
D:\EMAG\2018-04-62/VOL16\RP2.VFT——13PPS/P

SOPA: Source Routing BasedSOPA: Source Routing Based
Packet⁃Level Multi⁃PathPacket⁃Level Multi⁃Path
Routing in Data CenterRouting in Data Center
NetworksNetworks
LI Dan1, LIN Du1, JIANG Changlin1,
and Wang Lingqiang2

(1. Department of Computer Science and Technology, Tsinghua University,
Beijing 100084, China;
2. Pre⁃Research & Standard Department, Wireline R&D Institute, ZTE
Corporation, Beijing 100084, China)

Many“rich ⁃ connected” topologies with multiple parallel
paths between servers have been proposed for data center net⁃
works recently to provide high bisection bandwidth, but it re⁃
mains challenging to fully utilize the high network capacity
by appropriate multi ⁃ path routing algorithms. As flow ⁃ level
path splitting may lead to traffic imbalance between paths
due to flow size difference, packet⁃level path splitting attracts
more attention lately, which spreads packets from flows into
multiple available paths and significantly improves link utili⁃
zations. However, it may cause packet reordering, confusing
the TCP congestion control algorithm and lowering the
throughput of flows. In this paper, we design a novel packet⁃
level multi⁃path routing scheme called SOPA, which leverag⁃
es OpenFlow to perform packet⁃level path splitting in a round⁃
robin fashion, and hence significantly mitigates the packet re⁃
ordering problem and improves the network throughput. More⁃
over, SOPA leverages the topological feature of data center
networks to encode a very small number of switches along the
path into the packet header, resulting in very light overhead.
Compared with random packet spraying (RPS), Hedera and
equal⁃cost multi⁃path routing (ECMP), our simulations demon⁃
strate that SOPA achieves 29.87%, 50.41% and 77.74% high⁃
er network throughput respectively under permutation work⁃
load, and reduces average data transfer completion time by
53.65% , 343.31% and 348.25% respectively under produc⁃
tion workload.

data center networks; multi⁃path routing; path splitting

Abstract

Keywords

DOI: 10.3969/j.issn.16735188.2018.02.008
http://kns.cnki.net/kcms/detail/34.1294.TN.20180427.1001.002.html, published online April 27, 2018

Research Paper

D

ZTE COMMUNICATIONSZTE COMMUNICATIONS42

The work was supported by the National Basic Research Program of China
(973 program) under Grant No. 2014CB347800 and No. 2012CB315803, the
National High⁃Tech R&D Program of China (863 program) under Grant No.
2013AA013303, the Natural Science Foundation of China under Grant
No.61170291, No.61133006, and No.61161140454, and ZTE Industry⁃
Academia⁃Research Cooperation Funds.

1 Introduction
ata center networks connect hundred of thousands
of servers to support cloud computing, including
both front ⁃ end online services (e.g., web search
and gaming) and back ⁃ end distributed computa⁃

tions (e.g., distributed file system [1] and distributed data pro⁃
cessing engine [2], [3]). Recognizing that the traditional tree ⁃
based topology cannot well embrace the bandwidth ⁃ hungry
cloud services, in recent years many“rich ⁃ connected”data
center network topologies have been proposed, such as Fat ⁃
Tree [4], VL2 [5], BCube [6] and FiConn [7]. These new topolo⁃
gies provide multiple paths between any pair of servers, and
greatly increase the network bisection bandwidth. For in⁃
stance, in a Fat⁃Tree network, there are x equal paths between
two servers from different pods, where x is the number of core
switches in the network; while in a BCube()n,k network, k + 1
non⁃disjoint paths exist between any two servers, not to men⁃
tion the paths with overlapping links.

Although the advanced data center networks enjoy high net⁃
work capacity, it remains challenging how to fully utilize the
capacity and provide high network throughput to upper ⁃ layer
applications. Multi ⁃ path routing is necessary to exploit the
abundant paths between servers. The existing multi⁃path rout⁃
ing schemes can be divided into two categories, namely, flow⁃
level path splitting and packet⁃level path splitting. In flow⁃lev⁃
el path splitting solutions, traffic between two servers is split
into different paths at the flow granularity. All the packets be⁃
longing to a 5⁃tuple flow traverse the same path, so as to avoid
out⁃of⁃order delivery. For examples, equal⁃cost multi⁃path rout⁃
ing (ECMP) uses 5⁃tuple hashing to choose the path for a flow
from the multiple candidates, with the possibility of hash colli⁃
sion and unequal utilization of the paths; in order to avoid the
hash collision between large flows, Hedera [8] explores a cen⁃
tralized way to schedule the flows by spreading large flows into
different paths. However, the flow sizes and packet sizes of dif⁃
ferent flows are usually diversified, which can also lead to traf⁃
fic imbalance among different paths.

Packet ⁃ level path splitting, on the other hand, splits traffic
in the packet granularity, i.e., packets from a flow can be put to
different paths. Since packets of the same flow are usually of
similar sizes, packet ⁃ level path splitting achieves desirable
traffic balance among multiple candidate paths. However, a
major concern of packet ⁃ level path splitting is that it may
cause packet reordering for TCP flows. Although recent studies
showed that the path equivalence in modern data center net⁃
works can help mitigate the packet reordering problem, ran⁃
dom next ⁃ hop selection in random packet spraying (RPS) [9]
still results in considerable packet reordering and unsatisfacto⁃
ry flow throughputs, which is worsen when link fails and net⁃
work symmetry is broken [9]. DRB [10] employs IP⁃in⁃IP en⁃
capsulation/decapsulation [11] to select the core level switch
and uses re ⁃ sequencing buffer at the receiver to absorb reor⁃

June 2018 Vol.16 No. 2

1

D:\EMAG\2018-04-62/VOL16\RP2.VFT——13PPS/P

SOPA: Source Routing Based Packet⁃Level Multi⁃Path Routing in Data Center Networks
LI Dan, LIN Du, JIANG Changlin, and Wang Lingqiang

Research Paper

ZTE COMMUNICATIONSZTE COMMUNICATIONS 43

dered packets, which not only introduces much traffic over⁃
head, but also causes considerable re⁃sequencing delay [10].

In this paper we design SOPA, a new packet⁃level path split⁃
ting scheme to carry on multi⁃path routing in data center net⁃
works. SOPA advances the state of art by two technical innova⁃
tions.

First, rather than introducing an additional buffer at the re⁃
ceiver, SOPA increases the fast retransmit (FR) threshold (i.e.,
the number of duplicate ACKs received at the sender that ac⁃
knowledge the same sequence number) used in TCP to trigger
FR, so as to mitigate the impact of packet reordering on reduc⁃
ing flow’s throughput. In the current TCP congestion control
algorithm, packet reordering is regarded as an indicator of
packet loss, hence three duplicate ACKs will cause packet re⁃
transmit at the sender without waiting for the timeouts. Al⁃
though it works well in single⁃path routing, in multi⁃path rout⁃
ing paradigm it misleads the congestion control algorithm,
since in most cases packet reordering does not come from pack⁃
et loss. By increasing the FR threshold, say, to 10, SOPA sig⁃
nificantly reduces the number of unnecessary packet retrans⁃
mits, which accordingly improves the effective throughput for a
flow.

Second, instead of randomly selecting the next⁃hop switch or
using IP⁃in⁃IP encapsulation to pick a core level switch, SOPA
employs source routing to explicitly identify the path for each
packet. Increasing the FR threshold only cannot help improve
the flow’s throughput any more when the FR threshold ex⁃
ceeds a certain value, because more timeouts and packet re⁃
transmissions will occur if there are not enough ACKs. SOPA
lets the source server adopt a round⁃ robin approach to select
the path for a packet and uses source routing to encode the
path into the packet header. In a Fat⁃Tree network, SOPA le⁃
verages the topological characteristic and only needs at most
four additional bytes to identify the path. As a result, packet re⁃
ordering is significantly mitigated by exactly balanced traffic
loads among the equivalent paths with negligible traffic over⁃
head. Source routing is also very easy to implement on com⁃
modity switching chips [12] or the emerging SDN/OpenFlow
paradigm [13], without updating the
switch hardware.

The NS ⁃ 3 based simulation results
show that SOPA can achieve high net⁃
work throughput under different work⁃
loads, no matter what the network size
is. Under the synthesized permutation
workload, the average throughput
achieved by SOPA is 29.87%, 50.41%
and 77.74% higher than that of RPS,
Hedera and ECMP, respectively, in a
Fat ⁃ Tree network built with 24 ⁃ port
switches. Under the workload from a
production data center, compared with
RPS, Hedera, and ECMP, SOPA im⁃

proves the average throughput by 53.65% , 343.33% and
348.34% , respectively, in the same network. SOPA can also
gracefully encompass link failures without significant perfor⁃
mance degradation.

The rest of this paper is organized as follows. Section 2 intro⁃
duces the background knowledge and related works. Section 3
describes the design of SOPA. Section 4 presents the evalua⁃
tion results. Finally Section 5 concludes the paper.

2 Background and Related Work

2.1 Data Center Network and Fat⁃Tree
A data center network interconnects tens of thousands of, or

even hundreds of thousands of servers, and provides routing
service to upper ⁃ layer applications. Large ⁃ scale distributed
computations run on these servers and high volumes of traffic
are exchanged among the servers. In order to accelerate traffic
transfer in bandwidth ⁃ hungry applications,“rich ⁃ connected”
topologies are proposed to increase the network capacity. A
typical characteristic of such networks is that usually more
than one path exists between any pair of servers.

Fat⁃Tree [4] is one of the representative“rich⁃connected”to⁃
pologies, as shown in Fig. 1. The switches are organized into
three levels. For a K⁃array Fat⁃Tree network (i.e., built with K⁃
port switch), there are K pods (K = 4 in the example), each con⁃
taining two levels of K/2 switches, i.e., the edge level and the
aggregation level. Each K⁃port switch at the edge level uses K/
2 ports to connect the K/2 servers, and uses the remaining K/2
ports to connect the K/2 aggregation⁃level switches in the same
pod. At the core level, there are (K/2)2 K ⁃ port switches and
each switch has one and only one port connecting to one pod.
The total number of servers supported in Fat⁃Tree is K3/4. For
two servers in different pods in Fat⁃Tree network, there are (K/
2)2 paths between them.

In Fat ⁃Tree network, when the packets are forwarded from
lower level switches to higher level switches, there are multi⁃
ple next hops to choose. While there is only one next hop if the

▲Figure 1. A Fat⁃Tree network with K = 4.

Collision

Aggregation switches

Edge switches

Equivalence class

Core switches
C1 C2 C3 C4

Pod0 Pod1 Pod2 Pod3

A8A7A6A5A4A3A2A1

E8E7E6E5E4E3E2E1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2
3 4

1 2 1 2

1 2
3 4 3 4

3 4

June 2018 Vol.16 No. 2

2

D:\EMAG\2018-04-62/VOL16\RP2.VFT——13PPS/P

Research Paper

ZTE COMMUNICATIONSZTE COMMUNICATIONS44

packets are forwarded from higher level switches to lower level
switches. Let us take the Fig. 1 as an example, and assume a
packet needs to be transferred from server 0 to server 4. When
the packet arrives at switch E1, it has two next hops, i.e., A1
and A2. Let us suppose that it chooses A1. After arriving at
A1, the packet still has two choice, i.e., C1 and C2. After arriv⁃
ing at the core level switch, the packet should be forwarded
downwards, and there is only one choice. For instance, if the
packet chooses C1 as the next hop at A1, there is only one
path to reach server 4 from C1, i.e., C1→A3→E3→4. Similar⁃
ly, if C2 is chosen as the next hop at A1, the sole path to server
4 is C2→A3→E3→4.

In order to fully utilize the high network capacity of the ad⁃
vanced data center network topologies and provide upper⁃layer
applications with high network throughput, many multipath
routing schemes are proposed. Based on the splitting granulari⁃
ty, proposed multi ⁃ path routing schemes can be divided into
two categories, namely, flow ⁃ level path splitting and packet ⁃
level path splitting. The former guarantees that packets from
the same flow traverse the same path while the latter does not.
Besides, multi ⁃path TCP is also designed to utilize the multi⁃
ple paths in transport level. In what follows we describe the re⁃
lated works respectively.
2.2 Multi⁃Path Routing with Flow⁃Level Path Splitting

As a traditional multi ⁃ path routing scheme based on flow ⁃
level path splitting, ECMP hashes the 5⁃tuple of every packet
to determine the next hop from multiple candidates. VL2 [5] al⁃
so depends on ECMP to utilize the multiple links in a Fat⁃Tree
like network. However, ECMP fails in balanced utilization of
the multiple candidate paths due to the following reasons.
First, the random feature of hashing may cause unequal num⁃
ber of flows put in the candidate paths. Second, flows contain
different numbers of packets. Hashing collision may forward
flows with more packets to the same path, resulting in imbal⁃
anced traffic volume. Third, even flows equal in the numbers
of packets, the packet size may be different, which also leads
to traffic imbalance. Fig. 1 shows an example of hashing colli⁃
sion in ECMP. There are two flows, one from server 0 to server
4, while the other from server 2 to server 5. When switch A1
adopts ECMP to hash the two flows, a collision occurs and both
flows choose the link A1→ C1. As a result each flow only
grabs half of the link bandwidth. But if we can schedule the
flow from server 2 to server 5 to use the path of E2 → A2 →
C3 → A4 → E3, no collision exists and each flow can send da⁃
ta with full speed.

In order to overcome the hash collision problem of ECMP,
Hedera [8] and Mahout [14] adopt a centralized way to sched⁃
ule big flows, while using ECMP only for small flows. Hedera
depends on edge switches to identify the big flows. Once the
bandwidth consumed by the flows exceeds a pre⁃set threshold
(i.e., 10% of the link bandwidth), these flows are identified as
big flows. The centralized controller periodically collects infor⁃

mation of big flows from edge switches, calculates routing path
for each big flow, and installs the routing entries on corre⁃
sponding switches. Mahout [14] identifies big flows at hosts by
detecting the socket buffer taken by the flows, and uses Type
of Service (TOS) field in IP header to tag big flows. Each edge
switch only needs to install a single routing entry to redirect
packets to the centralized controller before routing entries are
installed, which greatly reduces the number of routing entries
installed on edge switches. Although Hedera and Mahout im⁃
prove the flow⁃ level path splitting algorithm by spreading big
flows into different paths, traffic imbalance among paths still
exists when flows are with unequal numbers of packets or un⁃
equal packet sizes.
2.3 Multi⁃Path Routing with Packet⁃Level Path Splitting

By packet⁃ level path splitting, packets from a flow are dis⁃
tributed to all the candidate paths. Since packets of the same
flow are usually of similar sizes, packet⁃level path splitting can
achieve much more balanced utilization of the multiple links.
Though it is widely concerned that packet ⁃ level splitting may
cause packet reordering and confuse TCP congestion control al⁃
gorithm, the recent work of RPS [9] shows promising results by
exploiting the topological feature of data center networks. RPS
defines a group of links as an equivalence class, which in⁃
cludes all the outgoing links from the switches at the same hop
along all the equal⁃cost paths [9]. As Fig. 1 shows, links E8→
A7 and E8→A8 belong to an equivalence class. RPS tries to
keep equal ⁃ cost paths between any source ⁃ destination pair
with similar load by randomly spreading traffic into the links of
equivalence class. Considering that the equal⁃cost paths have
the same lengths, if they have similar load as well, the end⁃to⁃
end latencies along the paths will also be similar. It benefits or⁃
dered delivery of packets from different paths, reducing unnec⁃
essary FRs at the receiver. But the random packet splitting
used in RPS may not result in exactly balanced link utiliza⁃
tions, which will lead to problems as we will show later in this
paper.

DRB [10] employs the structure feature of Fat⁃Tree network
and adopts IP ⁃ in ⁃ IP encapsulation/decapsulation to achieve
balanced traffic splitting. In Fat⁃Tree network, there are many
candidate routing paths between each source⁃destination pair,
and each routing path exclusively corresponds to a core switch
or an aggregation switch, which is called bouncing switch. For
each packet, once the bouncing switch which the packet tra⁃
verses is picked, the routing path is determined as well. DRB
employs the sender to pick a bouncing switch for a packet, and
uses IP⁃in⁃IP encapsulation to force the packet to take the ex⁃
pected routing path. To mitigate packet reordering, DRB adds
a re⁃sequencing buffer in the receiver below TCP, which stores
the reordered packets and postpones delivering the reordered
packets to TCP. However, this solution also has the following
shortcomings. First, IP⁃in⁃IP encapsulation introduces an addi⁃
tional packet overhead of 20 bytes. Second, each connection is

SOPA: Source Routing Based Packet⁃Level Multi⁃Path Routing in Data Center Networks
LI Dan, LIN Du, JIANG Changlin, and Wang Lingqiang

June 2018 Vol.16 No. 2

3

D:\EMAG\2018-04-62/VOL16\RP2.VFT——13PPS/P

equipped with a re⁃sequencing buffer, and a timer is set up for
each reordered packet, which occupies considerable storage
and computation resources at the receiver. Third, the re ⁃ se⁃
quencing buffer causes additional delays to deliver a packet to
upper layers, which may affect applications with real⁃ time re⁃
quirements.
2.4 Multi⁃Path TCP (MPTCP)

MPTCP [15]-[17] is a transport⁃layer solution to efficiently
utilize the available band ⁃ widths in multiple paths. MPTCP
splits a flow into many sub⁃flows, and each sub⁃flow indepen⁃
dently picks a routing path from the available candidates. To
achieve fairness and improve throughput, MPTCP couples all
the sub⁃flows together to execute congestion control [17], so as
to shift traffic from more congested paths to less loaded ones.
In order to eliminate the negative effect of packet reordering,
apart from global sequence space, each sub ⁃ flow also has its
own subsequence space [15]. Each sub⁃flow uses its own subse⁃
quence number to conduct congestion control just as the stan⁃
dard TCP does. A subsequence space to global sequence space
mapping scheme is proposed to assemble data at receivers.
Compared with multipath routing schemes, MPTCP focuses
more on congestion control and fairness issues, paying the over⁃
head for establishing and maintaining the states of sub⁃flows.

3 SOPA Design
SOPA is a multi⁃path routing scheme based on packet⁃level

path splitting. In this section we firstly analyze the problems
with random packet splitting, then we present the design de⁃
tails of SOPA including two technical components, namely, in⁃
creasing the FR threshold (to mitigate the impact of packet re⁃
ordering on lowering a flow’s throughput) and source⁃ routing
based packet splitting (to mitigate packet reordering).
3.1 Problems with Random Packet Splitting

We start with discussing the problems of random packet
splitting, in which every switch randomly splits packets from a
flow into equal ⁃ cost next hops. From statistical perspective,
random packet splitting may lead to similar traffic loads among
all the candidate paths during the whole transmission period.
However, given a specific short time interval, splitting packets
in a random manner cannot guarantee allocating the same
amount of traffic to each candidate path. If the load difference
among the paths is enough to cause packet reordering and con⁃
fuse TCP congestion control algorithm to trigger FR, the
throughput of the flow will degrade significantly.

Fig. 2 illustrates an example of random packet splitting. We
assume the sender’s congestion window is big enough to send
out 16 packets without waiting for ACKs from the receiver, and
there are 4 candidate paths between the two ends. Each box in
the figure represents a packet. We can see that each path gets
the same share of packets (4 packets on each path) during the

transmission period. But at the beginning of the transmission,
the first 4 packets are all allocated to path 1. If unfortunately
other flows also allocate packets as shown in Fig. 2, path 1
may have larger queuing delay than other paths in the initial
transmission period. The difference in queuing delay can lead
to packet reordering at the receiver.

We assume the arriving order of the first 7 packets is: 1, 5,
6, 7, 8, 2, 3. In this case, each reordered packet (packet 5, 6, 7
and 8) will prompt the receiver to send an ACK for the expect⁃
ed packet to the sender, i.e., packet 2. According to the default
setting, the three duplicate ACKs will lead the sender into FR
phase, cutting down the congestion window into half. So the
network throughput drops even though the network is not con⁃
gested at all. Although the example is just an illustrative one,
the simulation below based on NS⁃3 indeed demonstrates this
problem.

In this simulation, we use a Fat⁃Tree network built by 4⁃port
switches, as shown in Fig. 1. There are 16 servers in the net⁃
work. A single flow is established between server 0 and server
5, and server 0 sends 100 MB of data to server 5. We set differ⁃
ent capacities to links in different levels to intentionally set dif⁃
ferent oversubscription ratios [4]. All the links connecting serv⁃
ers and edge ⁃ level switches as well as the links connecting
edge⁃level and aggregation⁃level switches have 1 Gbit/s band⁃
width, while the capacity of links connecting aggregation⁃level
and core⁃ level switches varies from 1 Gbit/s, 750 Mbit/s, 500
Mbit/s, to 250 Mbit/s. In other words, the oversubscription ra⁃
tio of the Fat⁃Tree network varies from 1:1, 4:3, 2:1, to 4:1, re⁃
spectively.

There are 4 candidate paths between server 0 and server 5
(each corresponding to a core⁃level switch). As a result, the ide⁃
al network throughput for the flow in all the scenarios is 1 Gbit/s.

Research Paper

ZTE COMMUNICATIONSZTE COMMUNICATIONS 45

▲Figure 2. An example to illustrate that random packet splitting may
cause packet reordering and FR. (Each box denotes a packet, and the
number represents the sequence number of the packet. Although ran⁃
dom packet splitting allocates 4 packets to each path during the whole
period, the instant loads of the paths are different, leading to difference
in the queuing delays of the paths. The arrival order of the first 7 pack⁃
ets can be: 1, 5, 6, 7, 8, 2, and 3, which will result in a FR and degrade
the throughput of the flow.)

1 432

5 8 9 13

6 10 14 15

11 12 167

Path 1

Path 2

Path 3

Path 4
Time

SOPA: Source Routing Based Packet⁃Level Multi⁃Path Routing in Data Center Networks
LI Dan, LIN Du, JIANG Changlin, and Wang Lingqiang

June 2018 Vol.16 No. 2

4

D:\EMAG\2018-04-62/VOL16\RP2.VFT——13PPS/P

However, when oversubscription ratio varies from 1:1, 4:3, 2:1,
to 4:1, the actual throughput of the flow is 986.06 Mbit/s,
966.31 Mbit/s, 578.42 Mbit/s and 296.03 Mbit/s respectively.
We can see that the throughput under random packet splitting
degrades significantly when the oversubscription ratio grows.
When the oversubscription ratio is 4:1, the throughput is only
296.03 Mbit/s, much lower than the ideal value (1 Gbit/s). The
reason is that as the oversubscription ratio increases, the band⁃
width of links between aggregation⁃level and core⁃level switch⁃
es become smaller. When packets are forwarded upwards, a
bottleneck will be built between these two levels of switches,
resulting in longer queuing delay. Furthermore, the imbal⁃
anced traffic splitting illustrated in Fig. 2 allocates different
traffic loads to the candidate paths, and the packets on light ⁃
loaded paths will experience shorter delay than that allocated
to the more heavily ⁃ loaded paths. When the oversubscription
ratio is higher, the queuing delay in the bottleneck paths will
be longer and the impact of traffic imbalance on the packet re⁃
ordering will be more significant. Therefore, more FRs are trig⁃
gered when the oversubscription ratio is higher, resulting in
poorer performance.

To validate our analysis, we record the arrival sequence of
the first 100 packets under the oversubscription ratio of 4:1, as
shown in Fig. 3. The x⁃axis of Fig. 3 denotes the arrival order
of packets on server 5, and the y⁃axis shows the sequence num⁃
ber of each received packet. We observe many reordered pack⁃
ets. These reordered packets send enough duplicate ACKs
back to the sender to trigger FR. Trace data shows that, during
the whole transmission period (100 MB of data transmission),
347 times of FRs occur at the sender, causing it to resend
2406 packets in total (i.e., 3.35% of all the packets). The FRs
reduce the congestion window at the sender and thus degrade
the flow’s throughput.
3.2 Increasing FR Threshold

Since FR due to packet reordering is the root cause of the

undesirable performance of random packet splitting, we want
to understand why random packet splitting brings so many
FRs. To answer this question, we briefly review the congestion
control algorithm of TCP, particularly, the FR algorithm.

In order to ensure reliable data delivery, TCP adopts the ac⁃
knowledgement scheme, i.e., once receiving a data packet, the
receiver sends an ACK message back to the sender. To im⁃
prove efficiency, modern TCP does not send an ACK for each
received packet. Instead, the receiver uses an ACK to acknowl⁃
edge a batch of sequential packets. However, a reordered pack⁃
et will prompt an ACK to be sent out immediately. The sender
sets a retransmission timer for each unacknowledged packet. If
a sent packet or its ACK is dropped, the sender does not know
whether the packet has been correctly received or not, and it
will resend the packet when the retransmission timer timeouts.
This scheme might result in low throughput, because once a
packet is lost, TCP has to wait for the expiration of the retrans⁃
mission timer to resend the packet. During this timeout period,
no more new packets can be sent since the congestion window
does not slide forward. To tackle this issue, FR is proposed,
which is triggered by three duplicate ACKs.
3.2.1 Algorithm of FR

We use one example to illustrate the working process of FR.
In this example, the sender sends out 5 packets in a batch. Un⁃
fortunately the first packet is lost, while the 4 subsequent ones
successfully arrive at the receiver, each triggering an ACK
since it is a reordered packet. Based on today’s TCP configura⁃
tion, three duplicate ACKs trigger the sender to immediately
resend the first packet, rather than waiting for its timeout. The
FR algorithm is widely used for TCP congestion control in the
single ⁃ path routing, in which packets belonging to the same
flow always traverse the same path if there is no topology
change and with high probability a reordered packet indicates
there is packet loss due to congestion. However, in the setting
of packet⁃level multi⁃path routing, packets from the same flow
would go through different paths, which may have different
loads and queue lengths. As a result, the receiver will get more
reordered packets, even if there is no congestion and packet
loss in the network.
3.2.2 Benefit and Problem with Increasing FR Threshold

Since packet reordering is most unlikely the sign of conges⁃
tion in packet ⁃ level multi ⁃ path routing and unnecessary FRs
are the key reasons to lower the throughput, an intuitive idea is
to increase the FR threshold to avoid FRs as much as possible.
However, does increasing FR threshold really help improve the
flow’s throughput? And if it does, how large should the FR
threshold be? To answer these questions, we need to differenti⁃
ate two cases, namely, whether there is packet loss or not.

If there is no packet loss, all the reordered packets will final⁃
ly arrive the receiver, and increasing the FR threshold can effi⁃
ciently avoid unnecessary packet retransmissions caused by

Research Paper

ZTE COMMUNICATIONSZTE COMMUNICATIONS46

▲Figure 3. Arrival sequence of the first 100 packets with the
oversubscription ratio of 4:1. (The random packet splitting causes
many reordered packets.)

100
Packet index

806040200

Seq
uen

ce
num

ber

140000
120000
100000
80000
60000
40000
20000

SOPA: Source Routing Based Packet⁃Level Multi⁃Path Routing in Data Center Networks
LI Dan, LIN Du, JIANG Changlin, and Wang Lingqiang

0

June 2018 Vol.16 No. 2

5

D:\EMAG\2018-04-62/VOL16\RP2.VFT——13PPS/P

packet reordering and accordingly greatly improve the flow’s
throughput.

However, if packet loss indeed occurs, the situation is a lit⁃
tle bit tricky. If there are enough subsequent packets after the
lost packet arriving at the receiver, enough duplicate ACKs
can be received by the sender to trigger FR, even if we in⁃
crease the FR threshold. The only difference is that the time to
resend the lost packet(s) is postponed. Considering the Round⁃
Trip Time (RTT) in data center network is very small (e.g., sev⁃
eral hundred microseconds), we believe that the performance
enhancement by increasing the FR threshold outweighs the in⁃
troduced delay. However, if there are not enough subsequent
packets after the lost packet to trigger FR (e.g., when the con⁃
gestion is window is small), the lost packet will be transmitted
after the retransmission timer timeouts. In this case, increasing
the FR threshold will result in more packet retransmissions by
timeouts, which inversely degrades the flow’s throughput
since the TCP’s retransmission timeout value (RTO) is much
larger than the RTT in data center network.

We use two examples simulated in NS⁃3 to study the effect
of increasing the FR threshold in random packet splitting.

Example 1: We use a 24⁃array Fat⁃Tree network and a per⁃
mutation workload [9], in which each server is a sender or re⁃
ceiver for just one flow. In this workload, there are at most 144
parallel paths for every flow. There is no packet loss in this
case, since Fat⁃Tree network is non⁃blocking. The FR thresh⁃
old is set as 3 (default value in TCP), 6, 10, 15, and 20, respec⁃
tively. Fig. 4 shows the flows’throughputs against the FR
threshold. For each candlestick in the figure, the top and bot⁃
tom of the straight line represent the maximum and minimum
value of the flows’throughputs, respectively. The top and bot⁃
tom of the rectangle denote the 5th and 99th percentile of aver⁃
age throughput, respectively. The short black line is the aver⁃
age throughput of all the flows. We can see that the throughput
indeed improves as the FR threshold increases. By checking
the traces, we find that when the FR threshold is 3, 6, 10, 15

and 20, FR takes place for 28708, 6753, 516, 62 and 3 times,
respectively.

However, when the FR threshold is larger than 10, the im⁃
provement of average throughput is quite marginal: the average
throughput is 896.24 Mbit/s, 919.82 Mbit/s, and 921.16 Mbit/s
when the FR threshold is 10, 15, and 20, respectively. Be⁃
sides, the minimum flow throughput is also less than expected,
because FRs are still triggered even the threshold is larger
than 10. When the FR threshold is 10, 15 and 20, there are
516, 62 and 3 flows experiencing FR, and the average number
of FRs for each flow is 2.02, 1.26 and 1 time(s), respectively. If
we continue increasing the FR threshold, indeed we can elimi⁃
nate FR, but the following example will show that we cannot in⁃
crease the FR threshold to an unlimited value.

Example 2: We use the same network topology as Example 1
and assume a client fetches data from 3 servers to mimic an op⁃
eration in distributed file system and the sum of data size is 64
MB. During the file transmission period, a short flow starts to
send small data (64 KB) to the same client. In our simulation,
when the FR thresholds are 3, 6, 10, 15, and 20, the through⁃
puts of the short flow are 53.16 Mbit/s, 61.14 Mbit/s, 57.84
Mbit/s, 2.41 Mbit/s and 2.42 Mbit/s, respectively.

The two examples above demonstrate that increasing the FR
threshold has both benefits and problems for the throughput
improvement. On one hand, higher FR threshold helps avoid
many unnecessary FRs caused by packet reordering. On the
other hand, when packet loss indeed occurs, higher FR thresh⁃
old also causes more timeouts of retransmission timers and
thus smaller congestion window. We thus argue that simply in⁃
creasing the FR threshold alone cannot solve the problem thor⁃
oughly. In SOPA we set the FR threshold as 10 (motivated by
Examples 1 and 2), and seek for more balanced packet split⁃
ting solutions among the equal⁃cost paths.
3.3 Source⁃Routing Based Packet Splitting

3.3.1 Design Rationale
We first run a simple simulation to demonstrate that random

packet splitting can lead to aggravated packet reordering. We
setup a single flow in a 4⁃array Fat⁃Tree network, which sends
100 MB data. There are 4 parallel paths between the sender
and the receiver. During the entire transmission period, the
percentiles of packets allocated to the four paths are 24.89%,
25.10% , 25.01% and 25.00% respectively. However, within
every 500 consecutive packets, the number of packets allocat⁃
ed to each path deviates significantly from each other. For the
first 2000 packets, Fig. 5 shows the number of packets allocat⁃
ed to each path for every 500 consecutive packets.

We learn from the figure that the maximum deviation from
the average value can be up to 13.6% (this observation well
matches the example shown in Fig. 2), even though the overall
ratios are roughly close to each other. Due to the imbalanced
traffic allocation, some paths may experience congestion and

Research Paper

ZTE COMMUNICATIONSZTE COMMUNICATIONS 47

▲Figure 4. Effect of increasing FR threshold. (As the threshold increases,
the throughput improves as well. However, when the FR threshold is
larger than 10, the improvement of performance is quite marginal.)

FR threshold

Thr
oug

hpu
t(M

bit/
s)

1000

800

600

400

200

0 20151050

SOPA: Source Routing Based Packet⁃Level Multi⁃Path Routing in Data Center Networks
LI Dan, LIN Du, JIANG Changlin, and Wang Lingqiang

June 2018 Vol.16 No. 2

6

D:\EMAG\2018-04-62/VOL16\RP2.VFT——13PPS/P

even packet loss, while others do not. Consequently, we need a
solution which can avoid packet reordering instead of tolerat⁃
ing packet reordering only.

Rather than randomly selecting the next hop for a packet,
SOPA explicitly identifies the routing paths for packets of a
flow in a round ⁃ robin fashion, which results in exactly bal⁃
anced utilization of the equal⁃cost paths regardless of the work⁃
load. There are two possible solutions to explicit path identifi⁃
cation, namely, switch based and server based.

In switch ⁃based solution, we can let each switch explicitly
forward the packets from a flow to the interfaces in a round⁃rob⁃
in way. However, it requires the switch to maintain the state for
each flow, i.e., records the forwarding interface of the last pack⁃
et from the flow. Since the number of concurrent flows in data
center network is huge [5] and the technical trend for today’s
data center network is to use low⁃end commodity switches [4]-
[6], it is quite challenging, if not impossible, to implement this
idea in a practical data center switch.

In server⁃based solution, the senders are responsible for ex⁃
plicitly identifying the routing path of each packet and insert⁃
ing the routing information into the packet, i.e., using source
routing. Switches only need to support source routing, without
the requirement to maintain per⁃flow state. It has been shown
feasible to realize source routing by programming today’s com⁃
modity switching chips [12]. Moreover, source routing is even
easier to be implemented in the emerging SDN/OpenFlow para⁃
digm, by appropriately configuring the flow tables in switches
[13]. In one word, source ⁃ routing based packet splitting puts
the complexity into servers which have sufficient calculation
power and memory [18], while does not need to update the
switches’chips.

SOPA further reduces the packet overhead caused by source

routing in a Fat⁃Tree network by exploiting the topological fea⁃
ture. In Fat⁃Tree network, we define upward forwarding as for⁃
warding packets from a lower ⁃ level switch to a higher level
switch (i.e., from edge switch to aggregation switch, or from ag⁃
gregation switch to core switch); and define downward forward⁃
ing as forwarding packets from a higher⁃level switch to a lower⁃
level switch (i.e., from core switch to aggregation switch, or
from aggregation switch to edge switch). Although there are 6
hops at most for a source⁃destination pair (if source and desti⁃
nation are located in different pods), the routing path is deter⁃
mined by the two upward forwarding hops. Therefore, at most
two intermediate switches are inserted into the IP headers to
support source⁃routing in SOPA. For each hop in upward for⁃
warding, we use 1 byte to store the forwarding interface. It can
theoretically support a 512⁃array Fat⁃Tree network (noting that
only half of a switch’s interfaces are upward ones), which in⁃
cludes 33,554,432 servers in total. Since we only need to store
up to two hops’ information, the overhead introduced by
source routing in SOPA is at most 4 bytes (one byte is option⁃
type octet, two bytes are for two hops’information, and the
fourth byte is a padding byte to ensure that the IP header ends
on a 32 bit boundary). For a packet size of 1500 bytes, the traf⁃
fic overhead is only 0.26%.
3.3.2 Technical Components

SOPA includes three major technical components to realize
the source⁃routing based packet splitting, which are described
as follows.

Calculating Candidate Paths: This component runs at serv⁃
ers. Flows in a Fat⁃Tree network can be divided into three cate⁃
gories, namely, inter⁃pod flows (i.e., the source and destination
are in different pods), inter⁃rack flows (i.e., the source and des⁃
tination are in the same pod but different racks), and intra⁃rack
flows (i.e., the source and destination are under the same edge
switch). The path lengths (in terms of number of hops) for the
three categories of flows are 6, 4 and 2, respectively. For the in⁃
tra⁃rack flows, there is only one path between the senders and
receivers, and we do not need to calculate the candidate paths
at all. When calculating the routing paths for inter ⁃pod flows
and inter⁃rack flows, we only need to focus on upward forward⁃
ing hops. It is worth noting that the candidate paths should ex⁃
clude the ones with faulty links. We assume there is a failure
notification scheme that the source can be aware of the updat⁃
ed topology, which is easy to realize if there is a central control⁃
ler in the data center.

Selecting Flow Path: This component runs at servers too. Be⁃
fore sending out a packet, the sender needs to select a routing
path from the candidate ones for the packet. The sender choos⁃
es the paths for outgoing packets in a round ⁃ robin fashion to
make sure that each path grabs the same share of traffic from
the flow. Once the path is chosen, the sender inserts the path
information into the optional field of IP header. Given the pow⁃
erful processing capability and large memory in today’s data

Research Paper

ZTE COMMUNICATIONSZTE COMMUNICATIONS48

▲Figure 5. Packets allocation in random packet splitting. (This figure
shows how the first 2000 packets are allocated to 4 equal⁃cost paths. Each
group of square columns represents the allocation of 500 packets. Even
though almost the same traffic is allocated to each path during the whole
transmission period, the instant allocations to the paths are different. The
maximum deviation from the average allocation is 13.6%.)

160
140
120
100
80
60
40
20
0

Nu
mb

ero
fpa

cke
ts

1-500 501-1000 1001-1500 1501-2000
Indexes of packets

Paht1
Paht2

Paht3
Paht4

SOPA: Source Routing Based Packet⁃Level Multi⁃Path Routing in Data Center Networks
LI Dan, LIN Du, JIANG Changlin, and Wang Lingqiang

June 2018 Vol.16 No. 2

7

D:\EMAG\2018-04-62/VOL16\RP2.VFT——13PPS/P

center servers, the processing overhead is affordable.
Packet Forwarding: This component runs at switches. The

switches’function in SOPA is simply forwarding packets ac⁃
cording to the source routing information (upward forwarding)
or the destination address (downward forwarding). In an SDN/
OpenFlow network [13], forwarding keys are extracted from the
packet header and matched against the flow table. In a regular
network implementing source routing, in upward forwarding
the next hop is popped from the source routing field and used
as a key to lookup the forwarding table; while in downward for⁃
warding the table lookup is operated on the destination address.
3.3.3 Benefit and Problem with Source Routing

Fig. 6 shows the performance between source⁃routing based
packet splitting and random packet splitting. We run the same
simulation as in Section 3.2 and also set the FR threshold as 3,
6, 10, 15 and 20, respectively. From the simulation results we
find that source routing outperforms random splitting under all
settings. Both the two solutions improve the flows’throughputs
as the FR threshold increases. However, when the FR thresh⁃
old reaches 10, source routing achieves close ⁃ to ⁃ optimal
throughput for all the flows, by the balanced traffic splitting
among the equal⁃cost paths.

We can also observe from Fig. 6 that using source routing
alone cannot completely avoid unnecessary FR. When source
routing is employed and the FR threshold is set to 3, the receiv⁃
ers see 2.83% reordered packets, and 2728 times of FRs are
triggered (in contrast there are 10.96% reordered packets and
28,708 times of FRs in random packet splitting). The reason is
that even we use source routing to ensure balanced traffic split⁃
ting, the end⁃to⁃end delays of the candidate paths are not the
same (the simulations in Section 4.2 show
this phenomenon). So the arrival order of
packets is not strictly consistent with the
sending order. Furthermore, in production
data center networks there may be other rea⁃
sons causing packet reordering, such as the
buggy driver of network interface cards
(NICs).

As a result, in SOPA we employ both in⁃
creasing the FR threshold (to 10) and source⁃
routing based packet splitting to improve the
flows’throughputs in packet ⁃ level multi ⁃
path routing. Note that SOPA does not need
to update the switch hardware. The modifica⁃
tions on server side is also light ⁃ weighted.
We only need to rewrite the FR threshold
number in TCP congestion control algorithm
and maintain the routing path of the last
packet for every outgoing flow.
3.4 Failure Handling

The discussion above assumes there is no

failure and the network topology is symmetric. However, fail⁃
ures are common in data center networks instead of exceptions
[4], [19]. The failures will break the symmetry of the network,
and imbalanced traffic load will be allocated to candidate
paths, resulting in more aggravated packet reordering. We use
an example shown in Fig. 7 to explain the negative effect
brought by failure upon packet⁃level multi⁃path routing.

There are two flows, one from server 0 to 4 while the other
from server 8 to 5. If there is no failure, both flows have four
candidate paths. Now we assume the link between E1 and A1
is broken. Because some paths of flow 0→4 contain the faulty
link, the flow can only take two paths, i.e., E1→A2→C3→

Research Paper

ZTE COMMUNICATIONSZTE COMMUNICATIONS 49

▲Figure 6. Performance comparison between random packet splitting
and SOPA. (The number in the parentheses denotes the FR threshold.
Both random packet splitting and SOPA improve the performance as
the threshold increases, and SOPA outperforms random packet
splitting in all settings.)

▲Figure 7. An example to showcase the negative effect brought by failure upon packet ⁃ level
multi⁃path routing. (There are two flows, flow 0→4 and flow 8→5. If the link between E1 to A1
fails, the flow (0→4) can only take the two remaining paths, while the other flow (8→5) can still
use the four candidate paths, which may cause load imbalance across multiple paths of flow 8→
5, degrading its performance.)

FR threshold

Thr
oug

hpu
t(M

bit/
s)

1000

800

600

400

200

Random (20)

0 SOPA (20)
Random (15)

SOPA (15)
Random (10)

SOPA (10)
Random (6)

SOPA (6)
Random (3)

SOPA (3)

C1 C2 C3 C4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pod0 Pod1 Pod2 Pod3

A8A7A6A5A4A3A2A1

E8E7E6E5E4E3E2E1

Remaining paths Candidate paths

SOPA: Source Routing Based Packet⁃Level Multi⁃Path Routing in Data Center Networks
LI Dan, LIN Du, JIANG Changlin, and Wang Lingqiang

June 2018 Vol.16 No. 2

8

D:\EMAG\2018-04-62/VOL16\RP2.VFT——13PPS/P

A4→E3 and E1→A2→C4→A4→E3 (displayed as dotted ar⁃
row lines in the Fig. 7 and called remaining paths). On the con⁃
trary, flow 8→5 can still use the four candidate paths (dis⁃
played as solid arrow lines in Fig. 7). Both flows evenly allo⁃
cate traffic to its available paths, and load imbalance occurs
across the four candidate paths of flow 8→5. Different queue
lengths will be built among the four paths, leading to aggravat⁃
ed packet reordering at the receiver (server 5).

Fig. 8 validates our analysis, which shows the end to end de⁃
lay of all packets from flow 8→5. The figure displays the de⁃
lays for two groups of packets. One group of packets takes the
paths which overlap with the remaining paths of flow 0→4,
and these paths are called overlapped paths. The other group
of packets takes the paths that do not overlap with the remain⁃
ing paths of flow 0→4, and these paths are called non ⁃ over⁃
lapped paths. For the first 1700 packets, the packets allocated
to the overlapped paths experience much longer delay than
those allocated to the non⁃overlapped paths. Subsequent pack⁃
ets experience almost the same delay. It is because during the
initial transmission period, two flows run simultaneously, and
the traffic load of the overlapped paths is higher than that of
the non⁃overlapped paths. The different traffic loads across the
candidate paths of flow 8→5 result in much more reordered
packets at the receiver (i.e., server 5), leading to degraded per⁃
formance. So flow 0→4 finishes earlier than flow 8→5. In the
late stages of data transmission, there is only flow 8→5, so the
packets from all paths get similar delays.

From the example, we see that link failure can break the bal⁃
anced traffic allocation, resulting in more aggravated packet re⁃
ordering. One possible solution is to employ random early de⁃
tection (RED) for flows that experience link failure, as in [9].
The goal is to reduce the transmission rate of the flow, de⁃
crease the difference in queue lengths of the candidate paths,

and mitigate the packet reordering introduced by failure. We
argue that this solution does solve the problem efficiently.
RED only starts to tag packets when the queue length exceeds
a threshold. Before reducing the transmission rate (which is
caused by tagged ACK), the flows still send data as if no fail⁃
ure occurs. As a result, different queue lengths can still be
built among the candidate paths of the flow whose paths are
not affected by the failure, just as Fig. 8 shows.

Another possible solution is to introduce a re ⁃ sequencing
buffer at the receiver to absorb the reordered packets, as in
[10]. Reordered packets are restored in the re⁃sequencing buf⁃
fer and postponed to deliver to TCP. A timer is set for each re⁃
ordered packet. If an expected packet arrives before timeout,
the timer is canceled and this packet along with in ⁃sequence
packets are delivered to TCP. Otherwise, the timer expires and
the reordered packet is handed to TCP to send back ACKs.
Given no packet loss, the solution works fine. However, if some
packets are dropped, the buffer has to wait for the expiration of
the timer to deliver the packets to TCP, and an additional de⁃
lay is introduced.

Packet reordering is the main negative effect brought by fail⁃
ure. As long as unnecessary FRs are avoided, the performance
can still be guaranteed. SOPA increases the FR threshold,
which can effectively avoid unnecessary FRs due to reordered
packets and greatly mitigate the negative effect brought by fail⁃
ure. Even in case of packet loss, reordered packets can also
produce duplicate ACKs in time to trigger FR. We will evalu⁃
ate our design under scenarios with failure in Section 4.5.

4 Evaluation

4.1 Simulation Setup
In this section, we evaluate the performance of SOPA using

NS⁃3 [20], which is a packet⁃level simulator. We use Fat⁃Tree
as the data center network topology. Given the switches com⁃
posing the Fat⁃Tree network have K ports, the total number of
servers in the network is K3/4. We set K=24 by default unless
specified otherwise. The bandwidth of each link is set to 1 Gbit/
s, and the latency of each link is 25 ns. The packet size is set
as 1500 bytes (including IP header and TCP header). For SO⁃
PA, the FR threshold is 10, and for the other schemes, we use
TCP’s default configuration, i.e., FR threshold of 3. From pre⁃
vious analysis, we know that the throughput of random packet
splitting degrades when the oversubscription ratio increases,
so we set 1:1 oversubscription ratio for all the simulations,
which actually favors random traffic splitting.

In the following simulations, we use RPS as the implementa⁃
tion of random traffic splitting. We firstly use a small ⁃ scale
simulation to demonstrate that the random packet splitting cre⁃
ates imbalanced load distribution and degraded performance.
Then we compare SOPA with ECMP, Hedera and RPS by us⁃
ing large ⁃ scale simulations. We implement Hedera following

Research Paper

ZTE COMMUNICATIONSZTE COMMUNICATIONS50

▲Figure 8. End to end delay of the packets from flow 8→5. (The failure
causes flow 0→4 only can take two remaining paths, which are
overlapped with two candidate paths of flow 8→5. The figure shows the
packets on the overlapped paths experience much longer delay than the
packets allocated to the non⁃overlapped paths.)

Packet index

Del
ay

(ms
)

0.8

4000

0.7
0.6
0.5
0.4
0.3
0.2
0.1
0 3500300025002000150010005000

Delay of packets on non⁃overlapped paths
Delay of packets on overlapped paths

SOPA: Source Routing Based Packet⁃Level Multi⁃Path Routing in Data Center Networks
LI Dan, LIN Du, JIANG Changlin, and Wang Lingqiang

June 2018 Vol.16 No. 2

9

D:\EMAG\2018-04-62/VOL16\RP2.VFT——13PPS/P

[8], and use Global First Fit algorithm to calculate the routing
paths for big flows. We use two workloads, i.e., permutation
workload and production workload, to study various traffic sce⁃
narios (details about these two workloads will be introduced lat⁃
er). At last, we also evaluate the performance of SOPA with
link failures.
4.2 Negative Effect of Imbalanced Load Distribution

In this section, we use a small ⁃ scale simulation to demon⁃
strate the negative effect of imbalance load distribution. A 4⁃ar⁃
ray Fat⁃Tree network, just as Fig. 1 shows, is used in this simu⁃
lation. We set up four flows in the simulation, i.e., flow 0→4,
0→5, 1→4, and 1→5, respectively. Each flow sends 10 MB
data to its destination. We run both SOPA and RPS in the sim⁃
ulation, respectively.

Fig. 9 shows the flows’throughput. When SOPA is used,
each flow grabs the fair share of bandwidth, and the throughput
of each flow is about 475 Mbit/s. However, when using RPS,
the throughput of each flow varies much. The maximum
throughput is 404.27 Mbit/s (flow 0→4), while the minimum
throughput is 360.55 Mbit/s (flow 1→5). The average through⁃
put of these four flows is only 378.30 Mbit/s. We thoroughly an⁃
alyzes the reason for the difference in the performance of SO⁃
PA and RPS as follows.
4.2.1 Evolvement of CWND

First, we check the evolvement of the congestion window
(CWND), as shown in Figs. 10a and 10e. Fig. 10a demon⁃
strates that the size of congestion window of each flow varies

much when RPS is used, because each flow experiences many
times of FR. For the 4 flows, the FR takes place for 23, 24, 23
and 31 times, respectively. Each FR halves the size of conges⁃
tion window, and the throughput drops down accordingly. On
the contrary, Fig. 10e showcases that when SOPA is employed,
the congestion window of each flow increases monotonically
during the whole transmission period (from slow start phase to
congestion avoidance phase). Therefore, SOPA achieves good

Research Paper

ZTE COMMUNICATIONSZTE COMMUNICATIONS 51

▲Figure 10. Comparisons between SOPA and random packet spraying.

CW
ND

(Pk
t)

▲Figure 9. Throughput of 4 flows. (SOPA allocates traffic evenly, and
each flow grabs fair share of bandwidth, and the throughput of each
flow is about 475 Mbit/s. However, RPS fails to achieve balanced traffic
allocation, the average throughput of these four flows is only 378.30
Mbit/s.)

500

Thr
oug

hpu
t(M

bit/
s)

1➝5

400

300

200

100

0

SOPA

1➝40➝50➝4
Flows

RPS

Time (s)
a) CWND (RPS)

0.25

45
40
35
30
25
20
15
10
5
0 0.200.150.100.050

Flow(0➝4)
Flow(1➝5)

Flow(1➝4)
Flow(0➝5)

90000

0.7
0.6
0.5
0.4
0.3
0.2

Del
ay

(ms
)

60000 800007000030000 500004000020000100000
Pkt ID

b) Packet delay (RPS)

Qu
eue

len
gth

(Pk
t)

Time (s)
0.25

30
25
20
15
10
5
0 0.200.10 0.150.050

c) Queue length of E 1 (RPS)

E 1 (Port 2)E 1 (Port 3)

Qu
eue

len
gth

(Pk
t)

0.25

35

0 0.200.10 0.150.050
Time (s)

d) Queue length of E 3 (RPS)

30
25
20
15
10
5

E 3 (Port 0)E 3 (Port 1)

CW
ND

(Pk
t)

Time (s)
e) CWND (SOPA)

0.20

90
80
70
60
50
40
30
20
10
0 0.150.100.05

Flow(0➝4)
Flow(1➝5)
Flow(1➝4)
Flow(0➝5)

90000

0.7
0.6
0.5
0.4
0.3
0.2

Del
ay

(ms
)

60000 800007000030000 500004000020000100000
Pkt ID

f) Packet delay (SOPA)

Qu
eue

len
gth

(Pk
t)

Time (s)
0.20

3.0
2.5

g) Queue length of E 1 (SOPA)

E 1 (Port 2)E 1 (Port 3)

2.0
1.5
1.0
0.5
0 0.150.100.050

Qu
eue

len
gth

(Pk
t)

Time (s)
0.20

10
8

h) Queue length of E 3 (SOPA)

E 3 (Port 0)E 3 (Port 1)

6
4
2
0 0.150.100.050

SOPA: Source Routing Based Packet⁃Level Multi⁃Path Routing in Data Center Networks
LI Dan, LIN Du, JIANG Changlin, and Wang Lingqiang

June 2018 Vol.16 No. 2

10

D:\EMAG\2018-04-62/VOL16\RP2.VFT——13PPS/P

performance, while RPS does not.
4.2.2 End⁃to⁃end Packet Delay

To find out why RPS causes so many reordered packets and
then many unnecessary FRs, we measure the end⁃to⁃end pack⁃
et delay. Figs. 10b and 10f show the packet delay when RPS
and SOPA are employed, respectively. Fig. 13b shows that the
packets’delays vary heavily in RPS. The maximum packet de⁃
lay is 687.4 us, while the minimum packet delay is 211 us.
However, the end to end delays of all packets fluctuate within
a small range when SOPA is adopted, which is shown in Fig.
10f. The maximum packet delay is 366.27 us, while the mini⁃
mum packet delay is 187 us. And SOPA only introduces 0.4%
reordered packets during the simulation, while 14.92% pack⁃
ets experience reordering when RPS is adopted. This aggravat⁃
ed packet reordering can be attributed to imbalanced traffic
splitting of RPS, which builds up different queue lengths on
switches and packets from different paths experience different
delays. We measure the queue lengths to validate our analysis.
4.2.3 Queue Length

In the simulation all the traffic of the four flows goes through
the edge switch E1 and E3 in Fig. 1. The two switches are the
highest ⁃ loaded switches, so we focus on the queue lengths of
the two switches. Since all traffic is forwarded upwards at
switch E1 and switch E3 forwards all traffic downwards, we
measure the queue lengths of all the upward forwarding ports
on E1 (i.e., port 2 and port 3) and the queue lengths of all
downward forwarding ports on E3 (i.e., port 0 and port 1).

Figs. 10c and 10d plot the queue lengths on switch E1 and
E3 for RPS, respectively. The figures reveal that RPS builds
very different queue lengths on different forwarding ports due
to imbalanced traffic splitting. We take switch E1 as an exam⁃
ple, at 0.008 s, the queue length of the port 2 is 16 packets,
while the queue of the port 3 is empty. Switch E3 also has
more diverse queue lengths on port 0 and port 1. For example,
at 0.2250 s, the queue of port 0 is empty, while the queue
length of port 1 is 34 packets. Note that the average queue
length of E3 is bigger than that of E1. Since RPS produces im⁃
balanced traffic splitting at each hop, and E1 is the first hop
and E3 is the last hop of these flows. As the last hop, the larger
queue length of E3 embodies the accumulated imbalanced traf⁃
fic splitting at previous hops.

For SOPA, the queue lengths on switch E1 and E3 are
shown in Figs. 10g and 10h, respectively. Compared with Figs.
10c and 10d, it is obvious that the queue lengths of different
ports on each switch are almost the same, due to the more bal⁃
anced traffic splitting achieved by SOPA. As a consequence,
SOPA does not introduce aggravated packet reordering, and no
FR is triggered. However, RPS creates different queue lengths
on switches’different forwarding ports, packets on different
routing paths may experience different delays (as Fig. 10b
shows). Therefore, the receivers see larger number of reordered

packets, and many unnecessary FRs are triggered.
For SOPA, the queue lengths on switch E1 and E3 are

shown in Fig. 10g and Fig. 10h, respectively. Compared with
Fig. 10c and Fig. 10d, it is obvious that the queue lengths of
different ports on each switch are almost the same, due to the
more balanced traffic splitting achieved by SOPA. As a conse⁃
quence, SOPA does not introduce aggravated packet reorder⁃
ing, and no FR is triggered. However, RPS creates different
queue lengths on switches’different forwarding ports, packets
on different routing paths may experience different delays (as
Fig. 10b shows). Therefore, the receivers see larger number of
reordered packets, and many unnecessary FRs are triggered.
4.3 Permutation Workload

We then study the performance of various multi⁃path routing
schemes, namely, SOPA, RPS, Hedra and ECMP, under syn⁃
thesized permutation workload. The senders and receivers are
picked randomly. We use a Fat ⁃Tree network with K =24, in
which there are 3456 servers in total. Each sender sends 10
MB data to its receiver. All flows start simultaneously.
Fig. 11 shows the Cumulative Distribution Function (CDF)

of all the flows’throughput. We can see that SOPA significant⁃
ly outperforms the other three multi⁃path routing schemes. The
average throughput of SOPA is 925.13 Mbit/s, and all the flows’
throughputs are above 910 Mbit/s. Compared with SOPA, the
average throughput of the flows drops by 47.47% in RPS. The
fundamental reason is as explained above: RPS cannot evenly
split the traffic across candidate paths, and unequal queue
lengths will be built. So the receivers will receive more reor⁃
dered packets, and unnecessary FRs will be triggered at the
senders. As flow ⁃ based path splitting solutions, Hedera and
ECMP expose even lower performance than RPS. Compared
with SOPA, the average throughput drops by 75.21% and

Research Paper

ZTE COMMUNICATIONSZTE COMMUNICATIONS52

CDF: Cumulative Distribution Function
▲Figure 11. CDF of the flows’throughputs for the five multi⁃path
routing schemes under permutation workload. (Both SOPA and DRB
outperform the other three routing schemes, and SOPA also achieves
more balanced traffic splitting than DRB.)

1.0

CD
F

10008006004002000

0.8

0.6

0.4

0.2

0

SOPA
RPS

Hedera
ECMP

Throughput (Mbit/s)

SOPA: Source Routing Based Packet⁃Level Multi⁃Path Routing in Data Center Networks
LI Dan, LIN Du, JIANG Changlin, and Wang Lingqiang

June 2018 Vol.16 No. 2

11

D:\EMAG\2018-04-62/VOL16\RP2.VFT——13PPS/P

76.48%, respectively. The basic reason is that the flow⁃based
multi⁃path routing cannot fully utilize the rich link resource in
the Fat ⁃ Tree network. ECMP achieves the lowest throughput
because the hashing results of some flows may collide and be
scheduled to the same path, which can be avoided by central⁃
ized negotiation in Hedera.
4.4 Production Workload

We next study the performance under a more realistic work⁃
loads from a production data center [5]: 95% flows are less
than 1 MB, and only less than 2% flows exceeds 10 MB. Differ⁃
ent from the permutation workload, in this simulation the data
is transmitted by multiple flows instead of a single one. The
flows are issued sequentially, and each flow randomly picks a
destination server. All the servers start data transmission at the
same time, and we measure the average throughput of the data
transmission under this workload.

In our simulation, the average throughput for SOPA, RPS,
Hedera, and ECMP are 465.5 Mbit/s, 302.96 Mbit/s, 105.005
Mbit/s, and 103.849 Mbit/s, respectively. ECMP gets the low⁃
est throughput, since it neither evenly spreads the flows into
multiple paths nor considers traffic sizes in splitting. Hedera
performs a little better than ECMP, but the gap is marginal
(less than 2 Mbit/s). It is because Hedera targets at scheduling
large flows but in this workload 95% flows are small ones (with
data size less than 1 MB). Both RPS and SOPA can achieve
much higher throughput, due to the fine ⁃ grained link utiliza⁃
tion by packet⁃level path splitting. Compared with RPS, SOPA
can even improve the throughput by 53.65%, since it explicitly
spreads the traffic into the multiple paths in a more balanced
way. The result is consistent with that in previous simulations.
4.5 Link Failures

We then evaluate the performance of SOPA when failure oc⁃
curs. Since failure brings more negative effect for packet⁃level
traffic splitting (introducing more aggravated packet reorder⁃
ing), we only compare SOPA with RPS in this group of simula⁃
tions. We use production workload to conduct simulation in
the same topology as that in the previous simulation. We let
the leftmost aggregation switch in the first Pod break down.
Fig. 12 shows the result. In order to showcase the effect of fail⁃
ure, the performance without failure is also plotted.

The x ⁃ axis of Fig. 12 denotes both multi ⁃ path routing
schemes under different settings, wherein“NF”in parenthesis
means no failure, and“F”in parenthesis denotes failures. The
y⁃axis shows the throughput of flows. Similarly, for each can⁃
dlestick in the figure, the top and bottom of the straight line
represent the maximum and minimum values of the flow’s
throughput, respectively. The top and bottom of the rectangle
denote the 5th and 99th percentile of average throughput, re⁃
spectively. The short black line is the average throughput of all
flows.

The performance of SOPA is almost not affected by the link

failure at all, and only the minimum throughput decreases from
244 Mbit/s to 188.17 Mbit/s. This mild performance degrada⁃
tion is attributed to the high FR threshold of SOPA, which can
absorb the more reordered packets introduced by the failure.
However, failure brings more negative effects to RPS, and both
the maximum and minimum throughput of RPS are dropped.
When there is no failure, the maximum and minimum through⁃
put are 865.41 Mbit/s and 214.54 Mbit/s, respectively. But in
the failure case, their values drop to 672.25 Mbit/s and 26.17
Mbit/s, respectively. This performance degradation is primarily
caused by timeouts of the retransmission timers. Trace data
shows that when failure occurs, RPS experiences 67 times of
timeout and 12000 packets have been dropped (as a contract,
there is no packet loss when no failure). The packet losses are
caused by traffic congestion, since RPS cannot achieve bal⁃
anced traffic splitting and the failure aggravates this situation.
However, benefiting from balanced traffic splitting, SOPA does
not cause packet loss, and there is not a single timeout in the
simulation, with or without failures.

5 Conclusion
Many“rich ⁃ connected”topologies have been proposed for

data centers in recently years, such as Fat⁃Tree, to provide full
bisection bandwidth. To achieve high aggregate bandwidth, the
flows need to dynamically choose a path or simultaneously
transmit data on multiple paths. Existing flow⁃ level multipath
routing solutions do not consider the data size, and may lead to
traffic imbalance. While the packet ⁃ level multipath routing
scheme may create large queue length differential between can⁃
didate paths, aggravating packet reordering at receivers and
thus triggering FR at the senders. In this paper we design SO⁃
PA to efficiently utilize the high network capacity. SOPA

Research Paper

ZTE COMMUNICATIONSZTE COMMUNICATIONS 53

▲Figure 12. The performance comparison between SOPA and RPS
under production workload when failures occur. (In order to show the
effect of failure, the performance without failure is also plotted.“NF”
means no failure, while“F”denotes that failure has occurred.)

Thr
oug

hpu
t(M

bit/
s)

1000

800

600

400

200

0
RPS (F)0 RPS (NF)SOPA (F)SOPA (NF)

SOPA: Source Routing Based Packet⁃Level Multi⁃Path Routing in Data Center Networks
LI Dan, LIN Du, JIANG Changlin, and Wang Lingqiang

June 2018 Vol.16 No. 2

12

D:\EMAG\2018-04-62/VOL16\RP2.VFT——13PPS/P

adopts source routing to explicitly split data to candidate rout⁃
ing paths in a round robin fashion, which can significantly miti⁃
gate packet reordering and thus improve the network through⁃
put. By leveraging the topological feature of data center net⁃
works, SOPA encodes a very small number of switches into the
packet header, introducing a very light overhead. SOPA also
immediately throttles the transmission rate of the affected flow
as soon as the failures are detected to promptly mitigate the
negative affect of failures. NS⁃3 based simulations show SOPA
can efficiently increase the network throughput, and outper⁃
form other schemes under different settings, irrespective of the
network size.

Research Paper

ZTE COMMUNICATIONSZTE COMMUNICATIONS54 June 2018 Vol.16 No. 2

SOPA: Source Routing Based Packet⁃Level Multi⁃Path Routing in Data Center Networks
LI Dan, LIN Du, JIANG Changlin, and Wang Lingqiang

Reference
[1] S. Ghemawat, H. Gobioff, and S. ⁃T. Leung,“The google file system,”in Proc.

19th ACM Symposium on Operating Systems Principles, New York, USA, 2003,
pp. 29-43.

[2] J. Dean and S. Ghemawat,“MapReduce: simplified data processing on large
clusters,” in Proc. 6th Symposium on Operating Systems Design and
Implementation, Berkeley, USA, 2004, pp. 137-149.

[3] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly,“Dryad: distributed data⁃
parallel programs from sequential building blocks,”in Proc. 2nd ACM SIGOPS/
EuroSys European Conference on Computer Systems, New York, USA, 2007, pp.
59-72. doi: 10.1145/1272998.1273005.

[4] M. Al⁃Fares, A. Loukissas, and A. Vahdat,“A scalable, commodity data center
network architecture,”in Proc. ACM SIGCOMM 2008 Conference on Data
Communication, Seattle, USA, 2008, pp. 63-74. doi: 10.1145/1402958. 1402967.

[5] A. Greenberg, J. R. Hamilton, N. Jain, et al.,“VL2: a scalable and flexible data
center network,” in Proc. ACM SIGCOMM 2009 Conference on Data
Communication, Barcelona, Spain, 2009, pp. 51- 62. doi: 10.1145/1592568.
1592576.

[6] C. Guo, G. Lu, D. Li, et al.,“BCube: a high performance, server⁃centric network
architecture for modular data centers,”in Proc. ACM SIGCOMM, Barcelona,
Spain, 2009, pp. 63-74.

[7] D. Li, C. Guo, H. Wu, et al.,“Scalable and cost⁃effective interconnection of data⁃
center servers using dual server ports,”IEEE/ACM Transactions on Networking,
vol. 19, no. 1, pp. 102-114, Feb. 2011. doi: 10.1109/TNET.2010.2053718.

[8] M. Al ⁃ Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,”in Proc. 7th
USENIX Symposium on Networked Systems Design and Implementation, San
Jose, USA, 2010, pp. 1-15.

[9] A. Dixit, P. Prakash, Y. Hu, and R. Kompella,“On the impact of packet
spraying in data center networks,”in Proc. IEEE INFOCOM, Turin, Italy, 2013,
pp. 2130-2138. doi: 10.1109/INFCOM.2013.6567015.

[10] J. Cao, R. Xia, P. Yang, et al.,“Per⁃packet load⁃balanced, low⁃latency routing
for clos ⁃ based data center networks,”in Proc. Ninth ACM Conference on
Emerging Networking Experiments and Technologies, Santa Barbara, USA,
2013, pp. 49-60. doi: 10.1145/2535372.2535375.

[11] IETF. (2013, Mar. 2). IP encapsulation within IP [Online]. Available: https://
datatracker.ietf.org/doc/rfc2003

[12] C. Guo, G. Lu, H. J. Wang, et al.,“Secondnet: a data center network
virtualization architecture with bandwidth guarantees,” in Proc. 6th
International Conference on Emerging Networking Experiments and
Technologies, Philadelphia, USA, 2010. doi: 10.1145/1921168.1921188.

[13] ONF. (2017, Apr. 1). Open networking foundation [Online]. Available: https://
www.opennetworking.org

[14] A. Curtis, W. Kim, and P. Yalagandula,“Mahout: Low ⁃ overhead datacenter
traffic management using end⁃host ⁃based elephant detection,”in Proc. IEEE
INFOCOM, Shanghai, China, 2011, pp. 1629- 1637. doi: 10.1109/INFCOM.
2011.5934956.

[15] C. Raiciu, S. Barre, C. Pluntke, et al.,“Improving datacenter performance and
robustness with multipath TCP,”in Proc. ACM SIGCOMM, Toronto, Canada,
2011, pp. 266-277. doi: 10.1145/2018436.2018467.

[16] C. Raiciu, C. Paasch, S. Barr, et al.,“How hard can it be? Designing and
implementing a deployable multipath TCP,” in USENIX Symposium of
Networked Systems Design and Implementation, San Jose, USA, 2012, pp. 29-
29.

[17] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design,
implementation and evaluation of congestion control for multipath TCP,”in
Proc. 8th USENIX Conference on Networked Systems Design and
Implementation, Boston, USA, 2011, pp. 99-112.

[18] M. Alizadeh, A. Greenberg, D. A. Maltz, et al.,“Data center TCP (DCTCP),”in
Proc. ACM SIGCOMM, New York, USA, 2010, pp. 63- 74. doi: 10.1145/
1851182.1851192.

[19] R. Niranjan Mysore, A. Pamboris, N. Farrington, et al.,“PortLand: a scalable
fault ⁃ tolerant layer 2 data center network fabric,”in Proc. ACM SIGCOMM,
Barcelona, Spain, 2009, pp. 39-50. doi: 10.1145/1594977.1592575.

[20] NS⁃3 [Online]. Available: http://www.nsnam.org
Manuscript received: 2017⁃03⁃22

LI Dan (tolidan@tsinghua.edu.cn) received the M.E. degree and Ph.D. from Tsing⁃
hua University, China in 2005 and 2007 respectively, both in computer science. Be⁃
fore that, he spent four undergraduate years in Beijing Normal University, China
and got a B.S. degree in 2003, also in computer science. He joined Microsoft Re⁃
search Asia in Jan. 2008, where he worked as an associate researcher in Wireless
and Networking Group until Feb. 2010. He joined the faculty of Tsinghua Universi⁃
ty in Mar. 2010, where he is now an associate professor at Computer Science Depart⁃
ment. His research interests include Internet architecture and protocol design, data
center network, and software defined networking.
LIN Du (lindu1992@foxmail.com) received the B.S. degree from Tsinghua Universi⁃
ty, China in 2015. Now, he is a master candidate at the Department of Computer Sci⁃
ence and Technology, Tsinghua University. His research interests include Internet
architecture, data center network, and high⁃performance network system.
JIANG Changlin (jiangchanglin@csnet1.cs.tsinghua.edu.cn) received the B.S. and
M.S. degrees from the Institute of Communication Engineering, PLA University of
Science and Technology, China in 2001 and 2004 respectively. Now, he is a Ph.D.
candidate at the Department of Computer Science and Technology, Tsinghua Univer⁃
sity, China. His research interests include Internet architecture, data center net⁃
work, and network routing.
WANG Lingqiang (wang.lingqiang@zte.com.cn) received the B.S. degree from De⁃
partment of Industrial Automation, Zhengzhou University, China in 1999. He is a
system architect of ZTE Corporation. He focuses on technical planning and pre⁃re⁃
search work in IP direction. His research interests include smart pipes, next genera⁃
tion broadband technology, and programmable networks.

BiographiesBiographies

13

