
D:\EMAG\2018-12-64/VOL16\F4.VFT——15PPS/P

Optimization Framework for Minimizing Rule Update
Latency in SDN Switches
CHEN Yan 1,2, WEN Xitao3, LENG Xue 1, YANG Bo4, Li Erran Li 5, ZHENG Peng 6, and HU Chengchen6

(1. College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China;
2. Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60208, USA;
3. Google Inc., Mountain View, CA 94043, USA;
4. Microsoft, Shanghai 200000, China;
5. Uber Technologies Inc., San Francisco, CA 94103, USA;
6. School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

Benefited from the design of separating control plane and data plane, software defined networking (SDN) is widely concerned and
applied. Its quick response capability to network events with changes in network policies enables more dynamic management of
data center networks. Although the SDN controller architecture is increasingly optimized for swift policy updates, the data plane,
especially the prevailing ternary content⁃addressable memory (TCAM) based flow tables on physical SDN switches, remains unopti⁃
mized for fast rule updates, and is gradually becoming the primary bottleneck along the policy update pipeline. In this paper, we
present RuleTris, the first SDN update optimization framework that minimizes rule update latency for TCAM⁃based switches. Rule⁃
Tris employs the dependency graph (DAG) as the key abstraction to minimize the update latency. RuleTris efficiently obtains the
DAGs with novel dependency preserving algorithms that incrementally build rule dependency along with the compilation process.
Then, in the guidance of the DAG, RuleTris calculates the TCAM update schedules that minimize TCAM entry moves, which are
the main cause of TCAM update inefficiency. In evaluation, RuleTris achieves a median of <12 ms and 90⁃percentile of < 15ms
the end⁃to⁃end perrule update latency on our hardware prototype, outperforming the state⁃of⁃the⁃art composition compiler CoVisor
by ~ 20 times.

SDN; SDN⁃based cloud; network management; access control; unauthorized attack
Keywords

DOI: 10.19729/j.cnki.1673⁃5188.2018.04.004
http://kns.cnki.net/kcms/detail/34.1294.TN.20181121.1527.004.html, published online November 21, 2018

Special Topic

ZTE COMMUNICATIONSZTE COMMUNICATIONS 15December 2018 Vol. 16 No. 4

This work is supported by National Key R&D Program of China under
Grant No. 2017YFB0801703 and the Key Research and Development
Program of Zhejiang Province under Grant No. 2018C01088.

1 Introduction
s a new network architecture proposed ten years
ago, software defined networking (SDN) has been
well researched in both academia and industry.
The main reason that SDN is so concerned is its

ability to dynamically change the network states in response to
the global view. However, the response time to the network
events determines how many new network applications can be⁃
come practical. For example, the carrier network has a strict
50 ms requirement for failure recovery [1], entailing a 10 ms to
25 ms delay budget for implementing the rerouting rules. Traf⁃
fic engineering in data centers has a delay budget as short as
100 ms for the entire control loop [2], leaving less than 20 ms

delay budget for implementing flow rules. The advanced mal⁃
ware quarantine [3] in enterprise networks has an even stricter
delay budget since the threat detection is done at near line ⁃
rate and the quarantine decisions need to take effect as fast as
possible.

The processing delay of a user request can be roughly divid⁃
ed into four parts: latency inside the controller, inside switch⁃
es, and passing through the northbound and southbound com⁃
munication channels. The transmission delay in the communi⁃
cation channel can be ignored and the recent advances on
SDN controller architecture greatly shorten the processing la⁃
tency of the control plane, which leaves the rule installation la⁃
tency the primary bottleneck for the SDN control loop. Specifi⁃
cally, the recent measurement [4] exhibits a rule installation
delay ranging from 33 ms to 400 ms with a moderate to high
flow table utilization on three commercial OpenFlow switches
using ternary content addressable memory (TCAM), which is
the mainstream hardware to implement OpenFlow compatible

A

1

D:\EMAG\2018-12-64/VOL16\F4.VFT——15PPS/P

Special Topic

Optimization Framework for Minimizing Rule Update Latency in SDN Switches
CHEN Yan, WEN Xitao, LENG Xue, YANG Bo, Li Erran Li, ZHENG Peng, and HU Chengchen

ZTE COMMUNICATIONSZTE COMMUNICATIONS16 December 2018 Vol. 16 No. 4

flow tables1. In addition, the measurement also finds that the
switches can“periodically or randomly stop processing control
plane commands for up to 400 ms”, which further exacerbates
the rule installation latency.

To reduce the latency inside switches, some existing works
optimize the policy updates at different levels of the pipeline,
however, their improvements are limited. Dionysus [5], for ex⁃
ample, significantly reduces multi⁃switch policy update laten⁃
cy caused by suboptimal scheduling. CoVisor [6] and our previ⁃
ous short paper [7] minimize the number of rule updates sent
to switches through eliminating redundant updates. However,
since both approaches do not change the update mechanism on
physical switches, they all suffer from the aforementioned per⁃
rule update bottleneck. Existing TCAM update optimization
techniques, on the other hand, are either dependent on special⁃
ized multi ⁃ stage Static Random Access Memory (SRAM)/
TCAM structure [8]-[10] or only applicable to single⁃field lon⁃
gest prefix matching [11].

Based on our research, the latency bottleneck within the
TCAM⁃based SDN switches is introduced by policy update and
the TCAM update latency is the single dominant factor of the
rule update latency. Interestingly, although a single entry up⁃
date in TCAM usually has a constant sub ⁃millisecond delay,
we observe that an OpenFlow rule update sometimes triggers
hundreds to thousands of unnecessary entry moves in TCAM to
maintain rule dependency due to its unawareness of the mini⁃
mum dependency information.

In this paper, we present RuleTris, the first optimization
framework for modular composition achieving minimum rule
size and optimal rule update cost in TCAM. Our study reveals
that the minimum dependency graph (DAG) [10], [12], [13] is
the key information towards optimal rule updates. Compared
with rule priorities, the DAG is a more fundamental and pre⁃
cise representation of the rule dependency. The DAG not only
minimizes the number of rule updates sent to switches, but al⁃
so minimizes the cost of individual rule updates by cutting
90% to 99% of TCAM micro operations.

As depicted in Fig. 1, RuleTris is consisted of a front ⁃end

and a back⁃end. The front⁃end is a generic policy compiler that
produces DAGs while composing multiple flow tables. The
DAG produced by the front ⁃ end along with the flow table is
then passed to the back⁃end for update optimization. The Rule⁃
Tris back⁃end is a set of hardware⁃specific optimizers that map
the DAG into a sequence of TCAM entry moves. The optimiz⁃
ers minimize the flow table size and the number of entry moves
by exploiting the minimum dependency information.

To realize such an optimization framework, the primary chal⁃
lenge is to generate DAG efficiently. In fact, the existing DAG
extraction algorithm is prohibitively time consuming for our tar⁃
get latency [13]. To this end, we embrace the policy composi⁃
tion paradigm [14]. Our previous short paper proposes to pre⁃
serve rule dependency within Net Kleene Algebra with Tests
(NetKAT) policy compiler [15] to reduce the computation. Ex⁃
tending it for generic policy compilation is quite non ⁃ trivial
since a common flow table abstraction needs to be employed in
the dependency reservation algorithms. Furthermore, to mini⁃
mize the compilation overhead, the DAG needs to be compiled
incrementally as policies evolve over time. On the back ⁃ end,
an optimal while efficient scheduling algorithm is also needed
to map the incremental graph changes into minimum TCAM
entry moves.

RuleTris solves these challenging problems with the follow⁃
ing contributions.
1) We develop general dependency preserving algorithms that

preserve DAG along with flow table composition. The algo⁃
rithms achieve efficiency by exploiting the dependency im⁃
plications of composition operators. The algorithms are ge⁃
neric to SDN policy languages that employ policy composi⁃
tions (sequential, parallel and priority), and are guaranteed
to produce the minimum DAG.

2) We further speed up the compilation by incrementally com⁃
piling flow table changes. We employ incremental compila⁃
tion techniques and develop algorithms to handle incremen⁃
tal DAG compositions.

3) We design an efficient and generic front⁃end policy compil⁃
er that generates DAG along with flow table compositions.

DAG: dependency graph NAT: network address translation

1Our survey indicates that at least 32 out of all 48 series of OpenFlow supported switches from 13 major vendors use TCAM to implement OpenFlow compatible flow tables.

Figure 1.▶
Overview of RuleTris

optimization
framework.

NAT

Monitor

Firewall

L3 router

Front⁃end

DAG⁃enriched
composition
compiler

in controller

Flow
table

Dependency
graph

Back⁃end
(Proactive)

CacheFlow
manager

Update
scheduler

Redundancy
eliminator

in switch firmware

(Reactive)

Rule
update

Dependency
update

Physical
flow table

2

D:\EMAG\2018-12-64/VOL16\F4.VFT——15PPS/P

Special Topic

Optimization Framework for Minimizing Rule Update Latency in SDN Switches
CHEN Yan, WEN Xitao, LENG Xue, YANG Bo, Li Erran Li, ZHENG Peng, and HU Chengchen

The front ⁃end achieves efficiency by exploiting the depen⁃
dency implications of composition operators with the spe⁃
cialized data structures. Our front⁃end further speeds up the
compilation by incrementally compiling every rule update.
What’s more, the front⁃end compiler is generic to all SDN
policy languages that employ policy compositions, and is
guaranteed to produce the minimum DAG.

4) We develop efficient back ⁃ end scheduling algorithms to
map incremental DAG changes to rule updates in TCAM.
Our back ⁃ end components optimize the rule updates to
achieve provably minimum entry moves in TCAM, elimi⁃
nate redundant rules and provide support for efficient rule
caching hierarchy to scale up the size of flow tables.
RuleTris can be deployed in a variety of settings. It can be

embedded to a policy compiler, so that minimum updates can
be generated even for these incremental⁃agnostic SDN applica⁃
tions that populate non⁃minimum rule updates. It can also be
built as extensions of SDN controllers or controller hypervi⁃
sors, so that the policy composition of multiple SDN applica⁃
tions or controllers can be updated with minimum number of
operations.

We fully implement RuleTris front⁃end as a standalone com⁃
position compiler, and the back ⁃end in the firmware of data ⁃
plane programmable hardware ⁃ based ONetSwitch [16], [17].
Through hardware evaluation, we demonstrate that RuleTris
achieves a median of <12 ms and 90⁃percentile of <15 ms the
per⁃rule update latency, outperforming the state⁃of⁃the⁃art com⁃
position compiler CoVisor deployed on the same hardware
switch by ~ 20x. Our large scale emulation indicates even
greater speedup on larger TCAM size.

We give background and related work in Section 2, followed
by an overview in Section 3. We describe the front⁃end design
in Section 4, priority value assignment algorithm in Section 5
and back⁃end design in Section 6. We present our implementa⁃
tion in Section 7, evaluation in Section 8, provide discussions
on future topics in Section 9 and conclude in Section 10.

2 Background and Related Work

2.1 Background
1) Rule Updates on Physical Switches
TCAM is the mainstream hardware to implement flow tables

in hardware SDN switches. Although TCAM offers incompara⁃
ble lookup performance, current commercial TCAM solutions
are slow on rule update. Measurement studies show that a sin⁃
gle rule update can bring tens to hundreds of milliseconds of
data plane disruption on state ⁃ of ⁃ the ⁃ art switches [4], [18],
since typically conducting updates requires locking TCAM
from accepting data plane lookup requests.

Maintaining rule dependency is the main reason to blame
for the slow updates of TCAM. In fact, one rule update from
the controller can often result in massive TCAM entry moves.

This is because TCAM implements rule dependency using the
relative physical location [11], [19], i.e., a rule located at a
higher physical address has a higher matching priority. Upon
the arrival of a new rule, the switch firmware may have to move
many existing entries to keep the correct rule dependency. Fur⁃
thermore, since multiple TCAM entry updates cannot be con⁃
ducted in parallel, the massive TCAM moves eventually lead
to significant rule update latency. The approach RuleTris takes
to minimize rule update latency is to eliminate unnecessary
TCAM entry moves through maintaining a minimum DAG.

2) Rule Dependency
The predicate of a rule specifies the flow space the rule

should match. When two rules have an overlapping predicate,
the matching ambiguity needs to be resolved by specifying a
matching order. In the context of a flow table, we define the
rule dependency as the relation between a pair of rules if their
matching order changes the actual rule matching semantics.
Without loss of generality, we say Rule A is dependent on Rule
B if Rule B should be matched first.

Obviously, the dependency relations form a directed acyclic
graph, or DAG [10], [12]. The minimum DAG reveals the inher⁃
ent relationship among rules in a sense that it represents the
minimum set of the matching order constraints in order to keep
the correct classification semantics of flow space. In this pa⁃
per, we use the term DAG to refer specifically to the minimum
DAG of a flow table.

In fact, assigning rules with integer priority values is the
way OpenFlow employs to unambiguously represent rule de⁃
pendency. However, rule priority does not directly induce a set
of minimum dependency relations in a sense that two rules
with different priority values are not necessarily dependent.

3) Modular Composition
Modular composition was widely used in network program⁃

ming languages and hypervisors to provide transparent compo⁃
sition and collaboration of control plane applications [6], [14],
[15], [20]. In this paper, we compose applications with three
composition operators: parallel operator, sequential operator,
and priority operator. The parallel operator (+) creates the illu⁃
sion that multiple applications to independently process the
same traffic. The sequential operator (>) allows one application
to process the traffic before another. The priority operator ($)
gives one application the priority to act on a subset of the traf⁃
fic while yielding the control of the rest to other applications.

A composition compiler is typically used to compile the com⁃
position of applications into a semantically equivalent flow ta⁃
ble to install on the physical switches. Since applications can
act on different header fields, the result flow table usually con⁃
tains many rules that overlap with each other. All existing com⁃
position compilers use priorities to keep the dependency.
2.2 Related Work

1) Modular Composition
Several recent SDN policy languages and controllers (e.g.,

ZTE COMMUNICATIONSZTE COMMUNICATIONS 17December 2018 Vol. 16 No. 4

3

D:\EMAG\2018-12-64/VOL16\F4.VFT——15PPS/P

Special Topic

Frenetic [20], NetCore [21], NetKAT [15], Pyretic [14]) support
modular composition. Generally, they take high⁃ level policies
and generate flow tables that fulfill the semantics of the se⁃
quential and parallel composition.

A recent work proposes CoVisor [6], a controller hypervisor
that assigns priority value with a convenient algebra without
changing the priority of existing rules. Although CoVisor signif⁃
icantly reduces the number of rule updates, it does not opti⁃
mize the cost of individual rule updates. Further, CoVisor as⁃
sumes that the guest controllers are able to produce optimal up⁃
dates, which is still a challenging problem for the guest control⁃
lers. In contrast, RuleTris minimizes both the number of rule
updates and the cost of individual updates in TCAM, and it al⁃
so works with incremental⁃agnostic applications/controllers.

2) Modular Composition Optimization
Our previous short paper [7] first proposed to preserve rule

dependency during compilation. It sketched a solution frame⁃
work with a compiler ⁃ specific dependency preserving algo⁃
rithm and a heuristic⁃based priority assignment strategy. Rule⁃
Tris extends the idea with two fundamental improvements.
First, RuleTris proposes a compiler ⁃ generic dependency pre⁃
serving algorithm with incremental compilation capacity in the
front⁃end. Second, the back⁃end now uses rule dependency to
minimize TCAM operations instead of rule priorities, leading
to a significant reduction in actual TCAM update time.

3) Incremental TCAM Update
Another related and well ⁃ explored topic is incremental

TCAM updates. TCAM uses the physical location to encode
the priority of entries, with lower addresses (or higher address⁃
es, depending on specific implementation) receiving higher pri⁃
ority [19]. During TCAM incremental update, TCAM controller
must maintain a correct order of entries based on the limited
knowledge of the entry dependency, which may cause moves of
existing entries. Although many algorithms have been pro⁃
posed to infer entry dependency and reduce the update cost
[8], [9], [11], it remains computationally challenging to obtain
the minimum dependency graph for a flow table with wildcard
matching and multiple matching fields. In contrast, we achieve
the update cost minimization through leveraging the minimum
dependency information generated in policy composition.

4) Incremental Compilation
Most compilers, except Maple [12], do not support incremen⁃

tal policy compilation. In practice, they simply compile the
new policies and replace the entire flow table of each switch.
On the other hand, although Maple does not support policy
composition, it introduces tree⁃style abstraction to support in⁃
cremental flow table compilation. However, Maple compiler
still makes redundant priority updates due to the consecutively
assigned priority values. RuleTris can be integrated into Maple
to provide optimal TCAM updates.

CoVisor [6] assigns priorities that lead to an inefficient us⁃
age of priority value space with priority multiply, which in turn
limits the number of controllers it can support. Also, the large

number of priority levels assigned by CoVisor aggravates to
slow rule updates of TCAM. In contrast, RuleTris discards pri⁃
ority values and use the DAG to represent rule dependency.

3 Overview of RuleTris
In this section, we first motivate the necessity of the DAG

with an example in Section 3.1. We then depict RuleTris opti⁃
mization framework in Section 3.2, followed by the optimality
claims in Section 3.3.
3.1 Benefits of DAG

The key idea for RuleTris to generate minimum update is to
represent rule dependency using DAG instead of rule priority
until the controller finally compares old and new flow tables.
Intuitively, a complete and minimum DAG as the intermediate
representation provides the controller the maximum freedom to
reuse the priority values of the existing rules, so that the gener⁃
ated updates contain no redundant priority changes.

Generally, optimally updating TCAM tables in physical
switches requires a minimum DAG. In implementing a rule up⁃
date in the TCAM table, integer priority values provide com⁃
plete dependency information and thus can be used to generate
semantically correct update schedule. For example, in Fig. 2,
Rule 6 is to be added to the flow table. As shown in Fig. 2a, ac⁃
cording to the relative priorities, Rule 6 should be placed at a
slot with a higher physical address than Rule 2 through Rule 5
and a lower address than Rule 1. Since the only available slot
is at the very end, each of Rule 2 through Rule 5 has to be
moved one slot down in order to make room for Rule 6.

However, priority values do not guarantee optimality in rule
updates. In fact, the integer priority representation implies that
all rule pairs with different priority values have dependency,
which introduces a huge amount of non ⁃ existing dependency

Optimization Framework for Minimizing Rule Update Latency in SDN Switches
CHEN Yan, WEN Xitao, LENG Xue, YANG Bo, Li Erran Li, ZHENG Peng, and HU Chengchen

b) Update with DAG
▲ Figure 2. An example rule insert in a TCAM table. The original
TCAM table has five entries (Rules 1⁃5) and one empty slot in the end.
Rule 6 needs to be inserted between Rules 1 and 2. In a), the firmware
schedules the insertion plan according to the dependencies implied by
the priority values, therefore Rule 2 through Rule 5 are moved in order
to preserve their relative positions. In b), however, the DAG indicates
the newly inserted Rule 6 has no dependency with Rules 3 and 4, there⁃
fore only Rules 2 and 5 need to be moved.

a) Update with priority

ZTE COMMUNICATIONSZTE COMMUNICATIONS18 December 2018 Vol. 16 No. 4

4

D:\EMAG\2018-12-64/VOL16\F4.VFT——15PPS/P

constraints. During the rule update, these redundant dependen⁃
cies lead to unnecessary TCAM moves.

Instead, the DAG represents a minimum set of dependency
constraints and guarantees to produce the optimal update
schedule (we will show the optimality in Section 3.3). For ex⁃
ample, Fig. 2b shows the optimal update schedule guided by
the DAG. Since Rule 6 and Rule 2 has no overlapping flow
space with Rule 3 and Rule 4, the optimal update schedule on⁃
ly needs to make two extra entry moves instead of four.

The above example shows the benefit of the DAG in schedul⁃
ing rule updates. In fact, maintaining the DAG provides a se⁃
ries of other benefits. For example, the DAG makes it straight⁃
forward to generate a flow table without rules that are entirely
obscured by higher priority rules. By scanning the flow ⁃ table
in the topological order of the DAG, we can easily eliminate
the redundant rules that will never be matched or do not alter
the data plane behavior. Also, DAG enables an efficient way to
support arbitrarily large flow tables through rule caching [13].
3.2 End⁃to⁃End Optimization Framework

The above example shows the importance of the DAG, and
leads us to the design of RuleTris optimization framework as in
Fig. 1. RuleTris optimization framework is comprised of the
front⁃end composition compiler and the back⁃end optimizers.

1) Front⁃End
RuleTris allows administrators to compose multiple control⁃

ler applications or controllers through composition operators.
Such capacity is provided by a general ⁃ purpose composition
compiler that makes up the RuleTris front ⁃end. The RuleTris
composition compiler interfaces with applications or control⁃
lers, accepting their proactive or reactive modification of the
network policies. Similar with other composition compilers, the
RuleTris composition compiler is configured by the administra⁃
tor to compose the application policies into a single policy im⁃
plementation for physical network devices. Inspired by previ⁃
ous works, RuleTris allows policy composition with parallel op⁃
erator (+), sequential operator (>) and priority operator ($) with
similar semantics as previous modular composition compilers
[6], [7], [14], [20].

Except the compiled flow tables, RuleTris further generates
the DAGs to resolve the matching ambiguity, which replaces
the integer priority values used in other composition compilers.
Upon the arrival of proactive network policy installation, Rule⁃
Tris compiles the policies in batch, and supplies the back⁃end
with a fresh flow table with the entire DAG. Upon the arrival of
reactive policy updates, RuleTris compiles the policy updates
in an incremental manner, and supplies the back⁃end with in⁃
cremental rule inserts, deletes and modifications together with
the updates to the DAG.

RuleTris does not require applications/guest controllers to
be dependency ⁃ aware. If an application populates prioritized
flow tables, RuleTris can extract the DAGs from the prioritized
flow tables.

2) Back⁃End
The RuleTris back⁃end optimizers exploit the benefits of the

DAG and optimize the actual rule installation/update process
in the physical switches. For now, RuleTris provides three back⁃
end optimizers. The update scheduler conducts hardware⁃spe⁃
cific optimization with DAG, and generates minimum⁃size up⁃
date schedule to implement rule updates in TCAM tables. The
redundancy eliminator removes all the semantically redundant
rules. The CacheFlow manager manages multiple ⁃ level rule
cache structure and conducts rule eviction guided by the DAG
[13]. The RuleTris back ⁃ end directly generates sequence of
TCAM entry moves.

3) Front⁃End/Back⁃End Communication
In this paper, we assume the RuleTris back⁃end is placed in

the firmware of physical switches. The front ⁃end to back⁃end
communication is carried through the control channel, e.g., the
OpenFlow protocol. RuleTris extends OpenFlow protocol with
a DAG extension using the customizable experimenter mes⁃
sage, so as to allow the protocol messages to carry DAGs or
DAG updates together with flow modification/delete messages.
Alternatively, RuleTris back⁃end can also be co⁃ located with
the front⁃end. In this way, no special front⁃to⁃back channel for
DAG is necessary but the control channel needs to be extend⁃
ed to expose the TCAM internal layout.
3.3 Optimality Guarantees

RuleTris provides several optimality guarantees with the
help of DAG and proper back ⁃ end optimizers. We show how
the optimality is achieved in Section 6.

Claim 1: With DAG, the back⁃end can generate a flow table
without obscured rules and floating rules.

Through a simple topological scanning, RuleTris can elimi⁃
nate all the redundant rules generated during modular composi⁃
tion, including the rules obscured by higher priority rules (or
obscured rules) and the rule having the same actions with low⁃
er priority but more general rules (or floating rules).

Claim 2: With DAG, the back ⁃ end can generate the mini⁃
mum number of entry moves that correctly implements a specif⁃
ic rule update in a TCAM.

This is because the dependency constraint is the only con⁃
straint to observe during rule updates in TCAM, and the DAG
precisely provides the minimum set of dependency constraints
regarding a rule update. The proof is provided in the Appendix.

4 Front⁃End Compiler
The RuleTris front⁃end is an incremental composition com⁃

piler that compiles forwarding policy updates from SDN appli⁃
cations into rule updates and DAG updates for data⁃plane flow
tables. State⁃of⁃ the⁃art incremental compilation technique al⁃
lows us to compile rule updates with integer priority in a few
milliseconds [6]. However, the brute⁃force way to extract DAG
from prioritized flow tables has the high time complexity [7],

Special Topic

Optimization Framework for Minimizing Rule Update Latency in SDN Switches
CHEN Yan, WEN Xitao, LENG Xue, YANG Bo, Li Erran Li, ZHENG Peng, and HU Chengchen

ZTE COMMUNICATIONSZTE COMMUNICATIONS 19December 2018 Vol. 16 No. 4

5

D:\EMAG\2018-12-64/VOL16\F4.VFT——15PPS/P

[13]. In practice, it can consume minutes in processing a flow
table with a few thousand rules.

Alternatively, we choose to maintain the DAG along with the
compilation process. The idea was first introduced in our previ⁃
ous short paper [7]. In this section, we extend the NetKAT⁃spe⁃
cific DAG preservation algorithm into an incremental and com⁃
piler ⁃ generic front ⁃ end by exploiting efficient data structures
and algorithms. We first give some background on the modular
composition (Section 4.1). Then, we show how we build the
DAG along with the composition with linear time complexity
(Section 4.2). We present the incremental techniques to further
accelerate the compilation of DAG updates (Section 4.3).
4.1 Modular Composition Basics

The ultimate goal of a composition compiler is to combine
multiple member policies (or flow tables) into a single result
policy. To do so, the existing compilers use the composition
configuration (e.g., (A >B) +C) to guide the recursive composi⁃
tion compilation. Then, for each composition operator, the com⁃
piler combines the two member flow tables (T1 and T2) intothe result flow table (T3) according to the semantic of the oper⁃
ator. For parallel and sequential operator, the compiler explicit⁃
ly iterates over rule pair (r1, i,r2, j) ∈ T1 × T2 in a descending prio⁃
rity order, and calculates the result rule with an operator⁃spe⁃
cific function para(r1,r2)/seq(r1,r2):R ×R→R , where R is the
universe set of rules. For parallel operator, the function
para(r1, i,r2, j) produces a result rule with the match by taking
the intersection of r1, i.mat ch and r2, j.mat ch and with the a⁃
ctions by taking the union of r1, i.actions and r2, j.actions . For s⁃equential operator, the function seq(r1, i,r2, j) produces a result
rule with the match by first applying r1, i.actions onto
r1, i.match and then intersecting with r2, j.match , and with the a⁃
ctions by taking the union of r1, i.actions and r2, j.actions . Forpriority operator, the compiler simply stacks the rules in T1 on
top of T2 by configuring rules in T1 with higher priorities than
rules in T2 . The reader can refer to previous policy compilers
for detailed description of the composition process2 [15], [21].
4.2 Preserving DAG During Composition

To construct the DAG during the process of a composition
operator, the RuleTris compiler needs algorithms to infer the
precise dependency relations in the result flow table from the
operand DAGs. In addition, we also need efficient data struc⁃
tures to keep the DAGs and the DAG updates.
4.2.1 Parallel Composition

The parallel composition of T1 and T2 is calculated by tak⁃
ing cross⁃product of the operands. Similarly, the DAG of the re⁃
sult flow table is also calculated by taking the equivalent

graph cross ⁃ product. Denoting two operand graphs as G1 and
G2, the graph cross⁃product is defined intuitively as
1) The vertex set of G1× G2 is the set cross⁃product V(G1)× V(G2);
2) There is a directed edge r1, i,r2,m → r1, j,r2,n in G1×G2 if

and only if either i) r1, i = r1, j and r2,m → r2,n ; or ii)
r2,m = r2,n and r1, i → r1, j .
The correctness proof is intuitive. Consider rule r1 depends

on rule r2 , i.e., r1 overlaps with r2 and semantically r2 has a
higher priority than r1 . When we intersect both of them with a
third rule r , the two result rules (r1 ⋂ r) and (r2 ⋂ r) still
overlap with each other, unless either of them has an empty
match.

There are two cases that need special treatment. First, when
the parallel composition of any rule pair results in an empty
match, the corresponding vertex of this rule should not be add⁃
ed to the result DAG. For example, in Fig. 3, we have two flow
tables T1 and T2 taking the parallel composition. Specifically,
T1 contains four rules (A, B, C, D) and T2 contains two rules (M,
N). In the figure, the match space of the rules is visualized and
the actions are omitted. To obtain the result DAG, the compiler
first takes a cross ⁃ product of the operand DAGs. Then, the
compiler crosses out the vertices of all the rules with empty
match (DN and CN), and removes their adjacent edges from
the DAG as well. Finally, the minimum DAG is obtained as
shown on the right.

The second case is when two result vertices are adjacent but
the corresponding rules have the same match. In this case, the
higher priority rule entirely obscures the other one, so the lat⁃
ter becomes redundant. Although the redundant rules should
be maintained within the compiler for the correctness of the fu⁃
ture incremental rule removals, it is favorable to eliminate
such redundancy in the current output.

We design a two⁃ level nested graph structure to efficiently
handle such redundancy. On the higher level, the compiler us⁃
es the rule match as the key to index the vertices, which we

Special Topic

Optimization Framework for Minimizing Rule Update Latency in SDN Switches
CHEN Yan, WEN Xitao, LENG Xue, YANG Bo, Li Erran Li, ZHENG Peng, and HU Chengchen

b) Rule dependency inference
2We assume all flow tables have a default match⁃all rule with a pseudo“pass”
action, which passes the packet to the next flow table composed with the priority
operator or drop the packet if there is not the one.

▲Figure 3. Example 1 of dependency construction in parallel
composition: cross⁃product and empty rule removal.

a) Flow space of rules

Field 2 AM
DMCM

AN BN

BM
T3T2

Field 2
M

N

N
M

Field 2 A
C D

B
Field 1T1

B C
D

A

A
C

D
BT1:

T2: NM
BN

AN AM
BM CM

DMDN
CN

T3: BN DM
AN BM CM

AM
+ =

=+

ZTE COMMUNICATIONSZTE COMMUNICATIONS20 December 2018 Vol. 16 No. 4

Field 1 Field 1

6

D:\EMAG\2018-12-64/VOL16\F4.VFT——15PPS/P

call key vertices. Therefore, multiple rules with the same
match will fall into the same key vertex. If more than one rule
is inserted into one key vertex, the dependency relations be⁃
tween those rules are recorded as a nested sub⁃graph. Within
any key vertex, there must exist one single highest priority
rule, because otherwise the composed flow table is ambiguous.
When the compiler populates the flow table from the DAG, the
highest priority rule is used to represent the key vertex, as it
obscures all other rules in this key vertex.

Fig. 4 shows an example of the parallel composition of T1and T2 . After the cross⁃product of the operand DAGs, we see
several sets of vertices have the same match (e.g., BN, DN and
DM). The compiler indexes these equivalent vertex sets with
the nested graph data structure, which populates the flow table
without redundant matches.
4.2.2 Sequential Composition

In Section 4.1, the existing compilers calculate sequential
composition of T1 and T2 in a two⁃level loop. The inner loop is
similar to parallel composition. Each rule r1, i in T1 produces
a partial flow table r1, i > T2 . For the outer loop, different pa⁃
rtial flow tables are stacked by the priorities in T1 . This is be⁃
cause if r1, i.priority > r1, j.priority , the partial flow table pr⁃
oduced by r1, i will always be matched prior to that by r1, j .

The DAG of the sequential composition can be also obtained
through a similar two⁃level loop. For each rule r1, i in T1 , the
DAG of the partial flow table r1, i > T2 is calculated by taking a
cross ⁃ product, similar to the parallel composition. Then, the
partial DAGs of the partial flow tables are stitched together ac⁃
cording to the dependencies in T1 , i.e., if r1, i → r1, j in T1 , the
partial DAG induced by r1, i is also dependent on the partial
DAG by r1, j .

Fig. 5 shows an example of the sequential composition be⁃
tween T1 and T2 . As shown in the middle of Figure 5b, the
partial DAGs in the three large circles are derived from the de⁃

pendencies of T2, e.g., X → W derives AX → AW, BX → BW
and CX → CW. Meanwhile, the dependencies between partial
DAGs are derived from the dependencies of T1 , e.g., C → A
derives (CW, CX, CY, CZ) → (AW, AX, AY, AZ). Finally, after
eliminating empty and redundant rules, we get the optimal flow
table and its DAG of T3 shown on the right of Fig. 5b.

In some cases, the dependency relations between partial
DAGs (or“mega”dependencies) need further refinement to
produce a minimum set of the dependency relations. More pre⁃
cisely, we can create a mega edge from rule set A to rule set B,
if for every rule pair <a, b> (a ∈ A, b ∈ B) we have either a → b
or a is independent with b. We defer the detailed discussion to
Section 4.2.3.
4.2.3 Priority Composition

The priority composition of T1 and T2 is derived by stack⁃
ing the flow tables by priority. Therefore, the priority composi⁃
tion of DAGs can be calculated by stitching the operand DAGs
with a mega dependency relation from T2 to T1 .The challenge comes from resolving the mega dependency
between T1 and T2 into dependencies between individual
rules. Theoretically, the dependency relation between T1 and
T2 does not necessarily derive the dependency between an arbi⁃
trary rule in T1 and an arbitrary rule in T2 , since they may not
overlap with each other. In order to obtain a minimum set of
the dependency relations, the compiler needs to efficiently ver⁃
ify any possible rule dependency.

RuleTris compiler resolves the mega dependency relations

Special Topic

Optimization Framework for Minimizing Rule Update Latency in SDN Switches
CHEN Yan, WEN Xitao, LENG Xue, YANG Bo, Li Erran Li, ZHENG Peng, and HU Chengchen

b) Rule dependency inference.
▲Figure 4. Example 2 of dependency construction in parallel
composition: equivalent rule reduction.

a) Flow space of rules

▲Figure 5. Example of sequential composition.

b) Rule dependency inference

a) Rule tables

Field 2 A
C D

B
T1

B C
D
A

T2

M
N

N
M BM

Field 1T3

AM
CN/CM/AN DN/DM/BN=+

A
C

D
BT1:

T2: NM
+ = BN

AN AM
BM CM

DMDN
CN

T3: DM

AN BMCN

AM

BN
DN

CM

=
A

C
>

B
T1:

T2:
W

Z
X Y

T1:

T2:

T3:

T3:
AW

AZ
AYAX

BW

BZ
BYBX

CW

CZ
CYCX

AW BW
AY BX

CZ

ZTE COMMUNICATIONSZTE COMMUNICATIONS 21December 2018 Vol. 16 No. 4

Field 2 Field 2

Field 1Field 1

7

D:\EMAG\2018-12-64/VOL16\F4.VFT——15PPS/P

with the following recursive procedure.
First, the mega dependency from T2 to T1 is resolved to a

set of tentative dependency relations from every sink vertex of
T2 to every source vertex of T1 , where source vertices (sink
vertices) are defined as the vertices that has no incoming (out⁃
going) edges. For example, in Fig. 6, the mega dependency re⁃
lation is resolved to tentative edges A → Z and B → Z.

Then, for each tentative dependency relation (or edge) r2 →
r1, the compiler explicitly checks whether the matches of the
two rules r1 and r2 overlap. If so, edge r2 → r1 is put into the re⁃
sult DAG. Otherwise, the compiler recursively generates tenta⁃
tive edges as follows.
•For every predecessor of r2, say r3, if edge r3→ r1 does not ex⁃

ist in the DAG already, the compiler adds it to the set of ten⁃
tative edges, as r3 has a more general match than r2 and may
overlap with r1. For example, in Fig. 6, assuming A and Z do
not overlap, the compiler will add C → Z and D → Z as ten⁃
tative edges (red dashed edges).

•For every successor of r1, say r4, if edge r2→ r4 does not exist
already, and meanwhile r1.match is not strictly more general
than r4.match (meaning r1.match − r4.match, ∅ in flow
space), the compiler also adds the edge r2 → r4 to the set of
tentative edges. This is because r2 may overlap with r4 on the
excessive flow space r1.match− r4.match. For example, in
Fig. 6, the compiler will also add A → X and A → Y as ten⁃
tative edges (blue dashed edges).
In this way, the compiler continues resolving tentative edges

until the set of tentative edges is empty.
Finally, Fig. 7 shows an example of the priority composition

between T1 and T2 . The compiler first adds a mega edge be⁃
tween the DAGs of T1 and T2 . Then, the mega edge is re⁃
solved to a tentative edge from W to C. Because W does not
overlap C, this tentative edge sprouts to tentative edges X → C
and Y → C. Note, W → A is not added as a tentative edge be⁃
cause A.match is strictly smaller than B.match. Finally, edge
X → C is added to the result DAG.
4.3 Incremental Compilation

Ideally, when processing a rule update, the composition com⁃
piler should only recompile the rules and the partial DAG that
change during the update. We observe that most part of a DAG
will not change during a rule update, which indicates the op⁃
portunity of dramatic performance improvement over recompi⁃
lation from scratch.

RuleTris’s incremental compilation technique is built on
top of existing incremental composition technique. Previous
study [6] proposes an efficient indexing structure for flow ta⁃
bles, which allows the compiler to efficiently find the rules that
overlap with a target rule. RuleTris employs this technique to
avoid redundant computation.

The key technique RuleTris introduces is the mechanism to
compile DAG update. Upon the arrival of a rule update with de⁃
pendency change in the member policy, the RuleTris compiler
calculates the delta DAG as follows.

1) Rule insert
Consider a composition of T1 and T2 . When the compiler

receives a rule insert r1 with the dependency change in T1 , thecompiler first computes all the additional rules to be added in
result similar to CoVisor. For parallel and sequential composi⁃
tion, it does so by looking up T2 ’s index for the rules that
overlap with r1, and apply composition function para(r1,r2)/seq(r1,
r2). For priority composition, r1 is simply inserted into the result
flow table. Then, the compiler calculates the changes in the
DAG of T3 . It adds vertices representing the rules inserted in⁃
to the DAG. Further, the compiler handles dependency chang⁃
es for the composition operators as follows:
•For parallel composition, the compiler takes a cross⁃product

of the additional partial DAG in T1 and the full DAG of T2 ,and the result partial DAG is added to T3.graph .
•For sequential composition, if r1 belongs to the left operand

(i.e., T1 > T2), the compiler composes r1 with T2 and adds
the result partial graph to T3.graph. The compiler also adds
the edges associated with r1 to T3.graph as mega dependen⁃
cy relations, and resolves them with the same procedure in
Section 4.2.2. If r1 belongs to the right operand (i.e.,
T2 > T1), the compiler composes every rule in T2 with r1,
and adds the result partial graph to T3.graph . The compiler
also resolves the mega dependencies in T3.graph , since r1
may change the actual edges the mega edges are resolved to.

Special Topic

Optimization Framework for Minimizing Rule Update Latency in SDN Switches
CHEN Yan, WEN Xitao, LENG Xue, YANG Bo, Li Erran Li, ZHENG Peng, and HU Chengchen

a) Rule tables

▲Figure 6. Resolving mega dependency relations. ▲Figure 7. Example of priority composition.

b) Rule dependency inference

A
C D

B

T1:

T2:

X

E

Y
Z

T1:

T2:

X Y
Z

A
C D

B
E

A
C D

B
E

X Y
Z

T1:

T2:

T1:

T2:

=
A

C
B

W

Z
X Y

T3:
W

Z
X Y

C A
A

W
X Y

Z

ZTE COMMUNICATIONSZTE COMMUNICATIONS22 December 2018 Vol. 16 No. 4

T1:

T2:

8

D:\EMAG\2018-12-64/VOL16\F4.VFT——15PPS/P

•For priority composition, the compiler first adds the edges
associated with r1 to T3.graph , and then resolves the mega
dependency relation created by the priority operator.
RuleTris further accelerates the above graph compositions

with the rule indexing structure. When taking a partial cross⁃
product or sequential composition, the compiler only processes
the partial DAG of T2 whose rules overlap with r1, because
composing r1 with any rules not overlapping it will result in an
empty rule.

2) Rule delete
When a rule is deleted in a member flow table, all the rules

that are composed from the deleted rule are to delete in the re⁃
sult flow table. If a deleted rule has both predecessors and suc⁃
cessors in the DAG, the compiler will add tentative edges from
every rules in the predecessor set to every rules in the succes⁃
sor set. Then, the compiler verifies the tentative edges in the
same way as in Section 4.2.3.

3) Rule modification
RuleTris handles rule modification equivalently as one de⁃

lete plus one insert.

5 Assigning Priority Values
Another challenging step in RuleTris minimum update

framework is to assign discrete priority values to the rules in
the new flow table. The priority value assignment must observe
both the dependency constraint and the integer priority con⁃
straint. The objective of this step is to reuse as many rule prior⁃
ities as possible, so as to minimize the number of priority
changes on existing rules. We formulate the optimization prob⁃
lem as follows.
5.1 Problem Formulation

The prioritizer takes as input a directed dependency graph
with its vertices representing rules. There are two types of verti⁃
ces. Some vertices are annotated as retained and each of them
is associated with a priority value, which is an integer within a
given range. The other vertices are annotated as new and they
are not associated with any value. The output of prioritizer is a
mapping from the vertex set to the set of priority values that
preserves the dependency constraint, i.e., if there is an edge
from Vertex A to Vertex B, their priority values must satisfy pri
(A) < pri(B).

When we only consider one batch policy update consisting
of multiple rule updates, the quality of the output is measured
by the number of priority changes, i.e., the number of retained
vertices whose priority values are changed. We define batch
priority assignment problem as the problem to find the priority
assignment with the minimum number of priority changes.

When we consider a sequence of batch policy updates,
where upon each update the prioritizer does not know about
the future updates, the quality of the output sequence is then
measured by the total number of priority updates. We define it

as online priority assignment problem, which is an online ver⁃
sion of the previous optimization problem.
5.2 Batch Priority Assignment

We solve batch priority assignment problem optimally
through dynamic programming. The key idea is to iteratively
find the optimal priority assignment for a subset of the new
flow table. The algorithm is detailed in Algorithm 1.

The algorithm traverses the new flow table in the topological
order regarding the dependency graph, so that when it visits a
vertex, the optimal solution for all its parent vertices have been
calculated. PS[v] [k] records the minimum number of priority
changes of all v’s ancestor vertices when v is assigned with pri⁃
ority value k. As it proceeds, the algorithm incrementally ex⁃
plores all possible priority assignments based on previous opti⁃
mal solutions. Thus, this algorithm guarantees to output a glob⁃
al optimal priority assignment.
5.3 Online Priority Assignment

Assigning priority values entails a stochastic process requir⁃
ing an online strategy: the previous priority assignment deci⁃
sion will become an“existing state”and affect priority assign⁃
ment of the next policy update. A static optimization solution is
impossible due to the uncertainty of the future updates. In⁃
stead, we opt for a heuristic approach based on the intuition
that a more evenly scattered distribution of priority values re⁃
duces the chance of future priority changes.

We formulate the evenness of a priority distribution as the
minimum priority gap, i.e., the smallest priority value differ⁃
ence between two adjacent rules. By maximizing the minimum
priority gap, we achieve a more“balanced”priority value dis⁃
tribution.

We integrate the heuristic into the previous algorithm by us⁃
ing it to select the most balanced priority assignment among
the huge amount of optimal assignments discovered by the pre⁃
vious algorithm. The algorithm is detailed in Algorithm 2. Spe⁃
cifically, MG[v][k] records the evenness indicator of all optimal
priority assignments of all v’s ancestor vertices with v assigned

Special Topic

Optimization Framework for Minimizing Rule Update Latency in SDN Switches
CHEN Yan, WEN Xitao, LENG Xue, YANG Bo, Li Erran Li, ZHENG Peng, and HU Chengchen

ZTE COMMUNICATIONSZTE COMMUNICATIONS 23December 2018 Vol. 16 No. 4

9

D:\EMAG\2018-12-64/VOL16\F4.VFT——15PPS/P

to priority k.
5.4 Improve Algorithm Speed

Denoting the flow table size as m and the maximum priority
number as n, the time complexity of Algorithm 1 and Algo⁃
rithm 2 is the state table size O(mn) times the complexity of
state transition function O(n). Considering a typical m of thou⁃
sands and n of 65536, it can take days to calculate an optimal
assignment. Therefore, speeding up the algorithm is necessary.

The key idea to speed up the algorithm is to compress the
state table size. Intuitively, considering assigning priority for
the highest priority rule in a sub⁃flow table, the minimum num⁃
ber of priority change (PS[v] [k]) is always a step function of k,
because the function value only reflects the combination of re⁃
tained/changed state of the ancestor rules. Specifically, we can
prove the step function only has no more than 3d stages, where
d is the length of the longest path of the dependency graph.
Therefore, instead of recording n PS values for each vertex, we
only need to characterize the step function with less than 3d
step points of k and the corresponding function values.

As a result, the time complexity of Algorithms 1 and 2 can
be reduced to O(md2). In practice, the optimized algorithms typ⁃
ically calculate the optimal assignments within a few hundred
milliseconds for flow tables with thousands of rules.

6 Back⁃End Optimizer
The DAG and DAG updates generated by RuleTris front ⁃

end are exploited by RuleTris back⁃end to conduct optimiza⁃
tion to TCAM updates. RuleTris has three back⁃end optimiz⁃
ers: update scheduler, duplication eliminator and CacheFlow
manager. With them, RuleTris can provide guarantees to con⁃
duct rule updates with minimum number of TCAM moves, to
compile minimum⁃size flow tables with no redundant rules and
to provide support for efficient rule caching hierarchy.
6.1 Update Scheduler

The update scheduler exploits the DAG to optimize the rule

update process in TCAM. When there are entries conflicting
with each other on the match patterns, the entry located on the
highest physical address wins. As a result, the switch firmware
must maintain a correct ordering of rules during TCAM update.

Typically, the switch firmware works as follows. Upon the ar⁃
rival of a rule insert, the firmware first checks the dependency
relations (usually in the form of priority) with the layout of ex⁃
isting rules and looks for the range of locations that satisfy the
dependency requirements. Then, it checks if there are empty
slots within that range. If so, it picks a slot and writes the new
rule in it. Otherwise, the firmware has to move the existing
rules for an extra slot.

Integer priority value provides a poor clue of actual rule de⁃
pendencies, and leads to massive redundant TCAM moves. Ru⁃
leTris update scheduler exploits the DAG to optimize the
TCAM updates. The RuleTris update scheduler first checks if
there is an empty slot that satisfies the dependency constraints
of the new rule. If so, the new rule is written to the slot. Other⁃
wise, the update scheduler calls Algorithm 3 to search for an
entry moving chain, which starts with the new rule and ends
with an empty slot (e.g. J → D → A → Slottop in Fig. 8). Final⁃
ly, the new rule is inserted by moving every rule in the moving
chain one slot downstream. The optimality proof of Algorithm 3
is provided in the Appendix.

For example in Fig. 8, Rule J is to be inserted and its rela⁃
tive dependency is shown with the dotted arrows. The schedul⁃
er first finds the inserted location range between D and E,
which has no slot available. Next, the scheduler looks for the
nearest slots, which are located on the top and bottom of the
figure. Then, the scheduler searches for moving chains, which
are J → D → A → Slottop on the upper side and J → E → F →
Slotbottom on the lower side. Since the number of entry moves is
the same, a final update decision is picked on a random basis.
6.2 Redundancy Eliminator

The redundancy eliminator uses the DAG to remove redun⁃
dant rules. Specifically, we observe two types of redundancy in
flow tables:
1) Obscured rules. If a rule is entirely obscured by higher prior⁃

ity rules, no data plane packet will match this rule.
2) Floating rules. Consider two rules immediately adjacent in

DAG. If they share the same actions and the lower⁃priority
rule has a more general match than the higher⁃priority one,
the higher ⁃ priority rule is redundant because removing it
does not change the data plane behavior of the flow table.
RuleTris redundancy eliminator conducts one⁃time scan in a

topologically decreasing order to remove the above types of re⁃
dundant rules. Specifically, for each rule visited, the redundan⁃
cy eliminator accumulates the match with a flow space union.
If a visited rule is entirely obscured by the current accumulat⁃
ed match, it is an obscured rule and should be removed. If a
visited rule has the same actions with any of its predecessors
and its match is narrower than the predecessor, it is a floating

Special Topic

Optimization Framework for Minimizing Rule Update Latency in SDN Switches
CHEN Yan, WEN Xitao, LENG Xue, YANG Bo, Li Erran Li, ZHENG Peng, and HU Chengchen

ZTE COMMUNICATIONSZTE COMMUNICATIONS24 December 2018 Vol. 16 No. 4

10

D:\EMAG\2018-12-64/VOL16\F4.VFT——15PPS/P

rule and should be removed.
6.3 CacheFlow Manager

CacheFlow manager maintains a hierarchy of rule caches

and helps scale up the size of physical flow tables with larger
but slower flow table implementations, such as in SRAM. This
technique was proposed in previous work [13]. The key idea is
to maintain the correct dependency of the partial flow table in
high⁃speed cache by inserting“cover ⁃set”rules that redirect
data plane packets to low⁃speed matching hardware. We refer
the reader to the original paper for details.

7 Implementation
We implement RuleTris front ⁃ end composition compiler

with 5k lines of Java code. For comparison, we also implement
a baseline composition compiler, which recompiles from
scratch for each update, and the CoVisor composition compiler
[6], which does efficient incremental composition using the pri⁃
ority algebra.

We implement RuleTris back ⁃ end optimizers by extending
the ONetSwitch firmware with 3k lines of C code [16]. ONet ⁃
Switch is hardware based all programmable SDN switch which
allows us to fully amend the firmware for RuleTris. We extend
OpenFlow v1.3 protocol with DAG support using experimenter
messages. The extension can carry both full DAGs and incre⁃
mental DAG updates from the front⁃end to the firmware back⁃
end. In the experiments, RuleTris composition compiler uses
the extended OpenFlow to talk to RuleTris back⁃end firmware,
while the baseline compiler and the CoVisor compiler use the
original ONetSwitch firmware with full OpenFlow v1.3 support.

8 Evaluation

8.1 Methodology
a) Experiment Setup
We evaluate RuleTris under three scenarios. The first two

evaluate the rule update efficiency of RuleTris with parallel
and sequential compositions. The third one evaluates the rule
swapping efficiency with the CacheFlow back⁃end. In each sce⁃
nario, we conduct hardware experiments using aforementioned
ONetSwitch with a 256 entry TCAM flow table, and stress Ru⁃
leTris with larger flow table updates through firmware emula⁃
tion. Except as otherwise noted, we maintain a reasonably high
TCAM load factor of 0.90 in the emulation experiments.

We run all composition compilers on top of Ryu controller
[22]. The front ⁃ end compilation and the back ⁃ end emulation
are done on a Linux workstation with 4 cores at 2.8 GHz and 8
GB memory.

In the experiments, we compare RuleTris with the following
composition compilers.
•Baseline. The baseline compiler recompiles the new flow ta⁃

ble from scratch for every rule update and assigns sequen⁃
tial priority values to the new flow table.

•CoVisor. The CoVisor compiler conducts incremental compi⁃
lation to rule updates with the efficient rule indexing struc⁃

Special Topic

Optimization Framework for Minimizing Rule Update Latency in SDN Switches
CHEN Yan, WEN Xitao, LENG Xue, YANG Bo, Li Erran Li, ZHENG Peng, and HU Chengchen

▲Figure 8. Example of TCAM move optimization.

Hi Hi

Lo Lo

A
B

G

C
D

E
F

I
H

A

B
D

C

E
F

G
H

I

J
J

ZTE COMMUNICATIONSZTE COMMUNICATIONS 25December 2018 Vol. 16 No. 4

11

D:\EMAG\2018-12-64/VOL16\F4.VFT——15PPS/P

ture. It assigns priority to new rules using a convenient alge⁃
bra that prevents reprioritizing.
b) Dataset

•L3⁃L4 monitoring + L3 router. In this scenario, the L3⁃L4
monitoring app collects flow statistics in parallel with a L3
router conducting IP⁃based forwarding. We generate moni⁃
toring rules using network filter generation tool ClassBench
[23] with the firewall configuration. L3 router rules are also
generated using ClassBench, but with the IP chain configu⁃
ration.

•L3⁃L4 NAT > L3 router. L3 router rules are generated simi⁃
lar as above. L3 ⁃L4 network address translation (NAT) ta⁃
bles are randomly generated based on the IP addresses and
TCP/User Datagram Protocol (UDP) ports of the router rules.

• CacheFlow rule swapping. CacheFlow picks a subset of
rules from a full rule set to put in cache. In our experiment,
the full rule set is a forwarding rule database with 1000
rules generated similar as previous L3 router rules. A set of
rules is randomly selected to be installed in the TCAM, as
well as the necessary cover ⁃ set rules that ensure correct
matching semantics. Then, a sequence of swap ⁃ in/swapout
operations is randomly generated to mimic the cache swap⁃
ping behavior.
c) Metrics
In Figs. 9, 10, and 11 the bars show the median, and the er⁃

ror bars show the 10th and 90th percentiles.
•Compilation time. It is the computation time for compiling

the rule update in the front⁃end.
•Firmware time. It is the computation time for calculating the

update schedule from a priority⁃based or dependency graph⁃
based rule update in the switch firmware. In hardware exper⁃
iments, this time is measured on the 800 MHz ARM Cortex⁃
A9 CPU on ONetSwitch by switch firmware. In the emula⁃
tion experiments, the firmware time is measured on the
workstation emulating the physical switch.

•TCAM update time. It is the actual time to conduct rule up⁃
dates on the TCAM. Since TCAM moves are conducted se⁃
quentially and each TCAM move costs a fairly constant
amount of time, we use the total number of moves times the

average latency of a TCAM move (0.6 ms) to estimate the
TCAM update time in emulation experiments.

8.2 Experimental Results
Fig. 9 shows the results of L3⁃L4 monitoring + L3 router. In

this experiment, we initiate L3 ⁃L4 monitoring table with 100
rules and L3 router with 250 to 4k rules to show how the over⁃
head increases. We sequentially feed 1000 updates to compil⁃
ers, each update contains one rule delete and one rule insert to
the L3⁃L4 monitoring table. The size of L3 routers is set to 78
in the hardware experiment (first group) in order to fit the 256⁃
entry TCAM.

The TCAM update time, compilation time and firmware time
are shown in Figs. 9a, 9b and 9c respectively. The baseline
compiler is by far the slowest regarding all three metrics. This
is because it recompiles the flow table in every round with new
priority value assignments, and thus generates a large amount
of redundant rule updates that only modifies the rule priority.
In the hardware experiment, RuleTris exhibits 20x faster total
update time than CoVisor adding all three latency components
together. And emulations indicate even greater differences.
Among three latency components, TCAM update time contrib⁃
utes the most. RuleTris has the fastest and a fairly constant la⁃
tency in TCAM updates. This is because RuleTris maintains
the DAG that helps the firmware to calculate the optimal up⁃
date schedule. Since CoVisor does not keep DAG, it is the fast⁃
est in compilation and firmware time, but spends 1 to 3 orders
of magnitude more time on TCAM update. Note, the hardware
experiment shows a higher firmware time than emulations be⁃
cause of the different capacity of the processors.
Fig. 10 shows the result of L3⁃L4 NAT > L3 router. Same as

the previous experiment, we initiate L3⁃L4 NAT table with 100
rules and L3 router with 250 to 4k rules to show how the over⁃
head increases. We sequentially feed 1000 updates to compil⁃
ers, each update contains one rule removed from and one rule
inserted to the NAT table. The size of L3 routers is set to 126
in the hardware experiment. Again, we observe RuleTris exhib⁃
its about 20x faster total update time than CoVisor due to the
time saved in the TCAM updates.

Special Topic

Optimization Framework for Minimizing Rule Update Latency in SDN Switches
CHEN Yan, WEN Xitao, LENG Xue, YANG Bo, Li Erran Li, ZHENG Peng, and HU Chengchen

HW: hardware TCAM: ternary content⁃addressable memory

▲Figure 9. Rule update overhead of L3⁃L4 monitoring + L3 router. The first group (HW) is hardware experiment results and the rest are emulation results.

1000000
100000
10000
1000
100
10
1

0.1 4k2k1k500250HW
Router flowtable size
a) TCAM update time

TC
AM

upd
ate

tim
e(m

s) BaselineCoVisorRuleTris
1000000
100000
10000
1000
100

0.1
0.01 4k2k1k500250HW

Router flowtable size
b) Compilation time

Com
pila

tion
tim

e(m
s)

BaselineCoVisorRuleTris

4k2k1k500250HW
Router flowtable size
c) Firmware time

Fir
mw

are
tim

e(m
s)

BaselineCoVisorRuleTris

1
10

1000000
100000
10000
1000
100

0.1
0.01

1
10

ZTE COMMUNICATIONSZTE COMMUNICATIONS26 December 2018 Vol. 16 No. 4

12

D:\EMAG\2018-12-64/VOL16\F4.VFT——15PPS/P

Fig. 11 shows the result of CacheFlow rule swapping. In this
experiment, we create a two⁃level CacheFlow with the physical
switch as the first level. We vary the load factor of the first lev⁃
el from 0.8 to 1.0. We compare the rule swapping efficiency of
RuleTris with the priority ⁃based update firmware. We initiate
the CacheFlow manager with a thousand L3 forwarding rules.
We randomly select 205 to 256 rules (according to the load fac⁃
tor) to install into the first level. We sequentially feed 1000 up⁃
dates to the CacheFlow manager; each update contains one
rule delete and one rule insert to the TCAM table.

The TCAM update time and firmware time are shown in
Figs. 11a and 11b respectively. As expected, RuleTris’s DAG
based updates show a dominant advantage over the priority ⁃
based updates. The median of RuleTris TCAM update time
ranges from 0.6 to 1.2 milliseconds, whose bars can be barely
seen in the figure. In contrast, priority⁃based updates costs 40
to 100 milliseconds per rule swapping, and the per ⁃operation
cost increases significantly with the TCAM load factor. The
long tail of the RuleTris update time is due to some of the swap⁃
in rules that have dense dependency with the rules in cache,
which leads to multiple entry moves in TCAM.

9 Discussion
1) Multiple Tables

RuleTris currently optimizes updates to a single flow table.
Switches typically have multiple tables. Depending on the or⁃
der of execution of the tables, we can further minimize the rule
updates. For example, if we have two TCAM tables in a pipe⁃
line, the dependencies between the two modules in a sequen⁃
tial composition can be decoupled by placing the first one in
the first TCAM and the second module in the second TCAM.
Similarly, if we have two TCAM tables that operate in parallel
and the actions are both applied, we can decouple the depen⁃
dencies of the two modules in a parallel composition. However,
the number of tables in a hardware switch is limited. RuleTris
can support more module compositions than the number of
physical flow tables. We leave the effective distribution of
rules to multiple flow tables to our future work.

2) Hardware Specific Optimizations
Tango [24] and Mazu [18] have shown that different switches

can have very different latency behavior depending on the or⁃
der of rule updates. For example, given two ordering of a batch
of rules, one is in increasing priority and the other in decreas⁃
ing priority. One switch has a much lower latency for the first
order. Techniques [18], [24] proposed to exploit hardware be⁃
havior can be usefully combined with RuleTris.

3) Minimal Network Update
RuleTris considers per switch flow table updates indepen⁃

dently. Coordination among flow tables of several switches can

Special Topic

Optimization Framework for Minimizing Rule Update Latency in SDN Switches
CHEN Yan, WEN Xitao, LENG Xue, YANG Bo, Li Erran Li, ZHENG Peng, and HU Chengchen

HW: hardware TCAM: ternary content⁃addressable memory

TCAM: ternary content⁃addressable memory
▲Figure 11. Rule update overhead of single rule swaps with CacheFlow. Results are from hardware experiments.

▲Figure 10. Rule update overhead of L3⁃L4 network address translation (NAT) > L3 router.

1000000
100000
10000
1000
100
10
1

0.1 4k2k1k500250HW
Router flowtable size
a) TCAM update time

TC
AM

upd
ate

tim
e(m

s) BaselineCoVisorRuleTris
1000000
100000
10000
1000
100

0.1
0.01 4k2k1k500250HW

Router flowtable size
b) Compilation time

Com
pila

tion
tim

e(m
s)

BaselineCoVisorRuleTris

1
10

4k2k1k500250HW
Router flowtable size
c) Firmware time

Fir
mw

are
tim

e(m
s)

BaselineCoVisorRuleTris
1000000
100000
10000
1000
100

0.1
0.01

1
10

TCAM load factor

TC
AM

upd
ate

tim
e(m

s) 140
120
100
80
60
40
20
0 1.000.950.900.850.80

a) TCAM update time
TCAM load factor

Fir
mw

are
tim

e(m
s)

10

1.00

8
6
4
2
0 0.950.900.850.80

b) Firmware time

Priority⁃based
RuleTris

Priority⁃based
RuleTris

ZTE COMMUNICATIONSZTE COMMUNICATIONS 27December 2018 Vol. 16 No. 4

13

D:\EMAG\2018-12-64/VOL16\F4.VFT——15PPS/P

be combined with RuleTris to further reduce the number of up⁃
dates [5], [25]-[28].

For future work, we would like to release the source code of
RuleTris and build RuleTris into controller platforms such as
OpenDaylight and Open Network Operating System (ONOS),
and hypervisors such as OpenVritex. We would also like to ex⁃
ploit the benefits of multiple flow tables and the gains across
switches.

10 Conclusions
To enable effective modular programming in software de⁃

fined networks, it is crucial that modular composition be opti⁃
mized end⁃to⁃end for both compilation time and switch update
time and flow table size. We present the first end⁃to⁃end opti⁃
mization framework, RuleTris that incrementally keeps DAG
during policy compilation and exploits DAG for optimal TCAM
updates. We fully implement RuleTris and demonstrate its op⁃
timality with both hardware experiments and emulations.
Appendix

We first introduce the definition of a valid entry moving
chain. We define an entry moving chain as valid if after insert⁃
ing the new rule by moving entries along the entry moving
chain, all the entries still satisfy the dependency constraints in⁃
dicated by the DAG.

Now we prove Algorithm 3 generates one of the shortest val⁃
id entry moving chains.
Theorem 1. Algorithm 3 generates a valid entry moving

chain.
Proof: There are two types of entry moves in the generated

entry moving chain.
First, the new rule rinsert is written into the location of an ex⁃

isting rule (the loop between Line 6 and Line 8). Considering
the range of the loop variable, the possible destination location
of rinsert is from the location of rinsert ’s highest predecessor rpre
and the location of rinsert ’s lowest successor rsucc . If the desti⁃
nation location is between rpre and rsucc exclusively, it is obvi⁃
ously that the destination location of rinsert is higher than all its
predecessors and lower than all its successors, thus the depen⁃
dency holds. If the destination location is at rpre (rsucc), the fol⁃
lowing moving chain searching code at Line 26 (Line 18) deter⁃
mines that rpre (rsucc) is moved to the a lower (higher) location.
Therefore the dependency holds.

Second, some existing rules are moved from the previous lo⁃
cation to a new location (the two loops between Line 9 to Line
23). Without loss of generality, we consider the downstream
search loop (Line 9 to Line 15), which searches for the shortest
downstream moving chain. Specifically, Line 15 determines
that the possible destination location of an existing rule rcurr is
between rcurr.addr + 1 and rcurr ’s lowest successor’s location.
Therefore, the new location of rcurr is still lower than all its
successors.

Theorem 2. Given the input rule DAG is minimum, no other
valid entry moving chain has fewer entries than the entry mov⁃
ing chain generated by Algorithm 3.
Proof: Without loss of generality, we still only consider the

downstream search. We prove the theorem by induction on the
loop variable i of the loop from Line 9 to Line 15.

Base case: When i = rpre.addr + 1 , the length of the moving
chain is one (set by at loop from Line 6 to Line 8), and it is the
minimum possible length of a valid entry moving chain.

Induction: Assuming for all i = rpre.addr + 1 to icurr - 1 , the
shortest entry moving chains are known, i.e., fr(i).move and
fr(i).prev store the correct length of its shortest entry moving
chain.

Consider i = icurr . Assuming the previous entry on the short⁃
est entry moving chain is ilast, the index of the lowest successor
of fr(ilast) must be larger or equal to icurr , because otherwise
moving fr(ilast) to icurr would introduce a DAG edge inversion
between fr(ilast) and its lowest successor. Since the DAG is
minimum, a DAG edge inversion is necessarily a dependency
violation.

The loop between Line 15 to Line 18 guarantees that if
fr(ilast) is larger or equal to icurr , fr(ilast) must have been con⁃
sidered to move to icurr , therefore we have

fr(icurr).move≤ fr(ilast).move + 1. (1)
On the other hand, for all i′last that has

fr(i′last).move = fr(ilast).move - 1 , the index of the lowest successor
of fr(i′last) must be smaller than icurr, because otherwise moving
fr(i′last) to icurr would be valid and fr(ilast) would not be the previ⁃
ous entry of fr(ilast) on the shortest entry moving chain, which
contradicts with the assumption. The loop between Line 15 to
Line 18 guarantees fr(i′last) will not be considered to move to
icurr, therefore we have

fr(icurr).move > fr(i′last).move + 1 = fr(ilast). (2)
Since all the values are integers, we can combine 1 with 3

and have
fr(icurr).move = fr(ilast).move + 1, (3)

which is the correct length of fr(icurr)’s shortest moving chain.

Special Topic

Optimization Framework for Minimizing Rule Update Latency in SDN Switches
CHEN Yan, WEN Xitao, LENG Xue, YANG Bo, Li Erran Li, ZHENG Peng, and HU Chengchen

ZTE COMMUNICATIONSZTE COMMUNICATIONS28 December 2018 Vol. 16 No. 4

References
[1] Requirements of an MPLS Transport Profile, IETF RFC 5654, 2009.
[2] M. Al ⁃ Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks.”in 7th USENIX
Symposium on Networked Systems Design and Implementation (NSDI), San Jose,
USA, 2010, pp. 19-19.

[3] ONF. (2013, Oct. 8). Solution brief: SDN security considerations in the data cen⁃
ter [Online]. Available: https://www.opennetworking.org/images/stories/down⁃
loads/sdn⁃resources/solution⁃briefs/sb⁃security⁃data⁃center.pdf

[4] M. Kuzniar, P. Perešíni, and D. Kostic,“What you need to know about SDN flow
tables,”in International Conference on Passive and Active Measurement, New
York, USA, 2015, pp. 347-359. doi: 10.1007/978⁃3⁃319⁃15509⁃8_26.

14

D:\EMAG\2018-12-64/VOL16\F4.VFT——15PPS/P

Special Topic

Optimization Framework for Minimizing Rule Update Latency in SDN Switches
CHEN Yan, WEN Xitao, LENG Xue, YANG Bo, Li Erran Li, ZHENG Peng, and HU Chengchen

[5] X. Jin, H. H. Liu, R. Gandhi, et al.,“Dynamic scheduling of network updates,”
in ACM Conference on SIGCOMM, Chicago, USA, 2014, pp. 539- 550. doi:
10.1145/2619239.2626307.

[6] X. Jin, J. Gossels, J. Rexford, and D. Walker,“CoVisor: a compositional hypervi⁃
sor for software ⁃ defined networks,”in USENIX Symposium on Networked Sys⁃
tems Design and Implementation (NSDI’15), Oakland, USA, 2015, pp. 87-101.

[7] X. T. Wen, C. X. Diao, X. Zhao, et al.,“Compiling minimum incremental update
for modular SDN languages,”in Third Workshop on Hot Topics in Software De⁃
fined Networking (HotSDN), Chicago, USA, 2014. doi: 10.1145/
2620728.2620733.

[8] J. Van Lunteren and T. Engbersen,“Fast and scalable packet classification,”
IEEE Journal on Selected Areas in Communications, vol. 21, no. 4, pp. 560-571,
May 2003. doi: 10.1109/JSAC.2003.810527.

[9] T. Mishra and S. Sahni,“DUO⁃dual TCAM architecture for routing tables with in⁃
cremental update,”in IEEE International Symposium on Computers and Commu⁃
nications (ISCC), Riccione, Italy, 2010, pp. 503- 508. doi: 10.1109/IS⁃
CC.2010.5546713.

[10] H. Y. Song and J. Turner,“Fast filter updates for packet classification using
TCAM,”in IEEE GLOBECOM, San Francisco, USA, 2006. doi: 10.1109/GLO⁃
COM.2006.342

[11] D. Shah and P. Gupta,“Fast updating algorithms for TCAMs,”IEEE Micro,
vol. 21, no. 1, pp. 36-47, Jan. 2001. doi: 10.1109/40.903060.

[12] A. Voellmy, J. Wang et al.,“Maple: simplifying SDN programming using algo⁃
rithmic policies,”in ACM SIGCOMM, Hong Kong, China, 2013, pp. 87- 98.
doi: 10.1145/2534169.2486030.

[13] N. Katta, O. Alipourfard, J. Rexford, and D. Walker,“Infinite cacheflow in soft⁃
ware⁃defined networks,”in Third Workshop on Hot Topics in Software Defined
Networking (HotSDN), Chicago, USA, 2014, pp. 175- 180. doi: 10.1145/
2620728.2620734.

[14] J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker. (2013). Compos⁃
ing software defined networks [Online]. Available: http://frenetic⁃lang.org/publi⁃
cations/composing⁃nsdi13.pdf

[15] C. J. Anderson, N. Foster, A. Guha, et al.,“NetKAT: semantic foundations for
networks,”in 41st ACM SIGPLAN ⁃ SIGACT Symposium on Principles of Pro⁃
gramming Languages (POPL’14), San Diego, USA, 2014. doi: 10.1145/
2535838.2535862.

[16] C. C. Hu, J. Yang, H. B. Zhao, and J. H. Lu. (2014). Design of all programma⁃
ble innovation platform for software defined networking [Online]. Available:
https://www.usenix.org/system/files/conference/ons2014/ons2014 ⁃ paper ⁃
hu_chengchen.pdf

[17] ONetSwitch. (2018). ONetSwitch45 [Online]. Available: http://onetswitch.org/
hardware45.html

[18] K. He, J. Khalid, S. Das, et al.,“Mazu: taming latency in software defined net⁃
works,”University of Wisconsin⁃Madison, Tech. Rep., 2014.

[19] K. Pagiamtzis and A. Sheikholeslami,“Content⁃Addressable Memory Circuits
and Architectures: A Tutorial and Survey,”IEEE Journal of Solid ⁃State Cir⁃
cuits, vol. 41, no. 3, pp. 712-727, Mar. 2006. doi: 10.1109/JSSC.2005.864128.

[20] N. Foster, R. Harrison, M. J. Freedman, et al.,“Frenetic: a network program⁃
ming language,”in 16th ACM SIGPLAN international conference on Functional
programming, Tokyo, Japan, 2011, pp. 279- 291. doi: 10.1145/
2034773.2034812.

[21] C. Monsanto, N. Foster, R. Harrison, and D. Walker,“A compiler and run⁃time
system for network programming languages,”in 39th Annual ACM SIGPLAN⁃
SIGACT Symposium on Principles of Programming Languages, Philadelphia,
USA, 2012, pp. 217-230. doi: 10.1145/2103656.2103685.

[22] Ryu SDN Framework Community. (2015, Jan. 29). Ryu OpenFlow controller
[Online]. Available: https://osrg.github.io/ryu/index.html

[23] D. E. Taylor and J. S. Turner,“ClassBench: A Packet Classification Bench⁃
mark,”IEEE/ACM Transactions on Networking, vol. 15, no. 3, pp. 499-511,
Jun. 2007. doi: 10.1109/TNET.2007.893156.

[24] A. Lazaris, D. Tahara et al.,“Tango: simplifying SDN programming with auto⁃
matic switch behavior inference, abstraction, and optimization,”in ACM Inter⁃
national on Conference on Emerging Networking Experiments and Technologies
(CoNext), Sydney, Australia, 2014, pp. 199- 211. doi: 10.1145/
2674005.2675011.

[25] C. ⁃Y. Hong, S. Kandula, R. Mahajan, et al.,“Achieving high utilization with
software⁃driven WAN,”in ACM SIGCOMM, Hong Kong, China, 2013, pp. 15-
26. doi: 10.1145/2486001.2486012.

[26] H. H. Liu, X. Wu, M. Zhang, et al.,“zUpdate: updating data center networks
with zero loss,”ACM SIGCOMM, Hong Kong, China, 2013. doi: 10.1145/
2534169.2486005.

[27] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,“Abstrac⁃

tions for network update,”in ACM SIGCOMM, Helsinki, Finland, 2012. doi:
10.1145/2342356.2342427.

[28] N. P. Katta, J. Rexford et al.,“Incremental consistent updates,”in Second
Workshop on Hot Topics in Software Defined Networking (HotSDN), Hong Kong,
China, 2013, pp. 49-54. doi: 10.1145/2491185.2491191.

Manuscript received: 2018⁃07⁃17

CHEN Yan (ychen@northwestern.edu) received the Ph.D. degree in computer sci⁃
ence from the University of California at Berkeley, USA, in 2003. He is currently a
professor with the Department of Electrical Engineering and Computer Science,
Northwestern University, USA and a distinguished professor with the College of
Computer Science and Technology, Zhejiang University, China. Based on Google
Scholar, his papers have been cited over 10,000 times and his h⁃index is 49. His re⁃
search interests include network security, measurement, and diagnosis for large ⁃
scale networks and distributed systems. He received the Department of Energy Ear⁃
ly CAREER Award in 2005, the Department of Defense Young Investigator Award
in 2007, the Best Paper nomination in ACM SIGCOMM 2010, and the Most Influen⁃
tial Paper Award in ASPLOS 2018.
WEN Xitao (xitao.wen@gmail.com) received the B.S. degree in computer science
from Peking University, China, in 2010, and the Ph.D. degree in computer science
from Northwestern University, USA, in 2016. His research interests span the area of
networking and security in networked systems, with a current focus on software⁃de⁃
fined network security and data center networks.
LENG Xue (lengxue_2015@outlook.com) received the B.S. degree in computer sci⁃
ence and technology from Harbin Engineering University, China, in 2015. She is
currently pursuing the Ph.D. degree major in computer science and technology with
Zhejiang University, China. Her research interests are software⁃defined networking
(SDN), network function virtualization (NFV), microservice and 5G protocol verifica⁃
tion. She is a student member of the IEEE and CCF.
YANG Bo (ybo2013@zju.edu.cn) received the B.S. degree in information security
from the Huazhong University of Science and Technology, China, in 2013, and the
M.S. degree in computer science from Zhejiang University, China, in 2016. He is
currently a software engineer with Microsoft, Shanghai, China. His research inter⁃
ests include software⁃defined network and network security.
Li Erran Li (lierranli@gmail.com) received the Ph.D. degree in computer science
from Cornell University, USA. He was a researcher with Bell Labs. He is currently
with Uber and also an adjunct professor with the Computer Science Department, Co⁃
lumbia University, USA. His research interests are in machine learning algorithms,
artificial intelligence, and systems and wireless networking. He is an ACM Distin⁃
guished Scientist. He was an associate editor of the IEEE Transactions on Network⁃
ing and the IEEE Transactions on Mobile Computing. He co⁃founded several work⁃
shops in the areas of machine learning for intelligent transportation systems, big da⁃
ta, software defined networking, cellular networks, mobile computing, and security.
ZHENG Peng (zeepean@gmail.com) received the B.S. degree in information securi⁃
ty from Northwestern Polytechnical University, Xi’an, China, in 2015. He is cur⁃
rently pursuing the Ph.D. degree with the Department of Computer Science and
Technology, Xi’an Jiaotong University, China. He was a visiting research fellow at
Duke University, USA from July to August 2017 and Brown University from July to
October 2018, respectively. He has authored papers in CoNEXT, ICDCS, ICNP, etc.
His research interests span the area of computer networking and systems, with a fo⁃
cus on the programmable network and software⁃defined networking.
HU Chengchen (chengchenhu@gmail.com) received the B.S. degree from the De⁃
partment of Automation, North⁃Western Polytechnical University, China, and the Ph.
D. degree from the Department of Computer Science and Technology, Tsinghua Uni⁃
versity, China, in 2003 and 2008, respectively. He worked as an assistant research
professor with Tsinghua University from July 2008 to December 2010. After that, he
joined the Department of Computer Science and Technology, Xi’an Jiaotong Univer⁃
sity, China, where he is currently a full professor. His main research interests in⁃
clude computer networking systems and network measurement and monitoring.

BiographiesBiographies

ZTE COMMUNICATIONSZTE COMMUNICATIONS 29December 2018 Vol. 16 No. 4

15

