
D:\EMAG\2018-09-63/VOL16\Review1.VFT——8PPS/P

Persistent Data LayoutPersistent Data Layout
in File Systemsin File Systems

LUO Shengmei 1, LU Youyou 2, YANG Hongzhang 1,
SHU Jiwu 2, and ZHANG Jiacheng 2

(1. ZTE Corporation, Shenzhen 518057, China;
2. Tsinghua University, Beijing 100084, China)

Data layout in a file system is the organization of data stored
in external storages. The data layout has a huge impact on
performance of storage systems. We survey three main kinds
of data layout in traditional file systems: in⁃place update file
system, log⁃structured file system, and copy⁃on⁃write file sys⁃
tem. Each file system has its own strengths and weaknesses
under different circumstances. We also include a recent us⁃
age of persistent layout in a file system that combines both
flash memory and byte ⁃ addressable non ⁃ volatile memory.
With this survey, we conclude that persistent data layout in
file systems may evolve dramatically in the era of emerging
non⁃volatile memory.

data layout; file system; persistent storage; solid state drive
(SSD)

DOI: 10.19729/j.cnki.1673⁃5188.2018.03.010
http://kns.cnki.net/kcms/detail/34.1294.TN.20180903.1719.002.html, published online September 3, 2018

Abstract

Keywords

Review

1 Introduction
he organization of data stored outside of a core is
data layout in file systems. The data layout influenc⁃
es the performance of a file system greatly. Data
can be stored in various kinds of storage mediums.

In traditional file systems, disks are employed for storing da⁃
ta out of a core. The performance of a disk is greatly influenced
by the time of tracking and locating a sector [1], [2]. To reduce
the time of tracking, Fast File System (FFS), ext2, ext3 and oth⁃
er traditional file systems organize the storage space into
groups of cylinders, which increases the locality of accesses
[1], [3], [4]. To reduce the time of locating a sector, traditional
file systems based on disks utilize caching, prefetching, pre⁃al⁃
locating and other technologies to access the data sequentially
[4]. Thus, the data layout gathers the data in the successive
physical sections as far as possible. Then it can increase the
succession and locality of the data accessing, improving the
performance of the file system.

In the state⁃of⁃the⁃art file system, solid state drives (SSDs)
are used as the external storages [5]- [7]. Because SSDs are
electronic memories, they do not have units of mechanical
tracking and sector locating. Therefore, the influence of the op⁃
timization by gathering data and accessing data sequentially is
futile. Nevertheless, the imbalance of read and write latency in
SSDs and the lifetime problem are new challenges to SSDs.
The random write performances worse than the random read in
SSDs. Thus, the data layout in SSDs has the best able data to
be written sequentially, and the lifetime problem of SSDs re⁃
quires slighter write amplification. Then, fine⁃grained writes to
SSDs are employed in file systems to update the data, and this
prevents write amplification from page alignment. In addition,
the garbage collection of file systems in SSDs should move the
valid pages out before wiping the block. In conclusion, the da⁃

ta layout in SSDs not only influences the performance of the
file system but also influences the lifetime of SSDs.

Besides the storage performance, the integrity and consisten⁃
cy of data should be taken into consideration. These two prop⁃
erties play an important role in the file system. For example, if
a user is updating data in the file system through the cache
and a power failure occurs, the data in the cache will not be
written back to the external storage yet. Then it is unable for
the user to know if the storage stores the latest data. It is cru⁃
cial that the data will not lose and be inconsistent when there
are some failures.

Besides security, the performance of file systems always at⁃
tracts a lot of attention from researchers. Based on SSDs, we
propose a multi⁃level file system named stageFS. It utilizes the
cache to update data not in a granularity of a page but in a
granularity of a record. It can decrease the number of writing
to a large extent and then improve the performance of the file
system.

The rest of this paper is organized as follows. Section 2
shows three kinds of traditional data layout in file systems. Sec⁃
tion 3 describes the persistent storage in file systems. Section
4 presents the built ⁃ in multi ⁃ level persistent file system and
the conclusion is given in Section 5.

2 Data Layout in File System
This section will introduce three kinds of traditional data

layouts. They are in⁃place udpdate file system, long⁃structured
file system (LSF), and copy⁃on⁃write file system. All the exist⁃

ZTE COMMUNICATIONSZTE COMMUNICATIONS 59September 2018 Vol.16 No. 3

This work was supported by ZTE Industry⁃Academia⁃Research
Cooperation Funds.

T

1



D:\EMAG\2018-09-63/VOL16\Review1.VFT——8PPS/P

Persistent Data Layout in File Systems
LUO Shengmei, LU Youyou, YANG Hongzhang, SHU Jiwu and ZHANG Jiacheng

Review

ing data layouts belong to these three kinds.
2.1 In⁃Place Update File System

In ⁃ place update file systems, such as ext2, ext3 and ext4,
support overwrite operation. They enable data with continuous
logical addresses to be stored continuously in disks, which im⁃
proves the locality of data when being read. Nevertheless, in ⁃
place update file systems may lead data to be written dis⁃
persedly, which has impact on the performance of writing data.
We will take ext4 as an example to illustrate the in⁃place up⁃
date file system.

Ext4 is a representative in⁃place update file system. The da⁃
ta layout on the disk is shown in Fig. 1. An ext4 file system is
divided into a lot of block groups. The block allocator always
tries to allocate the blocks belonging to the same file into the
same block group, which may reduce the time of tracking. In a
block group, data are distributed as shown in Fig. 1. The first
1024 bytes in the block group 0 are used to install the boot
block, and other block groups have no section like this. The su⁃
per block describes and maintains the state of the file system,
such as the gross of index nodes (inodes) and the used blocks.
A portion of block group stores the redundant copies of super
blocks and group descriptors. Not all the block groups have the
copies. If one has no copy, it will start with the data block bit⁃
map. Reserved Group Description Table (GDT) blocks are
used for file system extensions.

In order to ensure that the logical con⁃
tinuous data are stored on the disk con⁃
tinuously, ext4 adopts five kinds of allo⁃
cating strategy:

1) Multi⁃block allocator
When a new file is created, the block

allocator assumes that it will grow with a
high speed, thus allocating 8 KB of con⁃
tinuous disk space to it. When the file is
closed, if this space does not be used,
the unused part will be recycled; if used,
the data are in a physically continuous
space.

2) Delayed allocation
This strategy works with the cache.

When a file needs more blocks to write
due to updating data, the controller will
not allocate blocks for it immediately,
but until the data in cache must be writ⁃
ten back to the disk (such as sync opera⁃
tion occurs and the memory is full). In
this way, as many data as possible are
stored in the cache, which is beneficial
for allocating.

3) Allocating inodes and data blocks
in the same block group

When the file system reads inodes of a

file system and obtains the locations of data blocks, if the two
are in the same block group, the time for tracking will reduce.

4) Inode and its directory in the same block group
When the file system reads the directory and obtains the ID

of the inode, if the two are in the same group, the time for track⁃
ing will reduce.

5) Dividing the disk into several block groups
Trying best to allocate the blocks belonging to the same file

in the same block group [1], [3], [8] will mitigate the problem
of file fragmentation [4], [9], [10].

In in ⁃place update file systems, there are allocation modes
that allocating several blocks continuously with the extended
segment mode, except the block⁃level allocation mode.
2.2 Log⁃Structured File System

LSF write data using the mode of append write to the exter⁃
nal storage sequentially [11]. This write mode performs well
when writing data, while it has a bad performance due to the
random read. We can find that the in⁃place file system is good
for reading while LSF is good for writing.
Fig. 2 shows the principles of LSF. It caches the file data in

the memory and then writes data using append write to the ex⁃
ternal memory when the cache has no space. This ensures the
sequential write to the storage. LSF also updates inodes se⁃
quentially. In order to solve the problem of file location, LSF
introduces Inode Map (map of inodes) and check point region

ZTE COMMUNICATIONSZTE COMMUNICATIONS60 September 2018 Vol.16 No. 3

▲Figure 1. Data layout of the ext4 file system.

CR: check point region

GDT: Group Description Table

▲Figure 2. Data layout of a typical log⁃structured file system.

Filled block
(1024 byte)

Super block
(one block)

Group descriptors
(several blocks)

Reversed
GDT block
(one block)

Data block
bitmap

(one block)
Index node
bitmap

(one block)
Index node table
(several blocks)

Data block
(several blocks)

Boot
block Block group 0 … Block group N

data blk[0]:A0 map[k]:A1 logimap
CR

A0 A1 A2

chexk point data block index node block index node map

2



D:\EMAG\2018-09-63/VOL16\Review1.VFT——8PPS/P

Review

Persistent Data Layout in File Systems
LUO Shengmei, LU Youyou, YANG Hongzhang, SHU Jiwu and ZHANG Jiacheng

(CR). Inode Map records the location of each inode. Through
the Inode Map, the controller can locate the corresponding in⁃
ode quickly and then finds the corresponding file data blocks.
The Inode Map is also updated sequentially and the CR can lo⁃
cate the latest version of the Inode Map. The process of file up⁃
dating is shown as the follow:
1) The file system data is written to the cache.
2) The data is written to the external memory when the capaci⁃

ty of the cache reaches a threshold.
3) During the sequential write process, the file data is updated

first, followed by updating the inode; then the Inode Map is
updated.

4) The region of CR is updated periodically.
In LSF, the following process of searching the file data ac⁃

cording to the inode is different from that in in ⁃place update
file system:
1) Locate the latest version of Inode Map according to CR
2) Search the address of the inode in the Inode Map according

to the ID of the inode
3) Locate the file data according to the inode.

Take Flash Friendly File System (F2FS) [12] as a typical ex⁃
ample to introduce the LSF. F2FS is developed by Samsung
based on SSDs. It divides a disk into a number of segments.
Each segment has the fixed size: 2 MB. Each section is com⁃
posed of adjacent segments and several adjacent sections com⁃
pose a zone. Through the command \emph{mkfs}, one can easi⁃
ly change the sizes of section and zone.

The layout of F2FS is shown in Fig. 3. F2FS divides the
disk into two regions. One is the metadata region and the other
is the data region. Each region is composed of several seg⁃
ments except the super block. The super block is located at the
start of the zone, including some information of partition and
default parameters. There are two backups of the super block
in a system. The check point (CP) includes the states of a file
system, the bitmap of Node Address Table (NAT)/Segment In⁃
formation Table (SIT), the linked list of orphan nodes, the num⁃
ber of current active segments and other information. \emph
{Segment Information Table} includes the information of each
segment, such as the number of valid blocks and the valid bit⁃

maps of blocks in main memory. \emph{Node Address Table}
is used for searching the physical address according to the
node ID. \emph{Segment Summary Area} (SSA) stores the own⁃
ers’information of all blocks in main memory, such as the fa⁃
ther node ID of one node and the offset of the node/data. The
information in this section is mainly used for garbage collec⁃
tion. The main area includes the data of files and directories
and their indexes. It also contains six logs for hot/warm/cold
data and metadata.

F2FS mainly solves two following problems based on log ⁃
structured file system:

1）Wandering tree problem
The wandering tree problem is that when updating the

block, the controller needs to update the pointer pointing to
this block,update the pointer of this pointer, and then recur un⁃
til the pointer pointing to the inode is updated.

F2FS solves this problem by introducing NAT, shown in
Fig. 4. In traditional LFS, the ID of an inode is transferred into
a physical address by Inode Map. F2FS extends this strategy.
In F2FS, there are three kinds of node blocks: inode block, di⁃

ZTE COMMUNICATIONSZTE COMMUNICATIONS 61September 2018 Vol.16 No. 3

◀Figure 3.
Data layout of the flash
friendly file system.

NAT: Node Address Table

Hot/warm/cold
node segments

▲Figure 4. Node blocks in the flash friendly file system.

Twice indirect
pointer

Direct pointer

Once indirect
pointer

Metadata
Data block
Direct node block
Indirect node block

NAT

Index node block

Segment #0
Segment #1 Check

point
(CP)

Segment number

Segment info
table
(SIT)

Node
address table

(NAT)
Segment

summary area
(SSA)

Hot/warm/cold
data segments

Main area

Zone Zone Zone Zone

Random Writes
Multi⁃stream sequential writes

3



D:\EMAG\2018-09-63/VOL16\Review1.VFT——8PPS/P

rect node block and indirect node block. Inode block includes
the metadata of a file, such as the file name, the inode ID, the
file size, the update time, the access time, the pointer directly
pointing to the block, the pointer pointing to the direct pointer,
the pointer pointing to the indirect pointer and other kinds of
pointers. Each node has its own unique ID, called node ID.
Through this ID, NAT can obtain the physical address of this
node. For a file whose size is larger than 4 GB, LFS needs to
update three pointer blocks, while F2FS only needs to update
the direct node block and NAT. Actually, NAT in F2FS is in⁃
place updated, only data in the main area are updated in the
way of log⁃structured strategy.

2）Garbage collection
F2FS divides the data region into three levels: hot, warm

and cold. Then it divides the data region into six levels by com⁃
bining the division of node blocks and the division of data
blocks. Compared with traditional LFS, only the log region is
different in F2FS. F2FS maintains six active log regions for da⁃
ta to be written.
2.3 Copy⁃on⁃Write File System

The copy⁃on⁃write [13]-[15] refers to a new version of the
file unit data created in a different location. Typically, an in⁃
place file system updates the data to its original location, while
the copy⁃on⁃write technology updates the data to a new loca⁃
tion and update the file pointer. We take btrfs as an example
here.

Btrfs is a Linux file system based on copy⁃on⁃write, devel⁃
oped by several companies. It supports a variety of advanced
features and is expected to become the next generation of
Linux standard file system. Btrfs supports copy ⁃ on ⁃write, B ⁃
tree metadata management, and dynamic inode allocation.

1) Copy⁃on⁃Write
Fig. 5 shows the updating process of traditional file system

data. When the file is updated, the data is written to the origi⁃
nal location. If the system crashes, it will cause the data block
to be in the semi⁃updated state, and destroy the consistency of
the file data.

By using the copy⁃on⁃write technology (Fig. 6), the file will
remain consistent before updating, if the system does not
crash. If the crash does not occur and the file pointer is updat⁃
ed after the data block update is completed, the file can keep a
consistent state. Therefore, copy ⁃ on ⁃write is very effective to

maintain file consistency.
2) B⁃tree metadata management
For ext2, ext3 and other file systems, their directory organi⁃

zation hinders their scalability. In ext2/3, their directories are
linearly organized; when there are too many files in one directo⁃
ry, the number of corresponding directory entries increases,
which results in increasing lookup times. Btrfs uses B⁃ tree to
manage metadata, which solves the problem of time⁃consuming
searching of directory entries, so it has strong expansibility.

3) Dynamic inode allocation
In each block group of ext2, the inode area is allocated fixed⁃

ly in advance, which means that it can accommodate up to a
limited number of inodes. Therefore, each partition creates a
limited number of files, which may seriously affect its scalabili⁃
ty. In btrfs, the physical storage location of an inode is no lon⁃
ger fixed, so users can create unlimited files anywhere. There⁃
fore, btrfs has better scalability.

3 Persistent Storage in File System
The ultimate goal of a file system is to store a large number

of data to a persistent storage in an organized way. These stor⁃
age devices are different from the memory when an emergency
power⁃off occurs: the persistent storages do not lose data while
the memory will. How to realize the persistent storing is a criti⁃
cal issue, which can ensure the integrity and the persistency of
data. The following subsections show two main kinds of persis⁃
tent storages in file systems.
3.1 File System with Journaling

A journaling file system [16]- [21] uses a data structure

Persistent Data Layout in File Systems
LUO Shengmei, LU Youyou, YANG Hongzhang, SHU Jiwu and ZHANG Jiacheng

Review

ZTE COMMUNICATIONSZTE COMMUNICATIONS62 September 2018 Vol.16 No. 3

Figure 6.▶
Copy⁃on⁃write update.

▲Figure 5. In⁃place update of traditional file system data.

Data

File

Data

File

Data

File

System crash → Data become inconsistent

Data

File File

Data Data

System crash → Data become inconsistent

Data

File

Data

File

DataData

Will be deleted later

4



D:\EMAG\2018-09-63/VOL16\Review1.VFT——8PPS/P

named journal to record the changes of data which have not
been committed to the main part of the file system.

The basic structure of journal is shown in Fig. 7. A journal⁃
ing file system can be recovered more quickly from a system
crash or a power failure [18]. It may only keep the track of
metadata in the actual implementation. This will improve the
performance. A journaling file system may track both the meta⁃
data and the corresponding data and some implementations al⁃
low users to select the behaviors to use. No matter what the
condition is, it needs several separate write operations to re⁃
flect changes of data to files when updating file systems. We
take deleting a file from a file system as an example to explain
why journaling is essential. Deleting a file goes three steps:
1) Remove the directory entry of the file
2) Release the inode and add the released inode to the free in⁃

ode pool
3) Return all of disk blocks used by this file to the free disk

block pool.
If there is a crash between step 1 and step 2, an orphan

node occurs and a storage link happens. It is same bad when
the crash happens between step 2 and step 3, because the file
which has not been deleted yet will be marked deleted and
something will be written on the block to cover the undeleted
block.

To prevent these problems, a journaling file system provides
a journal structure which records changes of data before the
change operation occurs [22]. The journal in some systems can
change its size dynamically like a regular file, while in other
systems it has a fix size and must be allocated in a certain con⁃
tiguous area. In the second situation, the journal cannot be
moved and the file system is mounted. There are also some file
systems that allow the journal to be allocated on external sepa⁃
rate device, such as SSDs and other non ⁃ volatile memories
(NVMs). The journal may be distributed on several storages in
order to avoid device crash.

When the journal itself is being written to, the journal must
guard against crashes. Many journal implementations (such as
the JBD2 layer in ext4) gather each change logged with a
checksum. If a crash leaves a partially written change with a
missing (or mismatched) checksum, the system can simply ig⁃
nore it when replaying the journal after the recovery from the
crash.

There are two kinds of journals, one is physical journal and
the other is logical journal. A physical journal is used to log
copies of blocks which will be written to the file system latter.
If a crash occurs when the blocks are being written to the file
system, the system just needs to replay the write in the journal
to complete the operation when the file system recovers from
the crash. If a crash occurs when the write is being logged to
the journal, the partial write will miss or mismatched check⁃
sum and can be ignored when the file system recovers from the
crash. A physical journal takes a performance penalty because
each block changed must be committed twice. However, this
may be acceptable when absolute fault protection is required.

A logical journal is used to store changes to metadata in the
journal. A file system with a logical journal can recover quick⁃
ly after a crash, but may allow the inconformity of unlogged file
data and logged metadata. For example, appending to a file
may involve three separate writes:
1) Writes to the inode of the file and note in the metadata of

the file that its size has increased
2) Writes to the free space map and mark out an allocation of

space for the data that will be appended
3) Writes to the newly allocated space and write the appended

data actually.
In a metadata⁃only journal, step 3 is not logged. If step 3 is

not done, but steps 1 and 2 are replayed during recovery, the
file will be appended with garbage.
3.2 File System with Virtual Memory

Virtual memory [23]-[26] is a technique to manage memory.
It employs both software and hardware to map virtual address⁃
es used by a program to physical addresses. The translation
hardware in CPU translates virtual addresses to physical ad⁃
dresses automatically. The software in a file system with virtu⁃
al memory can extend capabilities by providing a larger virtual
address space when more physical storages are added in the
system. File systems with virtual memory divide a virtual ad⁃
dress space into pages. Pages are blocks whose virtual memory
addresses are contiguous. The size of a page is usually at least
4 kilobytes.

The basic structure of file systems with virtual memory is
shown in Fig. 8. It is expected that applications have a continu⁃
ous memory space, however, the physical blocks are actually

Review

Persistent Data Layout in File Systems
LUO Shengmei, LU Youyou, YANG Hongzhang, SHU Jiwu and ZHANG Jiacheng

ZTE COMMUNICATIONSZTE COMMUNICATIONS 63September 2018 Vol.16 No. 3

FS: file system FS: file system
▲Figure 7. Basic structure of journaling file system. ▲Figure 8. Basic structure of file system with virtual memory.

FS image FS journaling

Persistent storage

Volatile memory

FS image FS journaling

Persistent storage
FS cache Program cache

Volatile memory

5



D:\EMAG\2018-09-63/VOL16\Review1.VFT——8PPS/P

stored dispersedly. Some blocks may even be stored in exter⁃
nal storages; they are swapped into the memory when they will
be used.

Virtual memory benefits applications by freeing them from
managing a shared memory space, which will improve the secu⁃
rity because the memory is isolated well [26]. It can also use
more memory conceptually by the paging technique. When the
memory is full, it will employ the persistent storage to work as
an extended part of memory. In a traditional file system, a part
of disk is used as the extended memory. With the rise of SSDs,
there are some systems employing an SSD (due to its low cost,
power efficiency and so on) as the extended memory [27]-[29],
such as NVMalloc [30] and FlashVM [31].

NVMalloc was proposed to employ NVM as a secondary
memory partition for applications to allocate explicitly and use
memory regions in it. NVMalloc provides an NVMalloc library
with a series of services, enabling applications to access NVM
storage. With NVMalloc, files can be accessed in a byte ⁃ ad⁃
dressable fashion by using the memory mapped I/O interface.
The approach in NVMalloc is able to re⁃energize computations
outside of the core on large scale machines. This increases the
capacity of the memory. NVMalloc shows that it can compute
larger size of problem than the physical memory whose manner
is cost⁃effective manner. In addition, it has better performance
and efficiency when computing time or data access locality in⁃
creases.

FlashVM focuses on high performance, reduced flash wear⁃
out for improved reliability, and efficient garbage collection. It
modifies the code paths for allocating/reading/writing pages in
order to optimize the performance of flash. FlashVM further us⁃
es zero⁃page sharing and page sampling to reduce the number
of page writes. It also makes full use of the discard command
and provides fast online garbage collection of free VM pages.

4 Built⁃in Multi⁃Levels Persistent File
System
The file layout of the flash file system not only affects the

performance of the flash storage system, but also has impact on
the control of life loss of flash [12], [32]-[34]. However, the da⁃
ta layout of the flash file system has different requirements for
different operations, and the file system step⁃by⁃step operation
limits the optimization of the data layout, which is mainly re⁃
flected in two aspects:
1) Fine ⁃ grained writes conflicts with page granularity reads.

Flash memory write operations expect fine⁃grained writes to
extend flash memory life. Flash read operations expect a
page granularity read to improve read performance.

2) The conflict between synchronization and data layout is opti⁃
mized. Because of consistency or persistence requirements,
the file system provides an application that is explicitly
called synchronous connections (such as fsync) or uses oper⁃
ating system background processes (such as pdflush) to syn⁃

chronize data frequently to external memory. Synchroniza⁃
tion reduces the duration between data persistence and data
buffering. This reduces the probability of data merging on
the same page. The update of valid data in a single shell is
small. On the other hand, synchronization reduces the
amount of data buffer, resulting in lacking data for effective
classification, reducing the accuracy of data packets and af⁃
fecting the optimization of the data layout effect.
Thus, StrageFS is proposed as a solution to these issues.
The basic structure of stageFS is shown in Fig. 9. The SSD

managed by stageFS is divided into two spaces: FS Staging and
FS Image. FS Staging provides the persistent storage for the re⁃
cent write to the file system, while FS Image storages the other
data in the file system. In the staging phase, only the dirty
parts need to be written back into FS Staging in the way of re⁃
cording. A record that has been marked with a unique ID is a
dirty part in a page. In FS Staging, files are deleted in the grain
of a page and the delete operation happens when the space of
FS Staging is going to be used up. At this time, stageFS merges
the pages in FS Staging with the pages in FS Image and patch
them to FS Image. After the patching operation, stageFS erases
the whole space in FS Staging.

StageFS includes two phases, the first one is staging phase
and the second one is patching phase.

The staging phase is designed to provide efficient persis⁃
tence to file system, for example, to write file system updates to
persistent storage efficiently. The goal includes both high write
performance and low writes amplification. The staging phase
provides data durability to the content updates, including up⁃
dates to file pages, directory entry pages, and index nodes.
StageFS tracks the dirty bytes of each page instead of marking
a page dirty. It records the write location of each write request,
including the offset and length in each page where the request
updates. When I/O synchronization is required, StageFS iter⁃
ates all dirty files in the file system. For each dirty file, its
dirty pages are performed using either full⁃page steal or record⁃
level logging, according to their dirty granularity, hotness, etc.
Full⁃page steal write is to steal pages from the hidden area in
FS image and write dirty pages in full pages. Record⁃level log⁃
ging write is to update data in the granularity of record and

Persistent Data Layout in File Systems
LUO Shengmei, LU Youyou, YANG Hongzhang, SHU Jiwu and ZHANG Jiacheng

Review

ZTE COMMUNICATIONSZTE COMMUNICATIONS64 September 2018 Vol.16 No. 3

▲Figure 9. Basic structure of StageFS.

FS: file system

Volatile memory

Persistentstorage FSstaging

FSimage

6



D:\EMAG\2018-09-63/VOL16\Review1.VFT——8PPS/P

compact these dirty parts to the staging area. Each record has
a logical ID for identification, an offset for marking the start ad⁃
dress and a length. In the implementation of StageFS, the dirty
parts of a file are tracked in the logical ID tuples in the page
cache. These dirty parts are indexed in a hash table, which
keeps an ordered linked list to store the tuples for each file.

The patching phase is designed to accumulate data in the in⁃
put datasets and improve the effect of data layout optimization.
In the patching phase, space allocation in the FS image for file
system updates is performed lazily. In the staging phase, each
update is appended to the staging log with only the logical ID.
With the ID, its offset and length in the file are known. In the
patching phase, space allocation is performed to reorganize the
data into a better layout:
•Page ⁃ level indexing that is transformed from the non ⁃ in⁃

dexed record⁃level logging
•More sequential accesses by merging and reordering random

writes.
The updates in the file system are written to FS Image in the

granularity of page, and are written back by using the memory
copies. As memory pages of the staging data are pinned in the
main memory, it does not need to scan and merge the variable
length records in the staging area. Therefore, file system up⁃
dates are written twice: one is to FS Staging in record level for
data durability, and the other is to FS Image in page level for
data indexing.

StageFS needs to ensure consistency in both the staging
phase and the patching phase. In the staging phase, file system
updates are written in a log ⁃ structured way. StageFS treats
each synchronized write as a transaction and uses the padding
record as the commit record, which indicates the end of a trans⁃
action. For a synchronized write, a new page is allocated to be
the padding record. Therefore, every synchronized write has a
padding record to indicate its completeness. Though the pad⁃
ding record is used as the commit record, there is no ordering
between data/inode record writes and the padding record write.
An unwritten page has all‘0’s, and the partially written page
is detected by checking the Error Correction Code (ECC). If
any page in one transaction is not written, the transaction is
not committed. During recovery after failures, content updates
in the staging area need to be merged with corresponding pag⁃
es in the file system image. StageFS reads the updates of files
or directories in the staging area, and marks their inode pages
in icache as obsolete by setting theirs obsolete bits. StageFS
delays the merge operation to the succeed I/O accesses. There⁃
fore, I/O operations during recovery need to check the obsolete
bit in icache before performing read or write operations. If the
obsolete bit is set, data pages in the file system image are read
to the page cache followed by the updates from the staging ar⁃
ea. In the patching phase, StageFS pre⁃allocates all the space
that is needed in the current patching phase when starting the
patching operation. Then it writes the bitmap changes to the
tail of the staging logging. Only after the bitmap changes are

persistently written, the patching writes are performed. If sys⁃
tem fails during patching, bitmap changes are read to check
the write statuses of the staging data. If the patching fails,
StageFS marks all corresponding pages of the bitmap changes
as invalid, and then restarts the patching phase by allocating
space and writing the staging data to the FS image.

5 Conclusions
This paper introduces the data layout in file systems. First,

we give the introduction of disks and SSDs. Their difference re⁃
quires us to design a suitable data layout for SSDs instead of di⁃
rectly using the data layout in file systems based on disks. Sec⁃
ond, we introduce three kinds of traditional data layouts in file
systems and analyze their advantages and disadvantages in dif⁃
ferent circumstances. Third, we take persistent storage into
consideration. We introduce journaling file system first, and
then we introduce virtual memory. Besides, we give a brief in⁃
troduction on SSDs used as the extended memory in virtual
memory file systems. Finally, we propose a new file system
based on SSDs, named as stageFS. It employs FS Staging
which likes a cache in the system and each updating only
writes the dirty parts of the page into FS Staging. At the mo⁃
ment that FS Staging is almost full, these data are being writ⁃
ten back to FS Imaging in the grain of a page. StageFS employs
the technologies performing well in SSDs and also has a new
multi ⁃ level structure, archiving better performance in the file
system based on SSDs.

Review

Persistent Data Layout in File Systems
LUO Shengmei, LU Youyou, YANG Hongzhang, SHU Jiwu and ZHANG Jiacheng

ZTE COMMUNICATIONSZTE COMMUNICATIONS 65September 2018 Vol.16 No. 3

References
[1] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry,“A fast file system for

unix,”ACM Transactions on Computer Systems (TOCS), vol. 2, no. 3, pp. 181-
197, 1984.

[2] D. Hitz, J. Lau, and M. A. Malcolm,“File system design for an NFS file server
appliance,”in Proc. USENIX Winter, San Francisco, 1994, vol. 94, pp. 19-19.

[3] S. Tweedie,“Ext3, journaling filesystem,”in Ottawa Linux Symposium, Ottawa,
Canada, 2000, pp. 24-29.

[4] M. Cao, S. Bhattacharya, and T. Ts’o,“Ext4: the next generation of ext2/3 file⁃
system,”in Linux Storage & Filesystem Workshop (LSF), San Jose, USA, 2007.

[5] F. Chen, D. A. Koufaty, and X. Zhang,“Understanding intrinsic characteristics
and system implications of flash memory based solid state drives,”in ACM SIG⁃
METRICS/Performance, Seattle, USA, 2009.

[6] G. Soundararajan, V. Prabhakaran, M. Balakrishnan, and T. Wobber,“Extend⁃
ing SSD lifetimes with disk⁃based write caches,”in USENIX Conference on File
and Storage Technologies, San Jose, USA, 2010, pp. 101-114.

[7] N. Agrawal, V. Prabhakaran, T. Wobber, et al.,“Design tradeoffs for SSD perfor⁃
mance,”in USENIX Annual Technical Conference, Boston, USA, 2008, pp. 57-
70.

[8] R. Card, T. Ts’o, and S. Tweedie,“Design and implementation of the second ex⁃
tended filesystem,”in Proc. First Dutch International Symposium on Linux,
Groningen, Netherlands, 1994.

[9] O. Rodeh, J. Bacik, and C. Mason,“Btrfs: the linux b ⁃ tree filesystem,”ACM
Transactions on Storage (TOS), vol. 9, no. 3, article no. 9, 2013. doi: 10.1145/
2501620.2501623.

[10] R. Y. Wang and T. E. Anderson,“XFS: a wide area mass storage file system,”
in IEEE Fourth Workshop on Workstation Operating Systems, Napa, USA,
1993, pp. 71-78. doi: 10.1109/WWOS.1993.348169.

7



D:\EMAG\2018-09-63/VOL16\Review1.VFT——8PPS/P

Persistent Data Layout in File Systems
LUO Shengmei, LU Youyou, YANG Hongzhang, SHU Jiwu and ZHANG Jiacheng

Review

ZTE COMMUNICATIONSZTE COMMUNICATIONS66 September 2018 Vol.16 No. 3

[11] M. Rosenblum and J. K. Ousterhout,“The design and implementation of a log⁃
structured file system,”ACM Transactions on Computer Systems (TOCS), vol.
10, no. 1, pp. 26-52, Feb. 1992. doi: 10.1145/146941.146943.

[12] C. Lee, D. Sim, J. Hwang, and S. Cho,“F2FS: A new file system for flash stor⁃
age,”in Proc. 13th USENIX Conference on File and Storage Technologies
(FAST), Santa Clara, USA, 2015, pp. 273-286.

[13] Z. N. J. Peterson,“Data placement for copy⁃on⁃write using virtual contiguity,”
Ph.D. dissertation, University of California Santa Cruz, USA, 2002.

[14] D. Hitz, M. Malcolm, J. Lau, and B. Rakitzis,“Copy on write file system consis⁃
tency and block usage,”U.S. Patent 6 892 211, May 10, 2005.

[15] W. A. Sawdon and F. B. Schmuck,“Deferred copy⁃on⁃write of a snapshot,”U.
S. Patent 6 748 504, Jun. 8, 2004.

[16] B. J. Fuller,“Single transaction technique for a journaling file system of a com⁃
puter operating system,”U.S. Patent 6 021 414, Feb. 1, 2000.

[17] J. Piernas, T. Cortes, and J. M. Garcia,“Dualfs: a new journaling file system
without meta⁃data duplication,”in ACM 16th International Conference on Su⁃
percomputing, New York, USA, 2002, pp. 137-146. doi: 10.1145/514191.
514213.

[18] V. Prabhakaran, A. C. Arpaci⁃Dusseau, and R. H. Arpaci⁃Dusseau,“Analysis
and evolution of journaling file systems,”in USENIX Annual Technical Confer⁃
ence, Anaheim, USA, 2005, pp. 105-120.

[19] Z. Zhang and K. Ghose,“yFS: a journaling file system design for handling large
data sets with reduced seeking,”in 2nd USENIX Conference on File and Stor⁃
age Technologies (FAST), San Francisco, USA, 2003, pp. 59-72.

[20] M. T. Jones,“Anatomy of linux journaling file systems,”IBM DeveloperWorks,
USA, 2008.

[21] M. I. Seltzer, G. R. Ganger, M. K. McKusick, et al.,“Journaling versus soft up⁃
dates: asynchronous meta⁃data protection in file systems,”in USENIX Annual
Technical Conference, San Diego, USA, 2000, pp. 71-84.

[22] V. Chidambaram, T. Sharma, A. C. Arpaci ⁃Dusseau, and R. H. Arpaci ⁃Dus⁃
seau,“Consistency without ordering,”in 10th USENIX Conference on File and
Storage Technologies (FAST), San Jose, USA, 2012, pp. 9-9.

[23] K. Li and P. Hudak,“Memory coherence in shared virtual memory systems,”
ACM Transactions on Computer Systems (TOCS), vol. 7, no. 4, pp. 321-359,
1989.

[24] K. Li,“Shared virtual memory on loosely coupled multiprocessors,”Yale Uni⁃
versity, New Haven, USA, Tech. Rep., 1986.

[25] P. J. Denning,“Virtual memory,”ACM Computing Surveys (CSUR), vol. 2, no.
3, pp. 153-189, 1970.

[26] A. W. Appel and K. Li,“Virtual memory primitives for user programs,”in 4th
International Conference on Architectural Support for Programming Languages
and Operating Systems, Santa Clara, USA, 1991, vol. 26, no. 4.

[27] A. Badam and V. S. Pai,“SSDAlloc: hybrid SSD/RAM memory management
made easy,”in Proc. 8th USENIX Conference on Networked Systems Design
and Implementation, Boston, USA, 2011, pp. 211-224.

[28] S. Kannan, A. Gavrilovska, K. Schwan, and D. Milojicic,“Optimizing check⁃
points using NVM as virtual memory,”in IEEE 27th International Symposium
on Parallel & Distributed Processing (IPDPS), Boston, USA, 2013, pp. 29-40.
doi: 10.1109/IPDPS.2013.69.

[29] M. Hadwiger, J. Beyer, W.⁃K. Jeong, and H. Pfister,“Interactive volume explo⁃
ration of petascale microscopy data streams using a visualization⁃driven virtual
memory approach,”IEEE Transactions on Visualization and Computer Graph⁃
ics, vol. 18, no. 12, pp. 2285-2294, Dec. 2012. doi: 10.1109/TVCG.2012.240.

[30] C. Wang, S. S. Vazhkudai, X. Ma, et al.,“Nvmalloc: Exposing an aggregate ssd

store as a memory partition in extreme⁃scale machines,”in IEEE 26th Interna⁃
tional Parallel & Distributed Processing Symposium (IPDPS), Shanghai, China,
2012, pp. 957-968. doi: 10.1109/IPDPS.2012.90.

[31] M. Saxena and M. M. Swift,“Flashvm: Virtual memory management on flash,”
in USENIX Annual Technical Conference, Boston, USA, 2010.

[32] Y. Lu, J. Shu, and W. Zheng,“Extending the lifetime of flash ⁃based storage
through reducing write amplification from file systems,”in Proc. 11th USENIX
Conference on File and Storage Technologies (FAST), San Jose, USA, 2013.

[33] Y. Lu, J. Shu, and W. Wang,“ReconFS: a reconstructable file system on flash
storage,”in Proc. 12th USENIX Conference on File and Storage Technologies
(FAST), Santa Clara, USA, 2014, pp. 75-88.

[34] J. Zhang, J. Shu, and Y. Lu,“ParaFS: a log⁃structured file system to exploit the
internal parallelism of flash devices,”in USENIX Annual Technical Confer⁃
ence, Denver, USA, 2016.

Manuscript received: 2017⁃10⁃26

LUO Shengmei (luo.shengmei@zte.com.cn) received his master’s degree from Har⁃
bin Institute of Technology, China. He has been working with ZTE Corporation for
over 20 years. His research interests include cloud computing and big data. He is a
member of CIE and CCF.
LU Youyou (luyouyou@tsinghua.edu.cn) received the B.S. degree from Nanjing Uni⁃
versity, China in 2009 and the Ph.D. degree from Tsinghua University, China in
2015, both in computer science. He is currently an assistant researcher in the De⁃
partment of Computer Science and Technology, Tsinghua University. His current re⁃
search interests include nonvolatile memories and file systems. He received the best
paper award at IEEE NVMSA’14 and the best paper runner⁃up at MSST’15. He is
a member of the IEEE, ACM and CCF.
YANG Hongzhang (yang.hongzhang@zte.com.cn) received his master’s degree in
computer science and technology from University of Chinese Academy of Sciences,
China in 2015. He has been working with ZTE Corporation for 3 years. His research
interests include distributed file system and cloud computing. His paper on pNFS
was received by HPCA’15. He is a member of the IEEE, ACM and CCF.
SHU Jiwu (shujw@tsinghua.edu.cn) received the Ph.D. degree from the Department
of Computer Science and Technology, Nanjing University, China. He is currently a
professor in the Department of Computer Science and Technology, Tsinghua Univer⁃
sity, China. His current research interests include nonvolatile memories and file sys⁃
tems. He is IEEE Fellow and CCF Fellow.
ZHANG Jiacheng (zhang ⁃ jc13@mails.tsinghua.edu.cn) received the B.S. degree
from Harbin Institute of Technology, China, in software engineering in 2013 and is
now a Ph.D. candidate student in Tsinghua University, China, majoring in computer
science. His current research interests include nonvolatile memories and storage
system. His paper on flash⁃based file system was received by USENIX ATC’16.

BiographiesBiographies

8


