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' Abstract

Nowadays, media cloud and machine learning have become two hot research domains. On the one hand, the increasing user de-

mand on multimedia services has triggered the emergence of media cloud, which uses cloud computing to better host media servic-

es. On the other hand, machine learning techniques have been successfully applied in a variety of multimedia applications as well

as a list of infrastructure and platform services. In this article, we present a tutorial survey on the way of using machine learning

techniques to address the emerging challenges in the infrastructure and platform layer of media cloud. Specifically, we begin with

a review on the basic concepts of various machine learning techniques. Then, we examine the system architecture of media cloud,

focusing on the functionalities in the infrastructure and platform layer. For each of these function and its corresponding challenge,

we further illustrate the adoptable machine learning based approaches. Finally, we present an outlook on the open issues in this

intersectional domain. The objective of this article is to provide a quick reference to inspire the researchers from either machine

learning or media cloud area.
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1 Introduction

ecently, the increasing user demand on rich me-
dia experience has triggered an exponential
growth of media services worldwide. According to
the Cisco Visual Networking Index (VINI) report
[1], the Internet video traffic would increase 3-fold from 2016
to 2021, contributing up to 82% of all Internet traffic by 2021.
This trend may bring tremendous opportunities for all the
stakeholders in the media service chain. Application develop-

ers can attract more customers by providing novel media expe-
riences, such as video-on-demand, multi-screen interactions,
and face/expression recognition. Platform service providers
can host more applications and get more revenue. Content ser-
vice providers can generate more contents and have them
viewed by billions of users. Network service operators can ex-
pect to deliver significantly more network traffic. Nevertheless,
such a trend also calls for novel paradigms to properly fulfil all
the requirements.

Media cloud [2]-[5], inheriting the advances from cloud
computing, has emerged as a promising computing paradigm to
provide novel multimedia services with satisfied Quality of Ser-
vice (QoS) and reduced cost. Specifically, media cloud adds
media - related functions to each cloud computing layers (i.e.,
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Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS),
and Software-as-a-Service (SaaS)), following the cloud comput-
ing paradigm. In the infrastructure layer, media cloud sched-
ules more virtual resources in a more dynamic style. In the
platform layer, it integrates a list of media-specific functions,
such as media adaptation, media streaming, and media traffic
analysis, to meet various QoS requirements from different me-
dia services. In the software layer, media cloud is able to host
novel media services with higher complexity than traditional
web services with only text and images.

The uniqueness of media cloud posits a list of new challeng-
es, especially in the infrastructure and platform layer. First,
the process, storage, and transmission of multimedia contents
need more resources, leading to more power consumption and
higher failure ratio of physical and virtual resources. Second,
most media services need to be delivered with low latency and
high volume, thus requiring precise workload prediction and
careful resource scheduling accordingly. Third, the media dis-
tribution and adaption are more resource - intensive and thus
more complicated than traditional web services. Last but not
least, different media functions must be orchestrated properly
to better serve the media users with optimized cost.

Machine learning, which have been intensively applied in
various multimedia applications, provides a nature solution to
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address these challenges in media cloud. In particular, ma-
chine learning represents the set of algorithms that can progres-
sively improve the performance of a specific task without being
explicitly programmed. As a result, the adoption of machine
learning makes the development of new media services and the
optimization of existing media systems much easier than ever
before. For example, machine learning has been already wide-
ly used in image and video processing such as face recogni-
tion, image classification, and video surveillance. However, the
machine learning research in the infrastructure and platform
layer of media cloud has not been as hot as the upper layer me-
dia applications.

In this article, we present a survey of how machine learning
addresses the challenges in media cloud, from the infrastruc-
ture and platform perspectives. In particular, we start with the
tutorial study on different machine learning strategies, as well
as the concept and the challenges of media cloud. Then, we
substantiate the ways of applying these machine learning tech-
niques into media cloud via a literature review. The map be-
tween machine learning techniques and the challenges in the
infrastructure and platform layer of media cloud are illustrated
respectively. As a result, this allows the researchers from ei-
ther machine learning or media cloud domain to quickly grasp
the state-of-the-art knowledge in the overlaps of these two do-
mains.

The rest of this paper is organized as follows. In Section 2,
we introduce the basic ideas of machine learning as well as a
layered media cloud framework and the functionalities in each
layer. In Section 3, we review the machine learning efforts to-
wards the challenges in the infrastructure layer of media cloud.
In Section 4, we investigate the machine learning solutions to
address the issues in the platform layer of media cloud. In Sec-
tion 5, we highlight a list of open research issues in media
cloud that could be addressed by machine learning techniques
in the near future. Finally, in Section 6, we conclude this arti-
cle.

2 Overview of Machine Learning and Media
Cloud

In this section, we first introduce the basic machine learning
algorithms to provide the necessary background knowledge,
which will be referred to in the later sections. Then, we illus-
trate the media cloud framework and decompose it into a lay-
ered model. This model will serve as the blueprint to survey ex-
isting research efforts.

2.1 Machine Learning Algorithms

Existing machine learning algorithms can be generally cate-
gorized into three types [6], including supervised learning, un-
supervised learning, and reinforcement learning. Fig. 1 de-
picts such categorization, where each category further consists
of one or more sub-categories. The brief concepts of these tech-
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AFigure 1. A categorization of machine learning.

niques are presented as follows.

2.1.1 Supervised Learning

Supervised learning aims to build a model to map an input
to an output based on pre-labelled input-output pairs. Typical-
ly, the input objective is a high dimension vector, the output is
a low dimension or even one-dimension decision, while the ob-
jective is to minimize the difference between the labels and the
output from the model. Regression, decision tree, Bayesian net-
work, and deep neural network/deep learning are supervised
learning algorithms

Regression tries to find a single function with proper param-
eters to represent the relationship between the input and out-
put. There are a list of different regression models with differ-
ent function types to deal with different input. For example, lin-
ear regression uses a linear function to deal with continuous in-
put, logistic regression uses a logistic function to deal with cat-
egorical input, and non-linear regression uses non-linear func-
tions (e.g., polynomial, logarithmic).

A decision tree uses a tree-like graph to deduct the conse-
quences from the input. In a decision tree, each internal node
refers to a control variable on an attribute, each branch refers
to the consequence from the control decision, each leaf node
refers to one final output, and the paths from the root to each
leaf node refer to the rules.

Bayesian network is a probabilistic graphical model that rep-
resents a set of variables and their conditional dependencies
via a directed acyclic graph. It calculates an estimate for the
class probability from the training set based on the Bayes’ the-
orem, and uses the estimation to map the input and output.

Deep neural network/deep learning is generally based on ar-
tificial neural networks, which consist of a collection of multi-
ple layers of connected units (i.e., neurons). The weights be-
tween each pair of neurons are tunable to optimize the objec-
tive function. It can be used as a supervised learning approach
for classification tasks.

2.1.2 Unsupervised Learning
On the contrary to supervised learning, unsupervised learn-
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ing algorithms, such as K-means clustering, principle compo-
nent analysis (PCA), and deep learning, focuses on inferring a
function to describe the hidden structure from unlabeled data.

K-means clustering aims to partition n observations into k
clusters, where each observation belongs to one cluster. The
criteria is to ensure the overall shortest distance between the
observations and the centroid of their assigned clusters accord-
ingly.

Principle component analysis uses an orthogonal trans- for-
mation to convert given observations into a set of values of lin-
early uncorrelated variables in lower dimension. The generated
variables are often called as principal components. They serve
as a projection of the original higher dimension input from its
most informative perspective.

Deep learning can be also used in an unsupervised manner.
Due to its multi - layer structure of fully connected neurons,
deep learning can well represent complex non-linear relation-
ships. As a result, it is able to compact the input in higher di-
mension into informative output with much lower dimension.
Deep auto-encoder is one example in this category.

2.1.3 Reinforcement Learning

Reinforcement learning trains the model by interacting with
the environment using different actions and receiving the in-
curred rewards iteratively. Specifically, it relies on two opera-
tions, including exploration of uncharted territory and exploita-
tion of current knowledge to maximize the received rewards.
On the one hand, exploration operation enables the algorithm
to keep trying different decisions so that it can evolve without
explicitly giving labelled data. On the other hand, the exploita-
tion allows the algorithm to be aware of the explored point and
move closer to the optimal decision strategy. Q-learning is a re-
inforcement learning algorithm.

Q - learning is most representative reinforcement learning
technique. Specifically, it uses Q-value to represent the quality
of a state-action combination, and iteratively update this Q-val-
ue for the improvement. (-learning can compare the expected
utility of the available actions without requiring a model of the
environment. Moreover, it has been proven that Q-learning is
able to eventually get the optimal action -selection policy, for
any finite Markov decision process.

Fig. 2 illustrates a comparison of supervised learning, unsu-
pervised learning, and reinforcement learning. In particular,
supervised learning relies on the pre - defined labelled input
and output pairs as the target. On the other hand, unsupervised
learning does not need labelled data, and it uses the internal
features of the dataset instead of any labelled data as the objec-
tive. Whereas reinforcement learning does not have the la-
belled data in advance. It has to sense the results by perform-
ing different actions, and use the previous outputs as the objec-
tive.

We will illustrate how the machine learning techniques from
different categories can be applied in media cloud in Sections
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3 and 4.

2.2 Media Cloud Framework

Media cloud aims to leverage cloud computing paradigm to-
gether with a list of media-related functions to enhance the me-
dia experience. From a cloud-centric view [2], [5], it still can
be defined as a cloud-centric layered model as shown in Fig.
3. Each layer consists of traditional cloud services (e.g., virtual-
ization and resource management) and corresponding media
services (e.g., media adaptation and media analytic). This con-
ceptual hierarchy provides a clear clue for us to characterize
the technical challenges and existing works in different layer.
Note that, this paper mainly focuses on the machine learning
works for infrastructure and platform layer, whereas the efforts
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AFigure 2. Comparison of three different machine learning categories.
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towards multimedia software applications have been intensive-
ly reviewed by many other literatures [7]-[11].

The infrastructure layer aggregates all the physical ICT re-
sources together via virtualization technology, with the objec-
tive to allocate them in a fine-granular, on-demand, and fault-
free manner. According to the different functionalities, we can
further classify this layer into the following three sub-layers.
® Supporting Infrastructure: This layer refers to the power sup-

ply, air-conditioner, and other cooling systems, which sup-

port the smooth operations of datacenters [12] as well as the
cloud services on top of them. It focuses on those bottom lev-
el schemes, for instance the datacenter layout schedule,
power consumption optimization, and cooling system man-

agement [13].
® Physical Resources: This layer consists of servers (including

CPUs, hard disks, memory, network interface, etc.) and

switches/routers, which provide the networking, computa-

tion, and storage capacity. These resources need to be moni-
tored in real time and well maintained once there is any
fault [14]. As a result, the hosted cloud services will not be
affected.

® Virtualization Management: This layer virtualizes the under-
lying physical resources into a virtual resource pool in terms
of virtual machines [15], [16]. These resources are then ex-
posed to the cloud platform services to meet the specific Ser-
vice Level Agreement (SLA) with the lowest possible cost.

To achieve this target, the resource provision needs be allo-

cated elastically and dynamically via virtual machine config-

uration and migration.

Following this hierarchy, machine learning algorithms can
be developed and applied to each of the sub-layer to address
the corresponding challenges. This will be the main focus of
Section 3.

The platform layer encapsulates various fundamental media
services into a layer of middle-ware, by utilizing the virtual re-
sources provided by the infrastructure layer. This middle-ware
is then exposed to the software layer via a set of APIs. Accord-
ing to the functionalities, we cast these media services into the
following four types.
® Media Analytics: This service refers to the data mining

schemes that focus on the nature of media contents as well

as the user request patterns. Typical examples include me-
dia content popularity prediction [17] and content recom-

mendation [18].
® Media Distribution: This service is in charge of acquiring

media contents from the origin servers, and delivering them

to end users throughout the media cloud. The objective is to
improve the delivery efficiency. Content caching [19] and
pre-fetching [20] are two representative examples under this
category.

® Media Adaptation: This service modifies the original media
contents into the target ones with different domains (e.g., for-
mat, rate, resolution, and annotation). Typical examples of
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such services are content encoding/transcoding [21], con-

tent quality estimation/assessment [22], and media mashup

[23].

Similarly, intelligent mechanisms powered by machine
learning algorithms can be adopted by these services to im-
prove the quality. The in-depth survey of adopting machine
learning in the cloud - based media platform services will be
covered in Section 4.

3 Machine Learning in Infrastructure Layer

In this section, we present three typical scenarios that can
be benefited from machine learning techniques in the infra-
structure layer of media cloud (Fig. 3). They are datacenter
power consumption prediction and control, cloud resources fail-
ure prediction and operation, and virtual machine configura-
tion and operation.

3.1 Power Consumption Prediction and Control

Datacenters nowadays have become a large energy consump-
tion center, resulting in the fact that even modest improve-
ments are able to yield significant cost cut and avert millions
of carbon emissions globally. In particular, power consumption
from datacenter comprises around 1.4% of global energy usage
and 2% of global carbon emissions [24]. Among all datacenters
in the world, the majority of them has a power usage effective-
ness (PUE) at 1.6—2.0 while the ideal efficiency should be
around 1.1-1.2 [24]. As a result, there are sufficient improve-
ment spaces, and any small one improvement can bring great
impact.

Regression is one of the classic ways to predict the power
consumption. Choi et al. [25] proposed a three - dimension re-
gression model to predict the power usage using work intensity
and CPU utilization. This model achieved 9% error margin on
average comparing with real observed usage. Similarly, Lewis
et al. [26] developed a linear regression model to correlate pro-
cessor power, bus activity, and system ambient temperatures
with real-time server power consumption by considering. Their
model gave an error of 4% as verified using a set of bench-
marks. In addition, some further studies [27] indicated that the
linear regression model based on CPU usage and workload is
only able to provide reasonable prediction accuracy for CPU -
intensive jobs, while a Gaussian mixture regression model can
perform consistently well with different workload (e.g., 10 or
memory intensive jobs).

Neural network/deep learning is another powerful tool to pre-
dict the data-center power consumption with the ability to take
into much more input parameters. Gao [28] from Google, pre-
sented a simply three layers neural network model by consider-
ing 19 different factors as the input, including the IT load,
weather conditions, number of chillers and cooling towers run-
ning, equipment set points and so on. This generated a promis-
ing prediction performance already, with a mean absolute error
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of 0.4% and standard deviation of 0.005. Li et al. [29] further
deepened the neural network with more layers. Specifically, it
used a linear recursive auto-encoder to process the input, and
added an additional layer before the final output to correct the
prediction results of auto-encoder. This model was fed by 11-
dimension input, including CPU/memory/disk usage, network
traffic, and file system workload. The results pushed the perfor-
mance a bit further by reducing around 40% prediction error
comparing with a widely-used regression based time-series pre-
diction model.

3.2 Cloud Failure Prediction and Operation

Given the scale and complexity of cloud infrastructure, the
failure prediction and operation desires significant high levels
of automation. In particular, such failure consists of physical
hardware failure such as disk/CPU/memory/network error and
virtual jobs failure due to software or configuration issues. It is
challengeable but important to properly identify these failures
and take actions accordingly on time if not in advance, so that
the high standard Service Level Agreement can be well main-
tained.

Decision trees have become a popular method for failure pre-
diction and detection. Pelleg et al. [30] collected system met-
rics including execution count, CPU usage, waiting time,
blocked time, and 10 count, on top of Xen virtual machine,
and fed them into a decision tree classifier. By using this clas-
sifier, they were able to detect the potential system problems
with 0.94 receiver operating characteristic (ROC) curve as the
accuracy. Fu [31] proposed a framework to combine the deci-
sion tree model together with the principle component analysis
algorithm. Specifically, the principle component analysis is
first used to reduce feature dimensions from the set of collect-
ed cloud infrastructure parameters, then only the principle
components are input into a decision tree classifier to identify
anomalies in the cloud. A following-up work [32] further inte-
grated a Bayesian model with the decision tree. It first reduced
50 plus system metrics including CPU statistics, memory swap
statistics, 10 requests, and network traffic into principle com-
ponents. Then this solution fed these generated components in-
to both the Bayesian predictor and decision tree, and did an en-
semble between the output. This generated a promising result
with 0.99 ROC curve.

At the same time, there is an increasing popularity of apply-
ing neural network or deep learning into the cloud failure pre-
diction task recently. Prevost et al. [33] presented a neural net-
work model to predict the cloud datacenter work- load. Specifi-
cally, the model takes historical data points as input to predict
the future trend, with the objective to minimize the Rooted
Mean Squared Error (RMSE) of sample data. Chen et al. [34]
developed a recurrent neural network (RNN) based model to
learn the temporal characteristics of resource usage metrics in-
cluding CPU and memory usage, which are in turn used to cal-
culate the failure possibility of a running job in the cloud.
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They then verified the model by using real Google cluster work-
load traces. The results indicated a reasonable accuracy with a
false positive rate at around 6%, and the following-up opera-
tions based on the prediction were able to save 6% to 10% cost
saving by early killing and restarting jobs with high failure pos-
sibility. Zhu et al. [35] also explored the performance of back
propagation based neural network combined with a boosting ap-
proach, in driver failure prediction for large scale storage sys-
tem. Moreover, it compared the results with a traditional Sup-
ported Vector Machine (SVM) model on a real world database.
The evaluation showed the proposed neural network model
achieves over 95% detection accuracy which is much better

than 68% achieved by SVM.

3.3 Virtual Resource Configuration and Consolidation

Cloud infrastructure virtualizes the physical resources into a
virtual machine pool and operates them in a fine-grained mod-
el, thus providing significant flexibilities to host different ser-
vices. In particular, virtual machines can be dynamically
turned on/off, migrated from one physical machine to another.
As a result, there is a chance to significantly increase the cost
efficiency by properly orchestrating the virtual machines to
consolidate the workload in an on-demand manner.

Bayesian networks have become a popular tool to consoli-
date virtual resources for cloud environment. Sohrabi et al.
[36] proposed a virtual machine migration heuristic based on
Bayesian networks. In particular, this solution evaluates the
probability of a physical server host to be overloaded, then mi-
grates the virtual machines away from those servers. As a re-
sult, not only energy consumption can be saved by consolidat-
ing virtual machines, but also the performance is improved by
balancing the workload into multiple hosts. Li et al. [37] dis-
cussed a very similar Bayesian based approach to estimate the
resource utilization in physical machines and then used it to
predict the migration probability of virtual machines. Shyam et
al. [38] presented a Bayesian model to determine both short
and long term virtual resource requirements for CPU or memo-
ry intensive applications running in cloud environment. They
built the Bayesian model based on a list of parameters, includ-
ing day of week, time-interval of application access, workload,
benchmarks, and availability of virtual machines. All of these
works were able to generate better performance in terms of ei-
ther lower energy consumption of cloud infrastructure or high-
er accuracy in predicting virtual resource utilization, by com-
paring with a few other non-machine-learning methods.

Reinforcement learning has also been applied into this task.
Masoumzadeh et al. [39] presented a Q-learning based model,
which takes multiple virtual machine metrics (including CPU
performance, disk storage, memory usage and network band-
width) as the input, the migration action as the output, and the
energy consumption combined with SLA score as the reward
function. The trained model outperforms virtual machine selec-
tion policies using fixed criteria for decision making. Jin et al.
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[40], [41] built the virtual machine migration model specifical-
ly for the cloud media scenario by using the same technique.
In particular, this work used the user interactive behaviors in
multi-screen applications as the input, the backend virtual ma-
chine migration decision as the output, and the total monetary
cost of operating cloud resources as the rewards. The result re-
vealed a significant cost saving compared with some heuristics.
The model also showed a very closed performance to an offline
optimal solution. Liu et al. [42] introduced deep reinforcement
learning into the virtual machine allocation and consolidation
problem. Specifically, deep reinforcement learning integrates
deep neural network with reinforcement learning, enabling the
algorithm to deal with larger state space while keeping the fast
coverage speed. Thus, this work is able to take the real -time
metrics for each job and virtual machine pair as the input, the
job and virtual machine matching decision as the output, and
the combined job latency and energy consumption as the re-
wards. Similarly, this approach also achieves cost saving while
at the same time the latency improvement.

3.4 Summary

We demonstrate a list of works that use different machine
learning techniques to tackle three major infrastructure chal-
lenges in this section. Table 1 matches the specific machine
learning approaches with the topic domains for each work, so
that the interested readers can quickly obtain the ways how ma-
chine learning can be applied in the infrastructure layer in me-
dia cloud.

4 Machine Learning in Platform Layer

In this section, we discuss the machine learning applica-
tions in three major media platform services (Fig. 3). Specifi-
cally, this section covers content popularity prediction and rec-
ommendation in media analysis domain, content caching and
pre-fetching in media distribution domain, and content trans-
coding in media adaptation domain.

4.1 Content Popularity Prediction and Recommendation
The tremendous growth of multimedia content generation
has changed not only the user content consumption behaviors,
but also the way of operating the media services. Millions of
hours of video are generated and uploaded to YouTube every
day [43]. As opposed to the traditional TV programs where all
the audiences watched the same content at the same time, mul-
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timedia content users have much more options to spend their
video watching time. As a result, given such a large amount of
available user generated content, their popularity are much
more difficult to be predicted. Moreover, the personalized vid-
eo recommendation becomes increasingly important for better
user experience.

Regression is the simplest yet feasible machine learning tool
for dealing with the content popularity prediction task. Szabo
et al. [44] found the long-term content popularity on YouTube
had a strong correlation with their early popularity. Such corre-
lation can be represented by a linear regression model to pre-
dict the long-term content popularity. Borgho et al. [45] con-
firmed the efficiency of using the linear model to predict the
popularity, and further derived a multi-linear regression model
by taking more factors such as video quality, number of key-
words, uploader view count, uploader followers, and uploader
video count. Chu et al. [46] adopted a similar approach by us-
ing a bilinear regression framework to achieve a personalized
content recommendation system. They used this regression
model to associate the attributes in user profiles with the poten-
tial content that might be interested to the user. Unsupervised
learning tools provide another angle to examine the content
popularity task. Szabo et al. [44] used k-means algorithm to
separate video contents into two clusters, where the content
popularity in one group grew faster than the average, and the
other grew slower. Borgho et al. [45] applied PCA to character-
ize the relationships between different content/user profiles
and the content popularity. In this way, they were able to iden-
tify the groups of variables which were responsible for the vari-
ation of popularity prediction. Ahmed et al. [47] introduced an-
other clustering algorithm known as affinity propagation to the
content popularity prediction task. This method does not re-
quire a predefined number of clusters, which differs from the k-
means algorithm. By properly cluster the similarity score for
the content popularity, this approach is able to outperform the
traditional k-means and the linear regression models.

There are also a few works making use of deep learning for
content recommendation. Ma et al. [48] developed an auto-en-
coder model backed by unsupervised deep learning technique,
to cluster the similarity among different videos. They could rec-
ommend different videos to different users according to their
categories. Covington et al. [49] designed a YouTube recom-
mendation system based on a fully-connected deep neural net-
work. Tt first embeds the video profile, video watch history,
search tokens, previous impressions, and user profile into high-

VTable 1. Mapping between machine learning methods and cloud infrastructure services for each literature work

Regression Decision tree Bayesian network PCA Q-learning Deep learning
Power predict and control [25], [26]. [27] [28]. [29]
Failure predict and operate (301, [31]. [32] 311, [32] [33], [341, [35]
VM configure and consolidate [36]. [371. [38] [39], [40], [41], [42]

PCA: principle component analysis
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dimension vectors, and uses the concatenation of them as the
input to the neural network. And the output can be directly
used as ranked recommendations for each individual user.

4.2 Media Content Caching and Pre-fetching

It is a common practice nowadays to cache multimedia con-
tent data in the intermediate nodes between users and the host
servers, to improve the user experience as well as the media
service operational cost. In particular, because the sizes of mul-
timedia contents are much larger than the traditional text or im-
ages, it takes more time to transmit them from the host to the
end-users. To relieve the pain, content delivery networks has
been proposed to cache contents in some middle places. How-
ever, it is not efficient to cache all or just blindly choose a few
at all the time. Therefore, the key factor of this task is how to
choose the right content to be cached at the right time. Bayes-
ian network is a promising tool for content personalization
prefetching task by identifying the right content to be cached
in the content delivery network [50]. Venketesh et al. [51] in-
troduced the naive Bayesian classifier to calculate the probabil-
ity of viewing a potential content based on the browsing pattern
exhibited by the end users in sessions. This approach helps to
increase the cache hit rate and minimize access latency, espe-
cially when user has long browsing sessions. Ali et al. [52]
used naive Bayesian classifier in the same task but in a differ-
ent way. Specifically, they incorporated the Bayesian classifier
with the classical caching strategy (e.g., Least-Recently-Used
and Greedy-Based), by learning the dependency probability be-
tween the content access log and the content re-visit event. As
a result, when doing cache eviction, the content with higher
probability of re-visit will be kept. Clustering is another prom-
ising way for the content personalization prefetching task [50].
Yan et al. [53] uses K-means to cluster users based on their geo
-location and temporal access patterns. In this way, the con-
tents for different mobile applications can be prefetched into
the mobile device, thus reducing the app launching delay and
improving the user experience. Hu et al. [54] applied the affini-
ty propagation clustering algorithm to group users in different
communities, based on their social relationships, geo - loca-
tions, and video watching interests. As a result, the content
caching decision can be made specifically for different commu-
nities, thus improving the caching efficiency.

It is also possible to use reinforcement learning to optimize
this content prefetching process. Hu et al. [55] formulated the
content prefetching problem as a Markov Decision Process
(MDP), with the objective to strike a balance between the in-
creased content caching cost from incorrect prediction and the
reduced content download delay from correct prediction. A Q-
learning based approach was then proposed to address this
problem.

4.3 Media Content Adaptation
There is an increasing trend to consume online video via mo-
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bile phones rather than via fixed terminals like TV and PCs.
This means the video contents must adapt to the terminals by
providing different resolution, bitrates, and quality versions for
different screen sizes under different network environments.
Such video adaptation tasks can be computation intensive, but
at the same time, they also pose an opportunity to improve the
user experience with different devices.

Deep learning is the most widely used machine learning tool
for such tasks. Covell et al. [56] explored a neural network
based framework to predict the parameters of a model that re-
lates the bitrate to various video properties. Specifically, in vid-
eo transcoding, the perceptual video quality for a given band-
width constraint can be achieved by controlling the quantiza-
tion levels. In this context, they used deep neural network to
correlate this quantization level with the bitrate, and achieved
a much higher accuracy than the traditional alternative. Dash
et al. [57] proposed to use deep neural network to assess the
quality of images after encoding/decoding or transcoding, and
the model is able to achieve as high as 98% image-level accu-
racy for the assessment. Zhang et al. [S8] further extended the
quality of experience assessment from images into video by us-
ing an even deeper neural networks with more hidden layers
and unique structures.

4.4 Summary

In this section, we demonstrate the way of using machine
learning techniques for three important media platform servic-
es. Table 2 maps each work according to the adopted machine
learning technique as well as the detailed platform services
that it focused on. As a result, the interested readers can quick-
ly obtain the ways how machine learning can be used in the
platform layer services in media cloud.

5 Open Research Issues

The research on applying machine learning to media cloud
is at the infancy stage, while there are still many open challeng-
es. In this section, we present a brief outlook on these open is-
sues, aiming to provide insights for researchers from either ma-
chine learning or media cloud area.

5.1 Media Traffic Classification and Flow Control

Real - time media traffic classification and flow information
are important for network management and optimizing the ser-
vice operational cost. The traditional way of classifying Inter-
net traffic is based on the network protocols (e.g., TCP or
UDP). However, such static methods are not enough for media
contents as they roughly use the same protocol for network
transmission.

Machine learning is able to either learn from the historical
media traffic data with fine-grained categories as per different
metric set in a supervised manner, or cluster the real-time me-
dia traffic based on their internal features into different groups
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VTable 2. Mapping between machine learning methods and cloud platform services for each literature work

Regression Bayesian network K-means PCA Affinity propagation Q-learning Deep learning
Content recommendation [44], [45], [46] [44] [45] [47] [48], [49]
Content prefetching [50], [51], [52] [53] [54] [55]
Media data adaptation [56], 1571 [58]

PCA: principle component analysis

in an unsupervised manner. For example, for the former one, it
is possible to make use of distributed SVM [59], and deep
learning [60]. While for the later one, K-means [61] and deep
auto-encoder [62] can be the right tools.

5.2 Media Service Chain Orchestration

Recently, network function virtualization (NFV) emerges to
transform the way of operating communication networks. Spe-
cifically, NFV implements network functions in software, or-
chestrating various services dynamically instead of follow the
pre-defined workflows from hardware. As a result, it provides
an opportunity to dramatically increase the infrastructure flexi-
bility, simplify the resource management process, and reduce
both hardware and operational cost.

The emergence of NFV-enabled media cloud framework [63]
offers the opportunity to further improve the performance of
media services running on top of the media cloud, and ma-
chine learning can be one of the best candidates to achieve
this target. In particular, media services are not standalone.
Most media services require a list of functions to be orchestrat-
ed in a chain. For example, the consumption of online video
streaming via a mobile phone involves content caching,
prefetching, adaptation and personalization. Machine learning
can be used to learn the most efficient pattern on how to or-
chestrate these services in the large scale.

5.3 Media Security

Nowadays, it is much easier to access, download, and up-
load multimedia contents via the Internet, making the Digital
Rights Management (DRM) much more difficult and complicat-
ed than before. Previously, audio and video DRM was usually
achieved by physical subscription and rental, but this method
does not work well today, because any subscriber can simply
upload the copyrighted contents as user-generated contents to
popular video distribution platforms like YouTube. It is hard to
restrict such behavior giving the huge amount of uploaded con-
tents every day.

Machine learning can be applied in this field too. In particu-
lar, it can be used to classify or identify if the uploaded audio
or video has a copyright issue, by learning from a set of la-
belled contents from their commercial owners. It is also possi-
ble to use machine learning to improve the performance of
DRM techniques such as digital watermarking by learning
from the failed cases. In fact, such operation has been intro-
duced to the music and audio DRM system [64], while it is on
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the way to extend to video contents.

6 Conclusions

In this article, we presented a tutorial survey on applying
machine learning techniques to address challenges in the infra-
structure and platform layers of media cloud. In particular, we
first reviewed the basic concept of different machine learning
techniques. Then, we examined the system architecture of me-
dia cloud framework, focusing on the functionalities in the in-
frastructure and platform layers. For each functionality and its
corresponding challenge, we further illustrated the adopted ma-
chine learning techniques. Finally, we present an outlook on a
few open issues in this domain, aiming to inspire the research-
ers from either machine learning or media cloud area.
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