start type

am_proc_died package

probability, reflecting the likelihood of whether the start-up is
NORMAL.

3.2.3 Deep Learning Model

The deep learning model aims at providing the probability of
a NORMAL start - up which cannot be determined by rules
based on previous logs. In this situation, the deep learning
model is designed to predict whether the process about to start-
up will die in the future, namely in one second.

Unlike the rule-based model, the deep learning model can-
not map a log to a predicted class directly. Because the deep
learning model is capable of fitting data and logs without pre-
processing, it could be full of noise, which in turn may result
in a bad performance since noise could also be learned by the
deep learning model. To reduce such noise in the input of the
deep learning model, a feature extraction component is intro-
duced to compute a set of features from the original logs by le-
veraging human priority. The necessity of these features are
demonstrated by preliminary experiments. There are five fea-
tures extracted listed in Table 2.

There are three layers in the neural networks. The first is
the five parallel embedding layer, each of which transforms a
respective feature into its dense vector representation. Then
these vectors are combined with an addition operation, and
this layer is designed to combine these parallel features into a
joint feature. Finally, we use a logistic regression with this
joint feature as its input to estimate the probability of whether
the start-up is NORMAL. The training parameters are defined
as all the embedding layers and the parameters of logistic re-
gression. In this training process, the cross-entropy is used to
compute the loss function. To learn the parameter of the deep
learning model, Adam optimizer is used.

4 Experiments

We conducted experiments on both tasks to evaluate our
model. In the following section, we will first describe the datas-
ets we used and then show the performance of the proposed
model on both tasks.

4.1 Data Sets and Preprocessing
For unusual CPU and memory consumption detection task,
we prepared a dataset including 992 896 series of resource con-

VTable 2. Features extracted from original logs to be inputted into the
deep learning model

Features Comments
Event am_proc_slart | am_proc_died
Package which package to start
Component which component to start
Start type the startup mode
R5 whether RS is satisfied
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sumption in the training set, and 653 233 series in the testing
set. The length of these series ranges from 1 to 12, and the av-
erage length is about 9.

Unusual CPU consumption occurs in 2.0% of the series in
the training set, and unusual memory consumption occurs in
1.6% of the series in the training set. The proportion of the pos-
itive and negative samples are too large. In order to prevent
our model from tilting, we used a sample strategy in the train-
ing process to ensure that the model learn an equal number of
positive and negative samples. During testing, we normalized
the input series with the average and standard variance calcu-
lated from the training set.

4.2 Unusual CPU and Memory Consumption Detection
We trained our model on an Nvidia GPU card. The final hy-
per-parameter configuration is listed in Table 3.
We evaluated the performance of our model from three per-
spectives: the precision, the recall, and the F1-score:

Number of all detected unusual consumptions

PO = N mber of all cases the model reports as unusual consumption’ (10)
Number of all detected unusual consumptions
recall = —— ,  (11)
Number of unusual consumptions in the test set
F1 = score = 2*precision*recall 12)

precision +recall

The performance results of the unusual CPU and memory
consumption detection models are shown in Table 4.

Experimental results illustrate that our proposed model has
achieved a high performance on the testing set (over 90% on
all aspects), proving the effectiveness of applying LSTM net-
works into time series analysis problems in improving the per-
formance of smart phones.

4.3 Abnormal Start-up Prediction
We collected logs generated by smart phones, and labelled

VTable 3. Model hyper-parameter configuration

Hyper-parameter Value
Size of the LSTM output 2 x50

Size of the hidden layer in classifier 50
Learning rate 0.001

Batch size 32

VTable 4. Performance of unusual CPU and memory consumption
detection model

CPU Memory
Precision 0.963 0.972
Recall 0.983 0.998
Fl-score 0.973 0.985

the logs with rules defined in Section 3.2.1. Table 5 shows
how many logs are determined by each rule. Please note that
future information is involved in {R4, RS, R6}, and the logs la-
belled by these rules are related to the deep learning model.
The labelled data set is split into a training set and a test one
with a ratio of 4:1.

The deep learning model is implemented with Tensorflow.
We set the embedding dimensionality of all features to 20 and
the size of mini-batch to 64. The hyper-parameters for Adam
optimizer were set to their default values. The results of our ex-
periment is listed below in Table 6. It shows that our model
demonstrated extremely well with high performance on the ma-
chine labelled data set.

5 Conclusions

In this paper, we have described a deep neural network -
based model for detecting abnormal application start-ups, and
unusual CPU and memory consumptions of the application pro-
cesses running on Android systems. A variant of recurrent neu-
ral network architecture with multiple layers was implemented
and tested systematically. The experiment results showed that
the proposed neural networks performed reasonably well on
the two tasks, offering the potential of the proposed networks
for practical time serious analyzing and other similar tasks.
The number of parameters in neural network -based models is
usually much less than other competitors, such as conditional
random fields (CRFs). Besides, only simple four-arithmetic op-
erations are required to run the neural network -based models
after the models are well trained. So neural network - based
models are clearly run considerably faster and require much
less memory than that of other models. The speed advantage of
those neural networks makes them even more competitive for
the applications requiring real - time response, especially for
the applications deployed on the smart phones.

VTable 5. The statistics of the labelled logs

Rules Number of logs labelled by each rule
R1 95138
R2 269 348
R3 390203
R4 19557
R5 82912
R6 207 881
R4, RS, R6 310350
Total 1065039

VTable 6. The performance of our models

Data set Accuracy (%)
Deep learning model (for the part with future information involved) 98.93
Hybrid model 99.69
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