
D:\EMAG\2018-09-63/VOL16\RP2.VFT——7PPS/P

DexDefender: A DEX ProtectionDexDefender: A DEX Protection
Scheme to Withstand MemoryScheme to Withstand Memory
Dump Attack Based on AndroidDump Attack Based on Android
PlatformPlatform
RONG Yu 1, LIU Yiyi 1, LI Hui 1, and WANG Wei 2

(1. Beijing University of Posts and Telecommunications, Beijing 100876,
China;
2. Government & Enterprise Communications Institute, ZTE Corporation,
Nanjing 210012, China)

Since Dalvik Executable (DEX) files are prone to be reversed
to the Java source code using some decompiling tools, how to
protect the DEX files from attackers becomes an important re⁃
search issue. The traditional way to protect the DEX files
from reverse engineering is to encrypt the entire DEX file,
but after the complete plain code has been loaded into the
memory while the application is running, the attackers can re⁃
trieve the code by using memory dump attack. This paper
presents a novel DEX protection scheme to withstand memory
dump attack on the Android platform with the name of Dex⁃
Defender, which adopts the dynamic class⁃restoration method
to ensure that the complete plain DEX data not appear in the
memory while the application is being loaded into the memo⁃
ry. Experimental results show that the proposed scheme can
protect the DEX files from both reverse engineering and mem⁃
ory dump attacks with an acceptable performance.

Android; DEX; memory dump; reverse engineering

Abstract

Keywords

DOI: 10.19729/j.cnki.1673⁃5188.2018.03.008
http://kns.cnki.net/kcms/detail/34.1294.TN.20180825.1050.002.html, published online August 25, 2018

Research Paper

ZTE COMMUNICATIONSZTE COMMUNICATIONS 45September 2018 Vol.16 No. 3

1 Introduction
lthough the Android platform employs multi⁃level
security mechanisms, the adoption of Java lan⁃
guage in most of Android applications makes the
applications on the platform prone to be decom⁃

piled and vulnerable to reverse engineering. An attacker can

obtain the Java source code by decompiling an application’s
Android Package (APK) file, and then repackage them as an⁃
other APK, which may cause a serious problem with the copy⁃
right protection of the software. For example, the game develop⁃
er of“Dead Trigger”, Madfinger, was forced to provide soft⁃
ware for free because of software piracy [1], which has brought
huge loss. More seriously, attackers can also insert malicious
codes into the application that has been cracked [2], and then
it will be disguised as a legitimate application to steal user’s
sensitive information. This not only violates the developer’s
copyright, but also harms the interests and personal privacy of
users.

In order to prevent the applications from being decompiled
and reassembled, various methods have been proposed. In
2012, Moon et al. designed a software protection system based
on symmetric and asymmetric cryptography [3], in which the
users buy applications from a specific application market. The
purchased applications use users’public key to encrypt, the
users can decrypt applications with the private key, so that on⁃
ly the legitimate users can run the applications. However, at⁃
tackers can also obtain the applications by copying its codes
from the path of mobiles: /data/App.

In the same year, Jeong et al. proposed a mechanism for anti⁃
piracy based on component separation and dynamic loading
[4], in which the applications are divided into main programs
and plugins. Users install the main program, and then the main
program downloads the plugins from the web before the system
reminds users to pay. These plugins are protected by encryp⁃
tion, only paid authorized users can decrypt correctly and the
decrypted plugins are stored into the phone’s security area.
However, malicious users can also get root privilege to copy
the code of plugins.

All of the above mentioned methods provide ideas for soft⁃
ware protection on the Android platform. However, they have
their own shortcomings. One possible way to protect the appli⁃
cations is to always keep the key parts of the applications confi⁃
dential, only decrypt the key parts in memory when it is run⁃
ning, and clear the memory after use, so that the decryption
process and calling process will be difficult to track. In this pa⁃
per, we define the Dalvik Executable (DEX) file as the key
part of applications because it contains main information of the
applications’source codes. The DEX file is a kind of Dalvik
binary byte code file generated by the java source code and
can directly run on the Dalvik virtual machine.

The concept of code obfuscation proposed by Collberg et al
[5] can be used to protect DEX files by making data promiscu⁃
ous or obfuscating the control flow so that the code and pro⁃
gram become obscure and complex, which can protect the ap⁃
plication from being reversed and can prevent the software
from direct static analysis. However, the obfuscated executable
code can still be deobfuscated by the general approach pro⁃
posed in [6].

Another way to protect the applications is to encrypt theThis work was supported by ZTE Industry⁃Academia⁃Research
Cooperation Funds.

A

1



D:\EMAG\2018-09-63/VOL16\RP2.VFT——7PPS/P

Research Paper

ZTE COMMUNICATIONSZTE COMMUNICATIONS46

DexDefender: A DEX Protection Scheme to Withstand Memory Dump Attack Based on Android Platform
RONG Yu, LIU Yiyi, LI Hui, and WANG Wei

September 2018 Vol.16 No. 3

DEX files and then hide them in the applications, which has
been applied by Bangbang [7], 360 [8], and Dong et al [9].
They encrypt the DEX files of the source APK with encryption
algorithms and replace them with a fake DEX file prepared pre⁃
viously. When the program is being executed, the fake DEX
file will be run first, and then the fake DEX file can lead the
original DEX file to run. Since all these methods protect the
DEX files completely, the plaintext of the DEX data will ap⁃
pear in the memory in the run time, which makes it possible
for attackers to dump the DEX file from the memory by using
Interactive Disassembler (IDA), ZjDroid, Drizzle Dumper or
other tools.

To solve this problem, Fan et al. proposed a method to pre⁃
vent Android App repackaging based on code splitting [10], in
which the DEX files are divided into multiple fragments in ac⁃
cordance with the DEX file’s format, making the application’s
executable code be fragmented in its entire life cycle in the
memory. Since each DEX file fragment in this approach has a
certain feature for attackers to identify, they can get the com⁃
plete DEX file by dumping and combining from the memory.

In order to prevent the direct copy of DEX files from memo⁃
ry, this paper presents a scheme named DexDefender to with⁃
stand memory dump attacks. It extracts the code fields of class⁃
es in the DEX files and then restores each class dynamically
into the memory when the program is running. The snippets of
the extracted code have no features to be identified by attack⁃
ers so that it can effectively prevent attackers from cracking
the applications by dumping DEX data from the memory.

The rest of this paper is organized as follows. Section 2 pres⁃
ents a memory dump attack approach to obtain DEX data on
the Android platform. The third section describes the proposed
protection scheme which uses the dynamic class ⁃ restoration
method to avoid the complete plain DEX data from appearing
in the memory. In Section 4 the proposed scheme is analyzed
and evaluated. Finally, we conclude our work in Section 5.

2 Memory Dump Attack
The traditional way to enhance the security of DEX files is

to protect the files completely. No matter how to hide the DEX
file, even if the DEX file is encrypted, the whole plain DEX da⁃
ta must exist in the memory while an application is running. At⁃
tackers can dump the DEX data from memory through such
tools as IDA, ZjDroid, and Drizzle Dumper. This kind of attack
is called DEX memory dump attack.

Such an attack includes three steps as shown in Fig. 1. In
the first step, when an application reinforced by an existing ap⁃
proach is running, the attacker attaches its process to the appli⁃
cation’s process. In the second step, the attacker locates the
DEX in the memory. The DEX file usually has a consistent
and specific format. The DEX file header records some basic
information of the DEX file and has a constant length of 0x70
bytes. The first 8 bytes of the file header are named magic field

that is used to identify a valid DEX file of a specific value 64
65 78 0a 30 33 35 00. An attacker can search for those 8 bytes
in memory, and if the magic field is found in a virtual memory
area, the attacker can locate the DEX successfully. Finally the
attacker can dump the complete plain DEX data from the mem⁃
ory.

After the attacker obtains the application’s DEX file, the ap⁃
plication can be cracked so that the attacker can steal the pro⁃
gram logic, insert malicious program or repackage the APK.

3 The Proposed Solution

3.1 Overview
Because the traditional reinforcement technologies cannot

resist the memory dump threat as described in Section 2, this
paper presents a DEX protection scheme to withstand memory
dump attacks. The purpose of this scheme is to ensure that the
complete plain DEX data not appear in the memory when an
application is being loaded into the memory. This can better
protect the DEX file from being completely dumped from the
memory and reduce the possibility of crack applications.
Fig. 2 shows the overall framework of the proposed scheme,

which is divided into three phases: pack time, unpack time
and run time.

In the pack time, the DEX parser will first analyze the DEX
file of APK, extract the code fields of DEX file and encrypt it.
Then the code fields’metadata (the offset and length of code
fields) is saved, the code fields of the original DEX file (dis⁃
guised DEX file) is cleared and replaced with the fake DEX

▲Figure 1. DEX memory dump attack steps.

Libc.so

…

system/framework/coreodex

…

data/dalvik⁃cache

…

64 65 78 0a

…

Process memory space
Attack process First step

Taget DEX file
DEX header

Table
…

Data section

Second
step

Third step

DEX: Dalvik Executable

2



D:\EMAG\2018-09-63/VOL16\RP2.VFT——7PPS/P

DexDefender: A DEX Protection Scheme to Withstand Memory Dump Attack Based on Android Platform
RONG Yu, LIU Yiyi, LI Hui, and WANG Wei

Research Paper

ZTE COMMUNICATIONSZTE COMMUNICATIONS 47September 2018 Vol.16 No. 3

file. Thirdly, the disguised DEX file, metadata, and the en⁃
crypted code fields are used as input during the unpack time.
The unpack time process is mainly responsible for loading the
disguised DEX file from the fake DEX file. Because the dis⁃
guised DEX file’s code fields have been cleared, the complete
plain DEX will not appear both in the file system and the mem⁃
ory. In order to keep the original APK running normally, a
code field will be decrypted according to the class name that
belongs to and backfilled to restore the disguised DEX during
the running time. The process of analyzing the original DEX
file and restoring the class dynamically in memory is described
in Sections 3.2 and 3.3 of this paper.
3.2 Analysis of Original DEX File

DEX file structure mainly contains three parts: the DEX file
header, index area, and data area. Code fields that contain pri⁃
mary information of the applications are in the data area. The
offset and length of the code fields in the DEX file are called
code fields’metadata.

The process of extracting code fields and metadata is shown
in Fig. 3. Because the code fields are not stored in the data ar⁃
ea continuously, it is necessary to extract the metadata of each

code field, i.e. extract the offset and length of the code field in
the original DEX file according to the file header and index ar⁃
ea. The metadata will be used to first restore code fields in or⁃
der to ensure that APK run successfully, and then extract and
encrypt each code field. The code fields will be decrypted in
the memory to restore the DEX while the application is being
loaded into the memory. Finally, the values of code fields of
the original DEX need to be changed to zero as shown in Fig.
4. With the metadata and encrypted code fields stored sepa⁃
rately, it is hard for an attacker to restore the whole DEX file if
it only obtained one of them. In addition, since the code fields
do not have fixed identifiable features, it is difficult for attack⁃

DEX: Dalvik Executable

▲Figure 2. Framework of DexDefender.
DEX: Dalvik Executable

DEX: Dalvik Executable

▲Figure 3. Process of extracting code fields and metadata.

▲Figure 4. Process of setting code fields as zero.

Analyze DEX file
Metadata

Code fields

Disguised
DEX file

Extract

Encrypt

Pack time

Decrypt the disguised DEX file

Mapping disguised DEX file into memory

Parse and copy metadata

Unpack time

Replace DexClassLoader

Decrypt code fields

Backfill code fields

Run time

Metadata of code field 1

Metadata of code field 2

Metadata of code field 3

Metadata

…

Encrypted code field 1

Encrypted code field 2

Encrypted code field 3

Encrypted code field

…

Code field 1

Code field 2

Code field 3

Data area

…

File header
Index area

…

Original DEX file

Extract

Extract
Encrypt

File header
Index area

Disguised DEX file

000 ...

Data area

000 ...

000 ...

…
…

File header
Index area

Original DEX file

Code file 2

Data area

Code file 1

Code file 3

…
…

Set to zero

3



D:\EMAG\2018-09-63/VOL16\RP2.VFT——7PPS/P

Research Paper

ZTE COMMUNICATIONSZTE COMMUNICATIONS48 September 2018 Vol.16 No. 3

ers to locate all real code fields in the memory.
Because the values of code fields of disguised DEX file are

zero, even if the attacker can find and dump the disguised
plain DEX data from the memory, he cannot get any informa⁃
tion about the application.
3.3 Dynamic Class Restoration

When the application is being loaded into the memory, An⁃
droid system will create a default class DexClassLoader for the
application to load class, in which the values of code fields in
the disguised DEX are zero so that the DexClassLoader cannot
find the real class. Therefore, we need to use our customized
DexClassLoader to replace the default DexClassLoader. First,
the system’s default DexClassLoader is inherited. Then, the
findClass method is rewritten. In the findClass method, the dy⁃
namic class restoration process is implemented. When the pro⁃
gram needs to load a class of the original DEX, the customized
DexClassLoader will first index the name of the class, find the
corresponding encrypted code fields based on the metadata ex⁃
tracted before, and then decrypt and backfill it to the correct
position of the DEX in the memory. The process of class resto⁃
ration is shown in Fig. 5.

By this way, the original APK can run correctly and the
memory will be cleared after running the APK.

4 Analysis of DexDefender
DexDefender has been implemented on Android 4.4.4, An⁃

droid 5.1.1 and Android 6.0. Android 4 uses the Dalvik mode,
in which DEX is optimized to Optimized Dalvik Executable
(ODEX). Android 5 or Android 6 uses Android Runtime (ART)
mode, in which DEX is optimized to Optimized Android Run⁃
time Machine Code (OAT). The specific implementation of

DexDefender in Dalvik and ART modes is slightly different,
but the structures of DEX are the same in ODEX and OAT.
Therefore, the customized DexClassLoader can be used to load
the DEX in both Dalvik and ART modes, which makes the
number of codes required to be modified in different modes
minimal.

DexDefender adopts the symmetric encryption algorithm of
Cipher Block Chaining (CBC) mode. This section will analyze
and evaluate the effectiveness and performance of the pro⁃
posed scheme through the experiment.
4.1 Analysis of Effectiveness

The purpose of designing the approach to withstand the
memory dump attack is to avoid loading the whole DEX file in⁃
to the memory at once. In the proposed scheme, the code fields
which contain the most important information are not stored in
the DEX file. When the program needs to run and load a class,
corresponding code fields will be located through the previous⁃
ly saved metadata and be decrypted to restore the DEX. By
this way, only disguised DEX and DEX fragments (code fields)
are in the memory and this make it difficult to obtain DEX
files at once.

Even if the attacker can locate disguised DEX and dump it
from the memory according to the characteristics of the DEX
file, the values of DEX file’s code fields are zero and attackers
cannot get any information about the class of the application.
As described in Section 1 of this paper, the attacker could not
crack the application even if all the attack steps are completed.

If an attacker wants to retrieve the complete DEX file, it
must analyze the characteristics of each field code, and then
find and dump all the code fields from the memory. In addi⁃
tion, the attacker would also require a lot of time to restore the
DEX file and this process is prone to making mistakes, which

DexDefender: A DEX Protection Scheme to Withstand Memory Dump Attack Based on Android Platform
RONG Yu, LIU Yiyi, LI Hui, and WANG Wei

▲Figure 5. Process of dynamic class restoration.

DEX: Dalvik Executable

Encrypted code field 1

Data area

…

Disguised DEX file

File header

…

Encrypted code field 2

Encrypted code field 3

…

Encrypted code field

Decrypt
backfill

Metadata of code field 1

…

Metadata

Metadata of code field 2

Metadata of code field 3

ExtractAnalyze

Runtime program

Replace
DexClassLoader

…
…

Find class

…

000 ...

000 ...

000 ...

Index area

4



D:\EMAG\2018-09-63/VOL16\RP2.VFT——7PPS/P

Research Paper

ZTE COMMUNICATIONSZTE COMMUNICATIONS 49September 2018 Vol.16 No. 3

greatly increases the cost of the attack.
To prove that the proposed scheme can prevent the

complete plain DEX data from being dumped from
the memory, we implemented the attack scenario as
described in section 2, using IDA pro for dynamic de⁃
bug attacks. We installed and ran the reinforced
APK, attached to the program’s process with IDA
pro, found the position of DEX in the memory is
0x74f99028, as shown in Fig. 6.

The location of the code field corresponded to the
class appstore. Appstore_codec.CharEncoding was
0x7500CD3C. The values of code fields in the corre⁃
sponding location were changed to zero, as shown in
Fig. 7. The length of this code fields was 8 bytes.

It can be seen from the corresponding location in
the original DEX file as shown in Fig. 8 that the val⁃
ues of code fields can be successfully changed to ze⁃
ro. The code fields will be restored at the correspond⁃
ing location in the memory when the program needs
to get the class.

In summary, the proposed scheme can ensure that
from loading to running time of the application, the
complete plain DEX data are not appear in the memo⁃
ry, which makes the cracking more difficult and pro⁃
vides defense against memory dump attacks.
4.2 Analysis of Performance

20 popular applications were selected and tested
on an Intel core i5 computer. Both space consump⁃
tion and time consumption were measured using LG
Nexus5. Experimental results show that the increase
of the size of applications is less than 1 M. In the
Dalvik mode, the increase of the initial startup time
of applications is no more than 5 s as shown in Table
1. In the ART mode, the increase of the initial start⁃
up time of applications does not exceed 5 s, and the
restart time does not exceed 2 s, as shown in Table 2.

From the experimental results, the space overhead
and time overhead of the scheme are within the ac⁃
ceptable range.

5 Conclusions
The traditional methods to protect the DEX files

cannot withstand the memory dump attack because
the whole plain DEX data can be copied after the ap⁃
plication is loaded into the memory. In order to pro⁃
tect the DEX files from memory dump attack, DexDe⁃
fender, a novel DEX protection scheme is proposed.
It extracts the code fields in the DEX file and dynam⁃
ically restores the code fields of each class while the
application is loaded. In this way, no complete plain⁃
text of DEX files exist in the memory during the

DexDefender: A DEX Protection Scheme to Withstand Memory Dump Attack Based on Android Platform
RONG Yu, LIU Yiyi, LI Hui, and WANG Wei

▲Figure 6. The DEX in memory by using IDA pro.

▲Figure 7. The code fields corresponding to class appstore.appstore_codec.CharEn⁃
coding in the memory by using IDA pro.

▲Figure 8. The code fields corresponding to original apk’class
appstore.appstore_codec.CharEncoding.

5



D:\EMAG\2018-09-63/VOL16\RP2.VFT——7PPS/P

whole lifecycle of the application, which increases the difficul⁃
ty of dumping DEX directly from the memory and cracking the

applications. The experimental results show that the proposed
scheme can resist memory dump attack with an acceptable per⁃

Research Paper

ZTE COMMUNICATIONSZTE COMMUNICATIONS50 September 2018 Vol.16 No. 3

DexDefender: A DEX Protection Scheme to Withstand Memory Dump Attack Based on Android Platform
RONG Yu, LIU Yiyi, LI Hui, and WANG Wei

▼Table 1. Time consumption in the Dalvik mode

APK: Android Package

APK
DicProvider
file_rc4
calculator
appstore
autorun

iietransfer
baifashop

MicroMessage
KuaiGeng

Ofo
Flipboard

Course plaid
Gaokao Bang
Dubbing hall
Translator
Tuhua
Lily

Yaolan
Xiao D Location

Chuangbie Bookstore

APK version
1
1
1
1

null
2.1.0901.2146

1.0.0
1

2.1.1
1.8.9
3.5.3.0
9.0.4
4.1.1

1.6.02.01
5.8.1

7.9.A.2.0
6.9.0
2.2.2
1.0.1
4.1.1

Mean of the initialstartup time beforereinforcement (ms)
399
377
299
568
223
785
2920
346
1119
2358
2563
1140
1198
620
2208
948
2368
2580
844
756

Mean of the initialstartup time afterreinforcement (ms)
717
815
680
942
1213
2037
4184
761
4853
4784
5819
4694
3969
3378
6216
4113
5990
6172
3693
3018

Mean of the restarttime beforereinforcement (ms)
378
162
180
480
219
835
1827
340
550
2524
2487
1425
603
595
2435
847
2385
2297
645
1567

Mean of the restarttime afterreinforcement (ms)
276
352
320
496
246
813
2875
524
2534
3170
4239
2254
2251
1216
3056
1935
3899
4290
1610
2684

Initial startup timeincrement (ms)
318
438
381
374
990
1252
1264
415
3934
2426
3256
3554
2771
2758
4008
3165
3622
3592
2849
2262

Restart timeincrement (ms)
−102
190
140
16
27
−22
1048
184
1984
646
1752
829
1648
621
621
1088
1514
1993
965
1117

▼Table 2. Time consumption in the ART mode

APK: Android Package

APK

DicProvider
file_rc4
calculator
appstore
autorun

iietransfer
baifashop

MicroMessage
KuaiGeng

Ofo
Flipboard

Course plaid
Gaokao Bang
Dubbing hall
Translator
Tuhua
Lily

Yaolan
Xiao D Location

Chuangbie Bookstore

APK version

1
1
1
1

null
2.1.0901.2146

1.0.0
1

2.1.1
1.8.9
3.5.3.0
9.0.4
4.1.1

1.6.02.01
5.8.1

7.9.A.2.0
6.9.0
2.2.2
1.0.1
4.1.1

Mean of the initial
startup time before
reinforcement (ms)

388
364
273
437
338
972
1647
376
1882
4369
1926
1925
871
527
1786
1051
2340
1429
708
493

Mean of the initial
startup time after
reinforcement (ms)

820
740
701
862
744
1533
3756
702
2525
5923
4604
2733
2662
2526
4236
2728
5909
4073
2138
2510

Mean of the restart
time before

reinforcement (ms)
398
390
277
838
218
1055
1679
343
706
2850
1595
1099
368
559
1108
842
1306
1284
663
1070

Mean of the restart
time after

reinforcement (ms)
704
731
712
813
711
1491
3356
722
1885
3734
3586
2184
1349
2268
2703
2221
2529
3169
2590
2947

Initial startup time
increment (ms)

432
376
428
425
406
561
2109
326
643
1554
2678
808
1791
1999
2450
1677
3569
2644
1430
2017

Restart time
increment (ms)

306
341
435
⁃25
493
436
1677
379
1179
884
1991
1085
981
1709
1595
1379
1223
1885
1927
1877

6



D:\EMAG\2018-09-63/VOL16\RP2.VFT——7PPS/P

Research Paper

ZTE COMMUNICATIONSZTE COMMUNICATIONS 51September 2018 Vol.16 No. 3

DexDefender: A DEX Protection Scheme to Withstand Memory Dump Attack Based on Android Platform
RONG Yu, LIU Yiyi, LI Hui, and WANG Wei

formance in both the Dalvik and ART modes on the Android
platform.
References
[1] E. Ravenscraft. (2012, Jul. 31). Just how bad is app piracy on android anyway?

Hint: we’re asking the wrong question. [Online]. Available: http://www.android⁃
police.com/2012/07/31/editorial⁃just⁃how⁃bad⁃is⁃app⁃piracy⁃on⁃android⁃anyways⁃
hint⁃were⁃asking⁃the⁃wrong⁃question

[2] M. T Yuan,“China Mobile Payment Security Report,”Business Culture, pp. 54-
56, May 2014.

[3] Y. C. Moon, J. H. Noh, A. R. Kim, et al.,“Design of copy protection system for
android platform,”in International Conference on Information Technology, Sys⁃
tem and Management, Chongqing, China, 2012.

[4] Y. S. Jeong, J. C. Moon, D. Kim, et al.,“An anti ⁃piracy mechanism based on
class separation and dynamic loading for android application,”in ACM Research
in Applied Computation Symposium, San Antonio, USA, 2012, pp. 328-332. doi:
10.1145/2401603.2401674.

[5] C. Collberg, C. Thomborso, and D. Low. (1997). A taxonomy of obfuscating trans⁃
formations [Online]. Available: http://www.cs.auckland.ac.nz/staff ⁃ cgi ⁃ bin/mjd/
csTRcgi.pl?serial

[6] B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray,“A generic approach
to automatic deobfuscation of executable code,”in IEEE Symposium on Security
and Privacy, San Jose, USA, pp. 674-691, 2015. doi: 10.1109/SP.2015.47.

[7] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou,“Fast, scalable detection of
‘piggybacked’mobile application,”in ACM Conference on Data and Applica⁃
tion Security and Privacy, San Antonio, USA, pp. 185-196, 2013. doi: 10.1145/
2435349.2435377.

[8] W. Zhou, X. Zhang, and X. Jiang,“AppInk: watermarking android apps for re⁃
packaging deterrence,”in Proc. 8th ACM SIGSAC Symposium on Information,
Computer and Communications Security (ASLA CCS’13), Hangzhou, China, pp.
1-12, 2013. doi: 10.1145/2484313.2484315.

[9] Z. J. Dong, W. Wang, H. Li, et al.,“SeSoa: security enhancement system with on⁃
line authentication for android APK,”ZTE Communications, vol. 14, no. S0, pp.

44-50, Jun. 2016. doi: 10.3969/j.issn.1673⁃5188.2016.S0.005.
[10] R. X. Fan, D. Y. Fang, Z. Y. Tang, et al.,“A method of preventing android app

repackaging based on code splitting,”Journal of Chinese Mini⁃Micro Computer
Systems, vol. 37, no. 9, pp. 1969-1974, Sept. 2016.

Manuscript received: 2017⁃12⁃14

RONG Yu (463397867@qq.com) graduated from Xidian University, China in 2015
and now she is studying for her master’s degree at the Beijing University of Posts
and Telecommunications (BUPT), China. Her research interests are software securi⁃
ty and information security.
LIU Yiyi (793645428@qq.com) graduated from University of Electronic Science
and Technology of China (UESTC) in 2016 and now she is studying for her master’s
degree at the Beijing University of Posts and Telecommunications (BUPT). Her re⁃
search interests are software security and information security.
LI Hui (lihuill@bupt.edu.cn) got her Ph.D. in cryptography from BUPT, China in
2005. From July 2005, she has been working at BUPT as lecturer and associate pro⁃
fessor. Her research interests are cryptography and its applications, information se⁃
curity, and wireless communication security.
WANG Wei (wang.wei8@zte.com.cn) received her B.S. degree from Nanjing Univer⁃
sity of Aeronautics and Astronautics, China. She is an engineer and project manager
in the field of mobile Internet at Government & Enterprise Communications Insti⁃
tute of ZTE Corporation. Her research interests include new mobile Internet servic⁃
es and applications, PaaS, terminal application development, and other technolo⁃
gies. She has authored five academic papers.

BiographiesBiographies

7


