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Abstract: With the worldwide rapid development of 5G networks, haptic communications,
a key use case of the 5G, has attracted increasing attentions nowadays. Its human⁃in⁃the⁃
loop nature makes quality of experience (QoE) the leading performance indicator of the sys⁃
tem design. A vast number of high quality works were published on user⁃level, application⁃
level and network⁃level QoE⁃oriented designs in haptic communications. In this paper, we
present an overview of the recent research activities in this progressive research area. We
start from the QoE modeling of human haptic perceptions, followed by the application⁃level
QoE management mechanisms based on these QoE models. High fidelity haptic communi⁃
cations require an orchestra of QoE designs in the application level and the quality of ser⁃
vice (QoS) support in the network level. Hence, we also review the state⁃of⁃the⁃art QoS⁃re⁃
lated QoE management strategies in haptic communications, especially the QoS ⁃ related
QoE modeling which guides the resource allocation design of the communication network.
In addition to a thorough survey of the literature, we also present the open challenges in
this research area. We believe that our review and findings in this paper not only provide
a timely summary of prevailing research in this area, but also help to inspire new QoE⁃re⁃
lated research opportunities in haptic communications.
Keywords: QoE; human⁃in⁃the⁃loop; haptic communications; kinesthetic signals; tactile sig⁃
nals; haptic
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1 Introduction

he advent of mobile phones in the late 1980s
broke the geographic barrier of landline tele⁃
phones, so that we can have auditory conversation
and interaction from anywhere. The past decade

has witnessed the global blooming of mobile internet where au⁃
dio⁃visual communications shape the way humans interact with
technical systems or each other. Most recently, the world em⁃
braces the rise of the fifth generation (5G) of mobile networks,
an excellent enabler of haptic communications, which will pro⁃
mote the human⁃to⁃human and human⁃to⁃machine interaction
from the current audio⁃visual experience to the next⁃generation
audio⁃visual⁃haptic perception.
Fig. 1a illustrates the conventional audio⁃visual communica⁃

tions (also known as telepresence), where one user remotely in⁃
teracts with another user by exchanging audio/visual signals
through the communication network. Fig. 1b demonstrates a
typical haptic communication scenario for bilateral teleopera⁃
tion. The global loop of haptic interaction consists of a human
operator, a remote robot and the communication network. The
audio/visual signals are transmitted from the remote robot to
the operator, while haptic information exchanged bidirectional⁃
ly between the human operator and the remote robot. Different
from the conventional audio⁃visual communications, the“hap⁃
tic”modality enables humans to actually alter the physical
world remotely. It is obvious that in this human ⁃ in ⁃ the ⁃ loop
haptic communication system, the quality of experience (QoE)
of the human operator plays an important role in the operating/
interacting performance of the entire system.
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A comprehensive definition of QoE was presented in [1] for
the conventional audio⁃visual communication as“the degree of
delight or annoyance of the user of an application or service. It
results from the fulfillment of his or her expectations with re⁃
spect to the utility and/or enjoyment of the application or ser⁃
vice in the light of the user’s personality and current state.”In
the context of haptic communications, the QoE inherits all
genes from that of the conventional audio/visual communica⁃
tion, while extending the audio⁃visual perception to a third di⁃
mension, the haptic perception, referring to the sense of touch.

In this paper, we summarize the prevailing studies on QoE
strategies in haptic communications. We should point out that
this survey stands at the communication perspective, and re⁃
views the QoE⁃related techniques, algorithms and mechanisms
operating in the haptic communication chain. For the perspec⁃
tive of automotive control, a comprehensive review of network
designs for the Quality of Control (QoC) can be found in [2]. A
survey of various control systems stabilizing the global haptic
communications can be found in [3]. The mechanical design of
haptic interface devices is out of the scope of this paper.

The roadmap of this survey is shown in Fig. 2. We first intro⁃
duce the user⁃level QoE models derived from the psychophysi⁃
cal factors of human haptic sensations in Section 2. Based on
these models, various haptic applications are developed to en⁃
hance the performance of user perception, such as haptic⁃en⁃
abled virtual reality (VR) gaming and haptic⁃enabled cinema.
In Section 3, we stand at the application level, and illustrate
QoE ⁃ oriented designs in latest haptic applications including
haptic data reduction schemes, multiplexing schemes for the
multi⁃user transparency and the perceivable synchrony of multi
⁃modal data delivery. In Section 4, we present the network⁃lev⁃
el QoS⁃related QoE management, focusing on the QoS⁃related
QoE modeling which provide guidance to the resource alloca⁃

tion of haptic signals. Finally, Section 5 concludes the paper
with the future work and a summary.

2 User⁃Level QoE Management
The haptic perception of human beings generally refers to

the sense of touch, composed of kinesthetic sense and tactile
sense. In haptic communications, the human haptic perception
is tightly connected to physical stimuli. As a result, we will
first review the psychophysical impact factors of haptic interac⁃
tions, based on which the user ⁃ level QoE models are develop
in the literature.
2.1 Psychophysical Impact Factors

The haptic sensation is directly relevant to the human psy⁃
chophysical perception mechanism. The kinesthetic sense al⁃
lows for the perception of the position and orientation of our
body parts and joints and external forces and torques applied
to them. Hence, position, velocity, angular velocity, force, and
torque all fall into the category of kinesthetic information. On
the other hand, the tactile perception is sensed by different
types of mechanoreceptors in the skin and allows humans to
feel the surface texture (see [4] for details about the five psy⁃
chophysical dimensions of tactile perception of textures), fric⁃
tion, temperature, etc. [5].

Haptic interactions generally involve both kinesthetic and
tactile perceptions. For example, when a human operator con⁃
trols a robot to grasp a rubber ball, the force and torque (kines⁃
thetic) feedback presents the mass of the ball while the friction
(tactile) feedback tells the texture of the surface. Since the hap⁃
tic perception is an integration of multi⁃dimensional influence
factors, the sense of touch is considered as the most complex
sense to study [6]. A summary of the psychophysical factors

and corresponding human perception
mechanism and exemplar signal
generation approaches [7]-[14] are
listed in Table 1.
2.2 Human Haptic Perception

Models
The first human haptic perception

study was performed by Weber [15],
who examined the precision of the

a) Telepresence
◀Figure 1.
A comparison of conventional audio⁃
visual communications and audio⁃
visual⁃haptic communications.

b) Teleoperation

▲Figure 2. Roadmap of this survey.
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touch sense and developed the famous Weber’s law [16]. In
this perceptual law, the perceivable difference between two
stimuli, the Just Noticeable Difference (JND), is proportional
to the initial stimulus itself, which can be expressed as
△I = k∙I, (1)

where k is a constant; I and △I denote the initial stimulus
and the JND, respectively. The constant k , also called the We⁃
ber fraction, depends on the investigated stimulus, e.g. force,
stiffness or velocity, and is generally obtained via experiments
[16]. From Eq. (1), we can conclude that the human haptic per⁃
ception system has different sensitivity with respect to the mag⁃
nitude of the initial stimulus, e.g. the JND of large initial force
is larger than that of a small initial force. Larger JND results in
smaller sensitivity. In addition, the change of kinesthetic stimu⁃
lus is linearly proportional to its intensity. Later, Fechner de⁃
veloped a logarithm model to reveal the relationship between
the intensity of the stimulus and the change of kinesthetic per⁃
ception in the brain [17]. Weber’s linear model and Fechner’s
logarithmic model were proved essentially equivalent by Da⁃
haene [18]. Since the linear model is simpler than the logarith⁃
mic counterpart, Weber’s law is widely accepted as the QoE
model of kinesthetic perception, which is then widely adopted
in kinesthetic data reduction (see Section 3.1.1 for details).

The kinesthetic signal involves large amplitude/low frequen⁃
cy force feedback, and has been shown to lack realism due to

the absence of high⁃frequency transients (e.g., tapping on hard
surfaces) and small⁃scale surface details (e.g., palpation of tex⁃
tured surfaces). Fortunately, the tactile signal provides an en⁃
hanced fidelity compared with the kinesthetic signal. The state⁃
of⁃the⁃art tactile perception models concentrated on the model⁃
ing of vibrotactile texture signals [19]-[21]. Surprisingly, there
is a strong similarity between texture signals and speech sig⁃
nals. This characteristic is then utilized in tactile data reduc⁃
tion technology (see Section 3.1.2 for details). As the rapid ad⁃
vances of machine learning algorithms, data ⁃ driven modeling
and rendering approaches have been proposed for sophisticat⁃
ed tactile primitives, e.g., surface textures [22], viscoelasticity
reactions [23], and thermal properties [24].

3 Application⁃Level QoE Management
The key objective of haptic applications is to satisfy the user’s

demand on haptic perceptual experience. In this section, we
will summarize the key enablers of application⁃level QoE man⁃
agement, including QoE⁃oriented haptic data reduction, multi⁃
user transparency, and perceptual synchrony of multi ⁃ sensory
data, whose operational regions are illustrated in Fig. 3 by us⁃
ing an exemplar haptic teleoperation application with two tele⁃
operation sessions, respectively.
3.1 QoE⁃Oriented Haptic Data Reduction

It is known from Section 2.1 that two types of haptic signals
(i.e. kinesthetic and tactile signals) are sensed by different hu⁃
man perception mechanisms and therefore, possess different
properties. In addition, they have different tolerance on the
communication delay. In particular, kinesthetic interactions
are delay sensitive and will experience performance degrada⁃
tion in the presence of communication delay. The delay re⁃
quirement of tactile interactions is quite relaxed compared
with kinesthetic counterparts. On the other hand, the extreme
high packet rate of kinesthetic feedback introduces a heavy
burden to the network. The tactile feedback also contains multi⁃
modal signals. Both kinesthetic and tactile interactions prefer

Figure 3.▶
Application⁃level QoE

management in an
exemplar haptic

teleoperation application
with two teleoperation

sessions.

▼Table 1. Psychophysical factors, corresponding human perception
mechanism and exemplar signal generation approaches

Signal type
Human

perception
mechanism
Exemplar
signal

generation
solutions

Kinesthetic sense
Position, velocity, angular velocity,

force, and torque
Sensed by the muscles, joints, and

tendons of the body
Using high torque motors to
generate kinesthetic force

feedback, such as Geomagic Touch
(used to be called as Phantom
Omni [7]) and Omega 3 [8]

Tactile sense
Surface texture and friction

Sensed by different types of
mechanoreceptors in the skin

Multi⁃pin display attached to the
human skin [9]-[11], or using
vibrators to display vibrotactile
stimuli [12], such as TPad [13]

and TeslaTouch [14]

QoE: quality of experience

Multi⁃user (or multi⁃session)
transparency

QoE⁃oriented haptic
data reduction

Perceptual synchrony of
multi⁃sensory data
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a data reduction module to improve the efficiency of the sys⁃
tem. Therefore, in this section, we will review the data reduc⁃
tion solutions of kinesthetic and tactile signals, which are of
significant importance to haptic communications.
3.1.1 Kinesthetic Codecs

In order to guarantee system stability, a high sampling rate
of 1 kHz (or even higher) for the kinesthetic signals is required
in the implementation of teleoperation systems over the net⁃
work. The haptic sensor readings are typically packetized and
transmitted once available in order to keep the communication
delay as small as possible. As a result, 1 000 or more haptic
data packets need to be transmitted every second between the
master and the slave devices in addition to the audio and video
streams. This phenomenon introduces a severe burden to the
communication networks. In order to address this problem, per⁃
ceptual data reduction schemes [25]- [32] were developed
based on the Weber’s law.

This principle dynamically selects the to ⁃ be ⁃ transmitted
samples according to human perception thresholds (as shown
in Fig. 4 for a 1⁃DoF example). Samples with black dots repre⁃
sent the output of the perceptual deadband (PD) data reduction
scheme. The perception thresholds are represented by dead⁃
bands, illustrated as gray zones in Fig. 4. Grey samples falling
within the current deadband can be dropped, indicating that
the signal change is too small to be perceived by human be⁃
ings. This way, the PD data reduction strategy can reduce the
average packet rate by approximately 80%-90%.

This single degree⁃of⁃freedom (DoF) approach has been ex⁃
tended to 3⁃DoF [29], [30], and has been refined with velocity⁃
dependent force thresholds [32]. Furthermore, an error ⁃ resil⁃
ient PD data reduction scheme were proposed in [33] to reduce
the impact of packet losses.

In the presence of communication delays, the aforemen⁃
tioned haptic data reduction schemes have to be combined
with stability ⁃ ensuring control schemes, e.g. wave variable
(WV) scheme, time ⁃ domain passivity approach (TDPA), and
model mediated teleoperation (MMT). The haptic packet rate
reduction scheme has been combined with the WV control
scheme in [34] and [35]. The resulting approach operates on
haptic signals in the time domain (i.e., directly on the force
and velocity signals). This scheme, however, is suited only for
constant communication delay. Xu et al. [36] combined the

haptic packet rate reduction approach with the TDPA control
scheme to reduce the packet rate over the communication net⁃
work while preserving system stability in the presence of time⁃
varying and unknown delays. This scheme is named TDPA+
PD in the following. Compared to the existing WV⁃based hap⁃
tic data reduction approaches, this scheme robustly deals with
time ⁃ varying delays. Similarly, Xu et al. [37] incorporated a
perception ⁃ based model update scheme into a point cloud ⁃
based MMT control architecture. This scheme is called MMT+
PD in the following. The stability of the MMT architecture re⁃
quires a stable and precise parameter estimation method to
model the environment on the slave side. To address this issue,
online environment modeling approaches were proposed for
static objects [37], deformable objects [38], and movable ob⁃
jects [39]. Simple object models such as a rigid plane/sphere, a
deformable thin membrane, or a freely movable cube are em⁃
ployed to approximate the remote environments. In [40], a pas⁃
sivity ⁃based model update scheme was proposed to guarantee
system stability during model update. In summary, the goal of
our previous works in the area of MMT is to achieve stability
while improving the transparency for networked interaction
with simple or complex environments. MMT, however, can be⁃
come computationally expensive and also requires a large
amount of data to be transmitted between the slave and the
master. Furthermore, its applicability is reduced as the envi⁃
ronment dynamics increase.
3.1.2 Tactile Codecs

Towards the compression of vibrotactile signals, offline algo⁃
rithms were proposed in [41] and [42] with known prior knowl⁃
edge of the surface texture (e.g., pre⁃scanning procedure). The
first online compression of vibrotactile signals can be found in
[43] for bilateral teleoperation. The compression algorithm is
inspired by the similarities observed between texture signals
and speech signals. Thus, a well ⁃ developed speech coding
technique, the Algebraic Code⁃Excited Linear Prediction cod⁃
ing (ACE⁃LPC) [44], is adapted for developing a perceptually
transparent texture codec. The authors of [43] reported a com⁃
pression rate of 8:1 with a very low bitrate (4 kbits/s) on data
transmission. An extended version of this compression algo⁃
rithm was proposed in [45], in which the masking phenomenon
in the perception of wide⁃band vibrotactile signals was applied
to further improve the efficiency of the texture codec.
Table 2 summarizes the human perception models and cor⁃

responding data reduction solutions for both kinesthetic and
tactile signals, denoting as kinesthetic codecs and tactile co⁃
decs, respectively.
3.2 Multi⁃User Transparency

For the exemplar haptic teleoperation application shown in
Fig. 3, the ideal system transparency is defined in this context
as a perfect match between the master and slave positions and
force signals, or alternatively a match between the environment

▲Figure 4. Perceptual deadband principle. The perception thresholds
(boundaries of gray zones) are a function of the stimulus intensity I.
Samples that fall within the deadbands can be dropped (adapted from
[25]).
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impedance and the impedance displayed to human operators
[46]. When multiple users are remotely operating at the same
environment (e.g. the patient’s organ in Fig. 3), the mainte⁃
nance of multi⁃user/multi⁃session transparency becomes a cru⁃
cial but evitable problem. The state⁃of⁃the⁃art solutions basical⁃
ly focus on two aspects: plug⁃and⁃play (PnP) mechanisms to in⁃
crease the interchangeability of multiple haptic interfaces, and
the multi⁃user/multi⁃session synchronization strategy.
3.2.1 PnP Mechanisms

For the multi⁃user scenario of a given haptic application, it
is essential to enable flexible and dynamic connections among
multiple haptic interfaces and devices in order to support a rap⁃
id session setup and to ensure the interoperability of the em⁃
ployed components, e.g., detailed knowledge exchange of sys⁃
tem parameters, functional capabilities, and the requirements
of the deployed hardware (e.g. the description of DoF, work⁃
space, and maximum forces/torques).

In [47], an Extensible Markup Language (XML) ⁃ based de⁃
scription language was proposed for virtual environment (VE)⁃
based teleoperation systems. Based on this language, a web in⁃
terface was developed in [48] to facilitate the PnP of haptic de⁃
vices for a server⁃client⁃based teleoperation infrastructure. An⁃
other trend of the PnP mechanism [49] is to leverage the exist⁃
ing internet session and presence protocols, e.g. session initia⁃
tion protocol (SIP).
3.2.2 Multi⁃User/Multi⁃Session Synchronization Strategy

In order to maintain the performance of the multi⁃user sce⁃
nario in haptic communications, Schuwerk et al. [50]-[52] pro⁃
posed to integrate the data compression, communication and
control aiming at providing stable and perceptually transparent
visual⁃haptic collaboration between two or more users. A VE⁃
based teleoperation system [50] was developed based on the
client ⁃ server architecture where the server manages the state
consistency of the distributed VE, while the haptic feedback is

computed locally at each client. The
PD data reduction principle was ad⁃
opted to reduce the update rate of
network traffic from the server to the
client. However, this work neglected
the communication delay which may
lead to unavoidable inconsistencies
in the VE states. A delay compensa⁃
tion strategy was proposed in [52] to
solve this problem. Then, the work of
[51] was further extended in [52] for
deformable objects.
3.3 Perceivable Synchrony of

Multi⁃Sensory Data
From Fig. 3, we can observe that a

third modality, the haptic signal, is
transmitted from the remote environment to the human opera⁃
tor in haptic communication, in addition to the audio and visu⁃
al modalities in conventional multimedia communications. It is
well known that video data are bandwidth hungry, while the
haptic signal has relatively higher delay requirement than the
video and audio signals. Therefore, a perceivable synchrony of
multi⁃sensory data streams should be achieved in order to pro⁃
vide a satisfactory QoE performance.
3.3.1 QoE Factor of Perceivable Delay for Multi⁃Sensory

Data Synchronization
The first investigation on the effects of latency in human⁃ma⁃

chine interactions was conducted by Robert Miller in 1968
[53] through experiments of simple interaction events as key⁃
board typing and audio conversations. It was reported in [53]
that a time delay of 100 ms is perceived as instantaneous. Yu⁃
an et al. [54] studied the perceived delays for multi⁃sensory da⁃
ta delivery in mulsemedia services via extensive subjective
tests. It was reported that haptic media could be presented up
to 1 s behind video contents, air⁃flow media could be released
either 5 s before or 3 s behind the video contents, while achiev⁃
ing an unperceivable asynchrony.
3.3.2 Application⁃Level Multiplexing Scheme

The state⁃of⁃the⁃art application⁃level multiplexing schemes
for multi ⁃ sensory data delivery were presented in [55]- [58]
with a typical structure shown in Fig. 5. This kind of scheme is
able to multiplex different media modalities, with minimum
computation cost and response time. They can interact with dif⁃
ferent network layers (such as the application layer for han⁃
dling haptic data representation and the network layer for han⁃
dling QoS requirements), and can also interact with the haptic⁃
audio⁃video application to optimize network resources utiliza⁃
tion to fit specific application needs. A synchronization ap⁃
proach is implemented in the multiplexing scheme for timely
de⁃multiplexing of the communicated data in order to recover
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▼Table 2. Overview of the human perception models and corresponding data reduction solutions (repro⁃
duced from [3])

DoF: degree of freedom
ML: maximum likelihood

MMT: model mediated teleoperation
PD: perceptual deadband

TDPA: time⁃domain passivity approach
WV: wave variable

Haptic type

Kinesthetic

Tactile

Human perception model

Weber’s law (linear) [16];
Fechner’s law

(logarithmic) [17]

Data⁃driven ML models
Similar to speech signal

Data reduction solutions
Without considering
network conditions

Perceptual
deadband schemes:
Single DoF [2];
3⁃DoF [29], [30]

[41], [42]
[43], [45]

considering network conditions

Solutions

WV+ PD
TDPA+ PD
MMT+ PD

⁃
⁃

Known
const. delay

[34]
[36]
[37]

Unknown
const. delay

[35]
[36]
[37]

Time⁃varying
delay

⁃
[36]
⁃



53ZTE COMMUNICATIONS
March 2019 Vol. 17 No. 1

＇ ＇

individual media streams.

4 Network⁃Level QoE Management
In the literature review process of QoE⁃oriented designs in

haptic communications, we discovered that most research work
in this area was conducted at the application layer, leaving the
network ⁃ level less visited. Pioneer work in this research area
lies in the QoE⁃oriented resource allocation (RA) based on QoS⁃
related QoE models. In this section, we will focus on the devel⁃
opment of QoS⁃related QoE metric which provides a vital guid⁃
ance to RA mechanisms.

The RA approach developed in [59] takes full advantage of
the QoE⁃delay model developed in [60]. It is known that differ⁃
ent control and communication approaches lead to different
types of artifacts in haptic communications. Based on the char⁃
acteristics of control schemes, XU et al. [60] proposed a hy⁃
pothesis between the QoE and the end⁃to⁃end delay for differ⁃
ent control schemes as shown in Fig. 6a, then obtained a QoE⁃
delay model based on the subjective test results of a VE⁃based
spring⁃damper teleoperation system, as shown in Fig. 6b. This
model was later utilized in [59] to guide the network resource
allocation of multi ⁃ session haptic communications aiming at
achieving the maximal QoE performance.

Leveraging the bidirectional information exchange character⁃
istic of haptic signals, Aijaz [61] developed a symmetric down⁃
link and uplink RA strategy for haptic communications. Condo⁃
luci et al. [62] first assumed that the QoE performance is in⁃

versely proportional to the communi⁃
cation delay. Under this assumption,
they [62] performed a data ⁃ driven
study on the delay characteristic of
haptic information, and then devel⁃
oped a soft resource reservation strat⁃
egy aiming at minimize the communi⁃
cation delay of haptic data.

5 Conclusions and Future
Work

In this paper, we performed an extensive review on the re⁃
search activities of QoE⁃oriented designs in haptic communica⁃
tions, starting from the user⁃level QoE (psychophysical) impact
factors and models, the application⁃level QoE management (in⁃
cluding perceptual haptic data reduction, transparency mainte⁃
nance in multi⁃user scenario, and the perceptual synchrony of
multi⁃sensory data), to the network⁃level QoS⁃related QoE man⁃
agement.

Compared with the QoE⁃related technologies in convention⁃
al audio ⁃ visual communications, QoE in haptic communica⁃
tions is a relatively young research direction, with new open
challenges and exciting new research opportunities. Potential
future research directions may related but not limited to the fol⁃
lowing aspects:

(1) Exploring the relationship among QoE, quality ⁃ of ⁃ task
(QoT), quality⁃of⁃control (QoC), and QoS: The user experience
of haptic communications is influenced by the network condi⁃
tions (e.g. delay, jitter, and packet loss), the adopted control
scheme, and the complexity of assigned tasks (e.g. free space
versus contact and soft objects versus rigid surface). A thor⁃
ough consideration of all impact factors will absolutely en⁃
hance the accuracy of QoE performance models, and provide a
better guidance to various applications, e.g. the preferred con⁃
trol scheme of a given task under a given QoS setup.

(2) Low ⁃ latency video coding: It is well known that video
streams are bandwidth hungry. The user perceivable delay con⁃
straints violation problem will become even more severe when

high resolution video cameras are ad⁃
opted in haptic communications.
Therefore, low ⁃ latency video coding
should be included in the application⁃
level multiplexing scheme in order to
assure the perceptual synchrony of
multi⁃sensory data. The state⁃of⁃the⁃
art video coding standard, H.265/
HEVC, provides special support for
low⁃delay video applications. The de⁃
velopment of parallel processing
tools, the new“dependent slice seg⁃
ments”concept and the new“hypo⁃
thetical reference decoder process⁃

CELT: Constrained Energy Lapped Transform MUX: multiplexing DEMUX: de⁃multiplexing

MMT: model mediated teleoperation PD: perceptual deadband TDPA: time⁃domain passivity approach

▲Figure 5. An application⁃level multiplexing scheme for synchronized multi⁃sensory data delivery.

▲Figure 6. a) Hypothesis between quality of experience and delay for different control schemes; b) subjective
tests results of a virtual environment⁃based spring⁃damper teleoperation system (adopted from [60]).
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